English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation

MPS-Authors
/persons/resource/persons134308

Rausch,  Elisabeth
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126789

Ouardi,  Siham
Siham Ouardi, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rausch, E., Balke, B., Ouardi, S., & Felser, C. (2014). Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Physical Chemistry Chemical Physics, 16(46), 25258-25262. doi:10.1039/C4CP02561J.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-CA7A-F
Abstract
A novel approach for optimization of the thermoelectric properties of p-type Heusler compounds with a C1b structure was investigated. A successful recipe for achieving intrinsic phase separation in the n-type material based on the TiNiSn system is isoelectronic partial substitution of Ti with its heavier homologues Zr and Hf. We applied this concept to the p-type system MCoSb0.8Sn0.2 by a systematic investigation of samples with different compositions at the Ti position (M = Ti, Zr, Hf, Ti0.5Zr0.5, Zr0.5Hf0.5, and Ti0.5Hf0.5). We thus achieved an approximately 40% reduction of the thermal conductivity and a maximum figure of merit ZT of 0.9 at 700 °C. This is a 80% improvement in peak ZT from 0.5 to 0.9 at 700 °C compared to the best published value of an ingot p-type half-Heusler compound. Thus far, comparable good thermoelectric p-type materials of this structure type have only been realized by a nanostructuring process via ball milling of premelted ingot samples followed by a rapid consolidation method, like hot pressing. The herein-presented simple arc-melting fabrication method reduces the fabrication time as compared to this multi-step nanostructuring process. The high mechanical stability of the Heusler compounds is favorable for the construction of thermoelectric modules. The Vickers hardness values are close to those of the n-type material, leading to good co-processability of both materials.