English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Scaffolding the expansion of autophagosomes

MPS-Authors
/persons/resource/persons128406

Kaufmann,  Anna
Wollert, Thomas / Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78903

Wollert,  Thomas
Wollert, Thomas / Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kaufmann, A., & Wollert, T. (2014). Scaffolding the expansion of autophagosomes. AUTOPHAGY, 10(7), 1343-1345. doi:10.4161/auto.28980.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-C3F9-3
Abstract
The conjugation of the small ubiquitin (Ub)-like protein Atg8 to autophagic membranes is a key step during the expansion of phagophores. This reaction is driven by 2 interconnected Ub-like conjugation systems. The second system conjugates the Ub-like protein Atg12 to Atg5. The resulting conjugate catalyzes the covalent attachment of Atg8 to membranes. Atg12-Atg5, however, constitutively associates with the functionally less well-characterized coiled-coil protein Atg16. By reconstituting the conjugation of Atg8 to membranes in vitro, we showed that after Atg8 has been attached to phosphatidylethanolamine (PE), it recruits Atg12-Atg5 to membranes by recognizing a noncanonical Atg8-interacting motif (AIM) within Atg12. Atg16 crosslinks Atg8-PE-Atg12-Atg5 complexes to form a continuous 2-dimensional membrane scaffold with meshwork-like architecture. Apparently, scaffold formation is required to generate productive autophagosomes and to deliver autophagic cargo to the vacuole in vivo.