
Reports on Earth System Science

Berichte zur Erdsystemforschung 151
2014

A stochastic model for options and strategies
for the Spanish agricultural sector under

climate change

Hyung Sik Choi



Anschrift / Address

Max-Planck-Institut für Meteorologie

Bundesstrasse 53

20146 Hamburg

Deutschland

Tel.: +49-(0)40-4 11 73-0

Fax: +49-(0)40-4 11 73-298

Web: www.mpimet.mpg.de

Die Berichte zur Erdsystemforschung werden 

vom Max-Planck-Institut für Meteorologie in 

Hamburg in unregelmäßiger Abfolge heraus-

gegeben. 

Sie enthalten wissenschaftliche und

technische Beiträge, inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise 

die Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 

die vorherigen Reihen "Reports" und 

"Examensarbeiten" weiter.

The Reports on Earth System Science are published

by the Max Planck Institute for Meteorology in 

Hamburg. They appear in irregular intervals.

They contain scientific and technical contributions,

including Ph. D. theses.

The Reports do not necessarily reflect the 

opinion of the Institute. 

The  "Reports on Earth System Science" continue

the former "Reports" and "Examensarbeiten"

of the Max Planck Institute.

Layout: 

Bettina Diallo, PR & Grafik

Titelfotos:

vorne:

Christian Klepp - Jochem Marotzke - Christian Klepp

hinten:

Clotilde Dubois - Christian Klepp - Katsumasa Tanaka

NoticeHinweis



Reports on Earth System Science

 Berichte zur Erdsystemforschung 151
2014

151
2014

A stochastic model for options and strategies
for the Spanish agricultural sector under

climate change

Hyung Sik Choi
aus Jeonju, Süd Korea

Hamburg 2014

ISSN 1614-1199



Hyung Sik Choi
Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg

Als Dissertation angenommen
vom Department Geowissenschaften der Universität Hamburg

auf Grund der Gutachten von
Prof. Dr. Hermann Held
und
Prof. Dr. Uwe Schneider

Hamburg, den 21. Januar 2014
Professor Dr. Christian Betzler
Leiter des Departments für Geowissenschaften 

ISSN 1614-1199



Hyung Sik Choi

Hamburg 2014

A stochastic model for options and strategies
for the Spanish agricultural sector under

climate change





 

 

1 

 

Abstract 

 

Agriculture faces new challenges in the 21st century: climate changes and biofuel energy 

developments put pressures on agriculture. Climate change is expected to change not only 

weather means, but also frequency and intensity of weather extremes. Biofuel feedstock 

occupies cropland and causes conflicts within food production. The purpose of this thesis is 

to gain an integrated view of agriculture and land use in a stochastic framework, accounting 

for annual climate variability under climate change.   

 

Spain is selected as a study region because it is one of the most vulnerable countries in the 

EU under climate change. The Spanish Stochastic Agricultural Sector Model (SSASM) is 

developed and applied to investigate climate change impacts, climate prediction effects, and 

land use change impacts. To provide the SSASM with climate change impacts on crop yields, 

a biophysical crop growth model (EPIC, Environmental Policy Integrated Climate) is driven 

with multiple regional climate model (RCM) outputs. The SSASM takes into account annual 

climate variability and makes management decisions to maximize the expected agricultural 

sector welfare. 

 

In chapter 2, climate prediction effects on Spanish welfare, distributional effects and land use 

changes are investigated, using historical climate variability between 1961 and 1990. In line 

with the value of information theory, climate prediction enhances producer decisions and in 

general, increases consumer surplus and producer revenue. However, with adverse climate 

predictions, both consumers and producers lose in Spain and foreign producers’ gain 

increases if Spanish farmers’ reaction to climate information remains at a conservative level. 
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In addition, by sharing Spanish climate information with the rest of the world, the Spanish 

producers’ gains always increase.  

 

Chapter 3 simulates climate change impacts on Spain using three regional climate scenarios 

(REMO, RegCM, and Aladin). Between 2080 and 2099, consumer surplus will decrease by 2 

– 3 percent in 2090s and producer revenue will decrease by 5 – 20 percent, and cultivated 

land in Spain will decline by 20 – 50 percent on average. A land retaining policy in Spain 

would benefit Spanish consumers by increasing production. Keeping marginal land in 

production, however, imposes a resource overuse. Thus, the overall costs of land retention are 

higher than those of abandonment by a factor of two. With a land abandonment policy under 

climate change, climate predictions increase consumer surplus but decrease agricultural GDP. 

However, climate predictions with a land retaining policy significantly reduce the overall 

value in comparison to using a land abandonment policy.  

 

Chapter 4 analyzes cropland changes under climate change and crop transition towards 

renewable energy. Cropland in Spain will decrease by 5 to 20 percent in 2030s and by 10 to 

70 percent in 2090s through productivity changes induced by climate change. The result 

shows that photovoltaic (PV) electricity potential on abandoned crop in 2030s with a land 

subsidy of 100 euro/ha is about 50 percent of total EU electricity consumption in 2010. 

Harnessing abundant PV electricity potential needs to be considered in the future, as biofuel 

feedstock productivity declines under climate change in Southern Europe.  

 

Finally, climate prediction effects, land use change, and climate change impacts could be 

investigated and compared through the stochastic model framework. If climate prediction is 

available in the future, agricultural producers should be able to make strategic management 
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decisions to cope with adverse climate conditions and the plan to share climate information 

should be prepared to increase the benefits from climate prediction. Furthermore, under 

climate change, the value of climate prediction is higher with the land abandonment scenario 

than with the land retention scenario.  Agricultural land in Spain experiences considerable 

pressures due to productivity changes under climate change, and it becomes inefficient to 

retain this land. Land policy should consider transitions from agricultural land to other uses - 

solar energy, biofuel, and afforestation - accounting for rural economic viability and changing 

environmental conditions.  
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Chapter 1. Introduction  

 

1.1 Agriculture and climate change in the 21st century 

Agricultural productivity has exponentially increased through the 20th century due to new 

cultivars and agronomic intensification achieved through nitrogen fertilization, enhanced 

irrigation, and weed control (Evans, 1997). As of today, global agriculture can feed a global 

population of 7 billion. Agriculture constitutes only 5 percent of the world’s economic output, 

but occupies 40 percent of land area (Lotze-Campen and Schellnhuber, 2009). Yet, the annual 

growth in the global agricultural output is expected to slow down from the 2.6 percent of the 

current decade (led by growth in Brazil, China, India and the Russian Federation) to 1.7 

percent in the next decade, due to soil degradation and water supply limits (OECD/FAO, 

2012b). In addition, climate variations have played a major role in shaping the yield growth 

since 1980 (Lobell et al., 2011). 

 

Despite growth in agricultural productivity, still 1 billion of humans suffer from hunger 

(Godfray et al., 2010).  In developing countries, agriculture is vital to the local economy: 70 

percent of the population lives in rural areas, agriculture is the largest supporter of livelihood, 

and people spend around 30 − 50 percent of their income on food (Willenbockel, 2011). 

Agriculture accounts for 40 percent of GDP in Africa and 28 percent in South Asia (Lotze-

Campen and Schellnhuber, 2009). The national GDP of developing countries is vastly 

influenced by climate change and extreme events, such as prolonged droughts, heat waves, 

and flooding (Dercon, 2004). 
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The global agriculture will likely be confronted with manifold challenges in the 21st century. 

Global population is projected to rise to 9 billion by 2050 (Godfray et al., 2010). By that time, 

agricultural production needs to increase by 60 – 70 percent from its present-day value to be 

able to feed the rising population (OECD/FAO, 2012c). Agricultural land will get under 

increasing pressures from local human activities, soil erosion, water depletion, urbanization, 

and biofuel production. For instance, already in 2007, an estimated 1.6 percent of the global 

cultivated land, equal to 25.1 million ha, was devoted to the production of biofuel feedstock 

(FAO, 2008). Lastly, climate change is expected to impose risks on agricultural production 

and could therefore contribute to aggravating the expected agricultural production deficit. Of 

concern are not only changes in the mean climate, but also the increasing frequency and 

intensity of climate/weather extremes. 

  

Recently, agricultural markets have already been under pressure from changes of climate, 

population increase and bio-energy, which are anticipated in the 21st century. The production 

deficit triggered by the concomitance of extreme weather events with the biofuel expansion, 

the latter is a consequence of a rise in oil price is among the main factors explaining the price 

shocks of food commodities in 2008 and 2011 (Trostle, 2008, 2011). There exists therefore 

the concern that impacts of future climate change on the agricultural sector will increase the 

threat to the system and consequently might lead to agricultural market instability. To address 

such a complex issue, it is necessary to integrate future climate change effects into agriculture, 

including land use and energy supply change. 
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1.2 Projections of climate change impacts on agriculture and their 

limitations and the need for stochastic models 

Since the 1990s, numerous climate impact studies have assessed the potential of future 

climate-related risks for agriculture. In general, previous researches agree on the following: 

1) in the early 21st century the global agricultural productivity has been benefitting from the 

global warming trends; 2) climate change impacts on the global agriculture in the late 21st 

century are expected to be manageable; 3) climate change is expected to impose damages 

mostly to developing countries at low latitudes whereas developed countries at high latitudes 

are expected to be less impacted (Reilly et al., 1994; Adams et al., 1995b; Parry et al., 1999; 

Fischer et al., 2005; Easterling et al., 2007).  

 

Counter-arguments exist to the above agreements that indicate economic damages and risks 

on agriculture to be likely underestimated (Cline, 2007; Ackerman et al., 2009; Ackerman 

and Munitz, 2012; Ackermann, 2013). The counter-arguments highlight the inherent 

limitations of previous approaches and their inadequacy to properly answer the question of 

how future climate change will impact agriculture and the associated economy. 

 

In particular, assessments are based on outputs from numerical climate simulations 

(performed with so called General Circulation Models or GCMs). These simulations provide 

only representative pathways of future climate evolution. Historical climate simulations 

covering the last century demonstrate that GCMs are not yet able to reproduce satisfactorily 

fundamental aspects of the observed climate variability, for instance the El Niño–Southern 

Oscillation (ENSO) describing the interannual variability in the tropical Pacific (Randall et 

al., 2007). Furthermore, GCMs do not robustly represent the various climate feedbacks 

involving cloud, vegetation, and sea ice, which are known to modulate the amplitude of 
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climate variations (Randall et al., 2007). Future extreme events from GCMs are hardly 

considered for impact analyses in agriculture. Climate downscaling techniques have been 

developed, but most of the previous researches used directly mean climate change 

information from GCM or simple ‘delta change’ methods for daily climate projections. 

The effects of CO2 fertilization are also controversially discussed. Initial studies reported 

substantial carbon fertilization effects:  30 percent grain yield gains in C3 crops and 7 percent 

in C4 crops from a doubling of CO2 concentrations (Tubiello et al., 2007). However, recent 

Free-Air CO2 Enrichment (FACE) experiments demonstrate approximately 50 percent lower 

estimates than previous results (Tubiello et al., 2007; Ackermann, 2011; Ackermann, 2013). 

Similarly, the role of temperature thresholds for crop yields is likely underestimated: the 

relationship between crop yield and temperature over threshold is non-linear, but has often 

been treated within a linear framework, i.e., based only on a mean climate response. In reality 

crop yield can decline sharply above the threshold temperature due to increasing frequency 

and intensity of extreme climate events (Schlenker and Roberts, 2009). 

  

In this thesis, a stochastic agricultural model is developed which allows, for the first time, to 

account for annual climate variations in a comprehensive assessment of future climate 

impacts on agricultural market, land-use change, and adaptation. Future daily weather data 

for Spain obtained from a set of Regional Climate Models (RCMs) are used as input to a 

process-based crop model (EPIC, Environmental Policy Integrated and Climate) (Williams et 

al., 1989a). Explicit annual climate variability impacts on crop yields are transferred to the 

stochastic economic model.  It is then used to make decisions by farmers about land 

management based on a probabilistic (i.e. distributional) description of the climate state as 

provided by EPIC. This model approach has several advantages: first, it allows assessing the 

impacts of extreme events which occur during a certain time period. Furthermore, a 
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differentiation of decisions is produced by the stochastic optimization with respect to climate 

risk. The description of the stochastic model can be found in the chapter 2.10 appendix.  

 
1.3 Study region – Spain 

High temperature and low rainfall constrain crop productivities in Southern Europe. Under 

climate change, southern Europe is expected to face the largest temperature increase and the 

largest rainfall decrease in Europe (Bindi and Olesen, 2011). In Spain, agriculture constitutes 

about 3 percent of national GDP, which is $40 billion USD in 2010 (FAO).  The land area 

under cereal production is around 6 million ha (FAO) with relatively low crop productivity 

and high solar irradiation (see Figure 4-1). Thus, Spain is a well-suited study region to 

investigate climate change impacts, land use change and its implications.   

 

 
1.4 Objectives of this thesis 

By coupling annual climate variability with the stochastic agricultural sector model, this 

thesis investigates the three topics outlined below.  

 

 

Effects of seasonal climate forecasting on agricultural markets, welfare and 
land use: a case study for Spain (chapter 2) 
 
Climate projections have emerged as an option to adapt to climate variability in agriculture. 

Within a comprehensive framework of the stochastic agricultural model, it is examined how 

much benefit can be obtained by both consumers and producers in Spain in terms of 

consumer surplus and producer revenue.  Additionally, the effects of climate information 

sharing and its distribution in the rest of the world are also investigated. 
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Climate change impacts on cropland change and adaptation by climate 
prediction under a changing climate: case study in Spain with a stochastic 
model framework (chapter 3) 
 
Climate impact research should account for not only long-term mean climate change but also 

for short-term climate variability and extreme events. We investigate the impacts of climate 

variability and climate extremes from three RCM climate change scenario outputs and their 

implication on the Spanish agricultural market, land change, and climate prediction values in 

the future. For this, three models are compared: the deterministic model, the stochastic 

model, and the stochastic model with perfect information. Two land use scenarios - land 

retention and land abandonment - are used. 

 

Agricultural land abandonment under climate change and its potential use 
for renewable energy - A case study for Spain (chapter 4) 
 
The competition of land either for food or energy is an important issue that concerns both 

mitigation and adaptation to climate change. Transition from cropland to other use in Spain is 

investigated under climate change. Spain has much higher solar irradiation potential but 

much lower crop productivity than other European countries. Thus, this chapter calculates the 

cropland transition to the renewable energy, which depends upon both climate change and 

land subsidy for renewable energy. The stochastic agricultural model estimates solar 

photovoltaic electricity and bioenergy on abandoned cropland with different land 

abandonment cost scenarios. A similar analysis is also performed in the deterministic model 

for comparison. The technical potential of photovoltaic and bioenergy is estimated and 

compared.  
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Chapter 2. Effects of seasonal climate forecasting on 

agricultural markets, welfare and land use: a case study for 

Spain1 

 

Abstract 

Climate forecasting has emerged as an adaptation option for agriculture to manage adverse 

impacts of increasing climate variability. We investigate the potential effects of climate 

forecasting for the Spanish agricultural sector because of its relatively high vulnerability to 

adverse climatic change. The results of our coupled climate-crop-economy modeling 

framework show the overall value of climate information (VOI) and diverse welfare 

consequences for producers and consumers in Spain and international agricultural markets. 

When farmers use forecasted climate information to choose profitable crop mixes outside 

historical bounds (proactive reaction) then the VOI is notably higher than otherwise 

(conservative reaction). The VOI under favorable climate conditions is greater than under 

adverse climate conditions. In particular, under adverse climate conditions, negative VOI 

could materialize for the Spanish agricultural sector because of production and welfare 

transfers from Spain to other countries. Information sharing of Spanish climate predictions 

with the rest of the world (ROW) increases not only global welfare but also Spanish 

producers’ benefits. Through the competitive advantages of climate forecasts, Spanish 

producers’ revenue increases between 1.9 - 7.4 percent for the examined cases. Finally, 

climate forecasting promotes a more efficient use of agricultural resources. On average, the 

agricultural production increase due to climate forecasts translates into welfare-neutral land 

                                                 

1 This chapter is submitted to Agricultural Systems as Hyung Sik Choi, Uwe A. Schneider, Livia Rasche, Junbo 
Cui, Erwin Schmid, Hermann Held, (2013) “Effects of seasonal climate forecasting on agricultural markets, 
welfare and land use: a case study for Spain”. 
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gains of about 2 percent in Spain. This indicates that climate forecasting may create new 

opportunities to utilize agricultural land surplus for new economic activities. 

 

 

2.1 Introduction 

Climate change is altering the statistics of temperature and precipitation. More frequent and 

severer weather extreme events are anticipated to impose greater damages to ecosystems and 

agricultural systems (Katz and Brown, 1992; Easterling et al., 2007; Wigley, 2009). Recent 

analyses show that changes in climate partly contributed to stagnating crop yields in the EU 

since the 1990’s (Brisson et al., 2010) and that extreme weather events can trigger rises of 

agricultural commodity prices (Spiertz and Ewert, 2009; Trostle, 2011). Potential impacts of 

climate change on the economy are of great concern to decision makers and early climate 

information could help to anticipate these impacts. Seasonal climate forecasting is emerging 

as a possible instrument for adaptation, and not only helps to cope with climatic constraints in 

crop production, but also to improve agricultural efficiency in general (Hansen, 2002; Smit 

and Skinner, 2002). Seasonal climate forecasting could be especially useful for agriculture, 

because year-to-year climate variability substantially affects crop yield and economic welfare 

(Adams et al., 1999; Dercon, 2004). Long-range seasonal climate forecasting with a lead time 

between three months and one year, enables farmers to tailor their choices regarding extent 

and management of crops to match anticipated climate and may help them to achieve higher 

outputs (Lu, 2007; WMO, 2007; Lim et al., 2011).  

 

Since the launch of the Tropical Ocean and Global Atmosphere (TOGA) and the Global 

Climate Observing System (GCOS) program, seasonal climate forecasting has become more 

feasible by monitoring sea surface temperature and advancing climate modeling. Model-
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based seasonal climate predictions on the El Niño Southern Oscillation (ENSO) events have 

been valued ex-ante for agricultural sectors in pacific-oceanic regions where ENSO has 

caused high impacts in the past. Previous studies on ENSO forecasting have assessed the 

economic viability of investment into climate science research and climate prediction systems 

at farm, agricultural sector and global market level (Johnson, 1986; Adams et al., 1995a; 

Messina et al., 1999; Mjelde and Hill, 1999; Adams et al., 2003a). These studies show that 

climate forecasting systems could be beneficial to society by enhancing resource use 

efficiency and helping to improve management decisions. With an assumed perfect climate 

forecasting skill, Adams et al. (1995a) showed that ENSO forecasts could produce benefits as 

high as US$145 million in the southeastern U.S. regions, and Solow et al. (1998) estimated 

an overall benefit of US$323 million for the entire U.S. agriculture. With 70 percent 

forecasting skill, Mexico would benefit about US$10 million annually (Adams et al., 2003a). 

In some developing countries, seasonal climate forecasting has already been implemented, 

e.g. in Southern Africa (Patt et al., 2007; Hansen et al., 2011). These studies show that 

farmers’ income increases when seasonal climate forecasts are provided. Even though 

seasonal climate predictability in Europe is limited (Palmer et al., 2004; Calanca et al., 2011; 

Doblas-Reyes et al., 2013), the DEMETER (development of a European multi-model 

ensemble system for seasonal to interannual predictions) project shows that wheat yield 

anomalies could be anticipated six months in advance through probabilities for some years 

and regions (Cantelaube and Terres, 2005). Integrated climate-crop modeling, which 

combines crop simulation models with dynamic seasonal forecast models, is suggested as a 

decision and policy support tool for the agricultural sector (Hansen, 2005).  

 

Despite these developments, employing climate forecasting for adaptation measures in the 

agricultural sector still lags behind, mostly due to substantial technical deficiencies and an 
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uncertainty about its value. The gap between its goal - reducing vulnerability to climate 

variability - and its feasibility hinders policy makers from promoting climate forecasting 

systems (IRI, 2006).  

 

Comprehensive economic assessments can help to narrow this gap. In this study, we 

approach the value of climate information from various perspectives: different farmers’ 

reactions to climate forecasts, sharing of climate information, and cultivated land changes. 

We aim to examine the adaptability of Spanish farmers to perfect climate forecasts under 

adverse, normal and favorable climate conditions. We analyze their effects on crop 

management in Spain and on international agricultural market adjustments within the 

framework of a probabilistic global partial equilibrium model, which is linked to climate 

driven crop productivity simulations. Another objective is to quantify how much cropland 

can be spared through the use of climate information without affecting the overall welfare in 

the agricultural sector. In the present study, both the skill of the seasonal climate forecast and 

farmers’ uptake of this forecast are assumed to be 100 percent. This study is the first to 

analyze the effects of climate forecasts on an EU country, Spain, which is anticipated to be 

adversely impacted by climate change. The modelling framework is unique in that a high 

resolution Spanish agricultural sector model is nested in a global partial equilibrium model. 

 
 
2.2 Material and methods  

We establish an integrated modeling framework which links climate information through bio-

geophysical crop simulations to an economic partial equilibrium model, to analyze the 

interactions of climate, crop management choices, and international agricultural markets. The 

impact of climate on crop growth is analyzed with the Environmental Policy Integrated 

Climate model (EPIC, Williams et al. (1989b)), using 30 years of weather data (1961 - 1990). 
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The climate impacts on crop productivity are integrated in an agricultural sector model, 

which depicts the aggregate response of producers and markets for each single year. The 

sector model also assesses the effects of seasonal climate forecasting on welfare measures, 

i.e. changes in consumer surplus and producer revenue both for Spain and the rest of the 

world (ROW). The main adaptation options include the choice of crop mix and irrigation 

regime. Farmers can change their crop mix choices if they are provided with information 

about upcoming seasonal climate approximately five to twelve months before harvesting 

(Meinke and Stone, 2005). We use scenarios containing different combinations of 

assumptions about crop mix adaptation, dissemination of climate information, and cropland 

availability. 

 

 

2.3 Study area 

We chose Spain for this case study as agricultural production has been annually varying by 

20 percent, mainly due to highly variable weather conditions (Iglesias et al., 2000), and 

because it is one of the most vulnerable countries to climate change in Europe (Christensen et 

al., 2007b). Europe’s climate is driven by different modes of climate variability than ENSO. 

At annual time scale, the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) have 

a strong influence on Europe’s summer and winter temperatures. At decadal time scale, the 

Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional Overturning Circulation 

(AMOC) affect large scale climate patterns in Europe (Marshall et al., 2001). Cantelaube et 

al. (2004) show that the NAO has a significant impact on winter wheat yield variability in 

Europe. 
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 Conceptual decision model with climate information  2.3.1

We introduce a simple mathematical model to describe the decision behavior of agricultural 

producers who face uncertain climate/weather conditions, resource limitations, and 

internationally linked commodity markets. Here, uncertainty is represented as a discrete set of 

alternative climate states (index s) with an associated probability vector s . The model’s 

objective function denoted by  ( ) , , s s s X Y  maximizes the sum of consumer and producer 

surplus in agricultural commodity markets and is a function of i) control variable vector X 

representing agricultural decisions before the uncertain climate state is revealed (e.g. choice 

of crops planted), ii) control variable vector Ys representing agricultural decisions after the 

climate state is revealed (e.g. trade and domestic sales of produced crops), and iii) a climate 

state dependent crop yield parameter s . Both s and s are given exogenously and remain 

unchanged during the analysis. The optimal decision for the control variable vector X is 

either independent (no climate forecast available) or dependent (climate forecast available) 

on alternative climate states. The following subsections explain in more detail the differences 

between the two forecast availability modes and how the value of information (VOI) is 

determined.  

 
 Probabilistic decision model without climate forecast 2.3.2

The decision model in this section depicts a situation where farmers make management 

choices in an uncertain environment and only possess knowledge of historical crop yield 

variability (Lambert et al., 1995). Thus, the optimal values for the control variables X and Y 

are determined by maximizing economic surplus in agricultural markets:  

    1 S
,

max , , ,  ( ,.., )s s s
s

   
 





X Y

X Y Y Y Y  (1) 

As mentioned above, the state of climate is observed after the decisions on X but before the 

decisions on Ys. Particularly, the decision vector X includes the area allocation choice to 
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different crops at planting time. Without the availability of a seasonal climate forecast, 

farmers’ optimal decision on X is independent of the later realized state of climate. Farmers 

chose a crop distribution, which maximizes the probability weighted net returns across all 

climate states. Thus, the decision vector X is not indexed by climate state. On the other hand, 

the decision vector Ys includes aggregate levels of production, consumption, and trade, all of 

which are influenced by the specific climate realized during the growing season. The solution 

of the probabilistic maximization problem shown above implicitly includes a cost of climate 

uncertainty because farmers are likely to utilize a different level of resources than they would 

with climate forecasts (Kall, 1994; Meza et al., 2008). 

 

 Probabilistic decision model with seasonal climate forecasts and the 2.3.3

value of information   

In this setting, we assume i) perfectly accurate seasonal climate forecast, ii) perfect 

knowledge about the consequences of the predicted climate state on crop productivity, and 

iii) perfect integration of the crop productivity response to particular climate states in 

agricultural decision making. In contrast to the previous setting without climate forecasts, the 

optimal decision levels for variable vector X are now dependent on the climate state and thus 

include index s. Farmers will choose a specific optimal crop mix for a specific forecasted 

climate. Thus, with perfect seasonal climate forecast skill, the optimal values for Xs and Ys 

are determined by a specific objective function for each climate state: 

  
,

max  , ,  
s s

s s s s    X Y
X Y  (2) 

The VOI can now be computed as the difference between the economic surplus attained 

without climate information and the probability weighted average of agricultural surplus 

across all climate states attained with perfect climate forecasting: 
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VOI max , , max , ,
s s

s s s s
s

s s s
s

      
      

 
 

X Y X Y
X Y X Y  (3) 

Note that we consider in this study only the gross VOI which does not include the cost of 

information. As the cost of generating the information increases, the net VOI becomes 

smaller (Macauley, 2005). The gross value of correct additional information can never be 

negative (Gollier, 2001). Furthermore, a higher degree of uncertainty, i.e. a higher variability 

of climate related crop yields, generally implies a larger VOI.  

 

2.4 Simulation of crop yield variability  

We selected six major crops (barley, winter wheat, rice, corn, potato, cotton) in Spain and 

analyzed their yield variability with the EPIC model. This bio-geophysical model simulates 

the daily development of crops under specific environmental and land management 

conditions. The model has been applied to different climate regions, e.g. tropical west Africa, 

Europe, and Asia (Tan and Shibasaki, 2003; Wriedt et al., 2009; Gaiser et al., 2010; Jia et al., 

2012; Balkovic et al., 2013), and in climate change impact studies (Izaurralde et al., 2003; 

Eitzinger et al., 2012; Strauss et al., 2012). Furthermore, the crop growth module of EPIC has 

been validated under different regional climate and environmental conditions (Gassman et al., 

2005). A previous study showed that the current version of EPIC adequately simulates crop 

yield responses to heat waves and dry conditions in Europe, but achieves a relatively poor 

quality in simulating heavy rainfall impacts (van der Velde et al., 2012).  

 

For the EPIC simulations, we used different datasets on physical characteristics (topography, 

soil, and climate), land cover, and crop management: Topographical information such as 

altitude and slope was derived from digital elevation models (GTOPO30 and SRTM90). Soil 

data, i.e. soil texture class, soil depth to rock, and stone content were taken from the 

European soil database (ESDB v.2). The MARS (Monitoring of Agriculture by Remote 
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Sensing) project provides crop calendar data. The regional fertilizer inputs were estimated by 

linking national fertilizer use data from New CRONOS-EUROSTAT with average crop 

yields by NUTS-2 region, nutrient removal coefficients for harvested crops, and a multiplier 

that accounts for surplus fertilization. 

 

The Homogeneous Response Units (HRU) and the simulation unit approach developed by 

Schmid et al. (2006) for the European Union were adopted. HRUs are delineated by altitude, 

slope, and soil information at a 1km pixel resolution. Individual simulation unit is a spatial 

intersection of HRU, land cover data, irrigation and NUTS-2 regions (Balkovič et al., 2010) 

(Table 2-1) and are the basis of crop management activities at aggregated farm level which 

link the economic model with the biophysical model EPIC. The final simulation unit areas for 

harvested crops are assigned to be consistent with EUROSTAT at NUTS2 level in terms of 

crop area and crop yields.  

 

 
Table 2-1 Data source and resolution for the simulation unit delineation 

Data Data source 
 Resolution 

(pixel) 

Simulation 
Unit 

HRU 

Topography 
Height, 
Slope 

SRTM90,GTOPO30 1km 

Soil 

Texture, 
Depth to 

rock, 
Stone 

content 

European Soil Database 
 (ESDB v.2) 

1km 

Land cover CORNIE-PELCOM 1km 

Irrigation LUCAS (Land Use/Cover Area 
frame Statistical Survey)  

1km 

NUTS-2 boundaries 
Geographic Information System 
of European Commission 
(AGISCO) 
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To capture the variability in climate, we used weather data from the regional climate model 

REMO (Jacob and Podzun, 1997) as input to EPIC, which were bias corrected using ERA-40 

data. Thus, the mean and the variance of the adopted REMO data are consistent with ERA-40 

data. The employed data include daily maximum and minimum temperature, solar radiation, 

precipitation and relative humidity over the period from 1961 to 1990 with a spatial 

resolution of 25 km × 25 km. We assume that the climate variability between 1961 and 1990 

covers the range of possible climate events for agricultural producers in Spain. 

 

For each year, we calculated regional crop yields at NUTS-2 level as bias corrected weighted 

average over individual simulation unit: 

 

 
 

, , , , ,

, ,
, , , , ,

,

ˆ 1

ˆ

1

t n c m n m t n
m t t

t n c
n m t n c m n m

m m

t tn m
m

Y A Y
Y

A Y A

A


 

 
 
 
 
 

  
 

 


 


 

where , ,t n cY is the bias corrected yield of crop c in NUTS-2 region n and year t, , , ,t̂ n c mY is the 

crop yield simulated with EPIC for each spatial simulation unit m, and n,mA  is the arable area 

of a simulation unit m in NUTS-2 region n. Yields simulated with default crop parameters in 

EPIC show deviations to observed yield data  ,t nY  in the EU (Balkovic et al., 2013). As 

shown above, we calibrated EPIC yields through linear scaling. The scaling factor (second 

multiplicative term on the right hand side of the equation below) is derived by dividing the 

average NUTS-2 crop yields from EUROSTAT over the period from 1995 to 2004 by the 

mean values of simulated EPIC yields for the 30-year period from 1961 to 1990.  
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2.5 Probabilistic agricultural sector model 

For the economic analysis, we used a probabilistic partial equilibrium model for the Spanish 

agricultural sector. The general concept and structure are analogous to the US Agricultural 

Sector and Mitigation of Greenhouse Gas (ASMGHG) model (Schneider et al., 2007). The 

livestock sector is represented in a reduced form as used in earlier versions of the Global 

Biomass Optimization Model (Sauer et al. (2010)). Demand functions are explicitly defined 

using a price-quantity observation with constant own-price elasticities of demand estimated 

from the United States Department of Agriculture.  

 
 
Commodity supply functions exist only implicitly as endogenous aggregation over many 

Leontief production functions. While both agricultural land and water use in Spanish 

producer regions are physically limited, water use faces an explicit constant-elasticity supply 

function. Market prices are internally determined and equilibrate supply and demand. 

International agricultural production is aggregated to 28 regions according to political and 

climatic conditions. The probabilistic model concepts are similar to Discrete Stochastic 

Programming with Recourse (DSPR) (Lambert et al., 1995) in that the agricultural market 

equilibrium is computed by maximizing the expected sum of producer and consumer surplus 

subject to resource and technological constraints. The model includes the six agricultural 

commodities mentioned above. We used agricultural market data from FAOSTAT to 

calibrate the base model to year 2000 conditions (Table 2-2). The model equations can be 

found in the appendix.  

 

The model depicts farming activities in Spain for around 2,000 different sites. Cropping 

activities are restricted by maximum crop share rules for crop rotations. Decisions to expand 
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or abandon crop land and to install irrigation incur additional costs. A two-stage decision 

process is implemented: Crop management decisions are made during the first stage, i.e. 

before the seasonal climate is revealed, all other decisions are determined during the second 

stage, i.e. after the climate has influenced agricultural production. These decisions relate to 

total production, commodity trade, and resource usage. Crop mix restrictions are often used 

in agricultural sector models to properly aggregate farm level activities to sectoral level 

(McCarl, 1982; Chen and Onal, 2012). Here, we use two types of crop mix constraints – 

proactive and conservative – to represent alternative reactions of farmers to climate forecasts.  

 

Table 2-2 Observed data and baseline economic model output. Area (EUROSTAT) and 
price (FAO) observed data are averaged over the period of 1995 – 2004.  

Crop Area (1000 ha)  Price (€/Tonne)
 Observed Model Gap (%)  Observed Model Gap (%) 

Barley 3313.47 3285.80 -0.83  126.99 141.74 11.62
Corn 449.76 449.66 -0.02  149.35 147.93 -0.95
Cotton 94.59 96.46 +1.98  210.64 199.73 -5.18
Potato 128.86 116.74 -9.41  184.73 169.44 -8.28
Rice 108.06 108.31 +0.23  300.07 298.63 -0.48
Wheat 2191.48 2183.16 -0.38  147.73 157.10 6.34

Total 6286.22 6240.13 -0.73  

 

The details on the crop mix concept are explained in the next section. Agricultural 

commodities are traded among Spain and 28 aggregated international regions covering the 

entire globe. The market activities of the regions outside Spain are portrayed with demand 

and supply functions. The reference supply quantity for all international regions was 

computed from the average crop yields over the period of year 1999 ~ 2001. Spain is the only 

country to experience climate variability impacts, and thus also the only country to employ 

climate forecasting for adaptation. 
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2.6 Different scenarios of employing climate forecasts 

Figure 2-1 shows how different scenarios are used in the model analysis. Of the many factors 

that can affect the VOI, we consider three: i) farmers’ willingness to deviate from 

conventional crop choice decisions, ii) the dissemination level of a detailed Spanish climate 

forecast, and iii) the total area of cultivated cropland in Spain.  

 

 

Figure 2-1 Schematic diagram of climate forecasts use scenarios and model outputs 

 

We consider two crop mix adaptation strategies (conservative and proactive) to distinguish 

different degrees of responsiveness to climate forecasts. Under the conservative crop mix 

assumption, farmers’ crop mix decisions are restricted to fall within historical crop shares. 

The proactive crop mix setting, however, allows deviations from observed crop mix choices 

to combinations which better incorporate the climate forecasts. In this option, farmers are 

more flexible than in the conservative crop mix setting to avoid negative outcomes, utilizing 

positive outcomes when they use climate forecasts. The proactive crop mix values are 

generated by sampling area values from normal distributions of downscaled historical crop 

area at simulation unit levels. These normal distributions take mean and standard deviation 

values from a statistical analysis of historical choices. We use normal distributions to create 

possible crop mix choices other than the historical values. This has the advantage of 
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generating unknown crop mix values for each simulation unit. Farmers’ proactive crop mix 

decisions are made within combinations of higher or lower boundary ranges than the 

conservative mix.    

 

The dissemination level of climate forecasts distinguishes two alternative scenario settings. In 

the ‘Spain’ scenario, the climate forecast is only available to Spanish farmers. One can 

interpret this scenario in two ways: On the one hand, the Spanish government may want to 

protect domestic farmers by providing them a small advantage. On the other hand, ROW 

farmers may simply not have the capacity to take Spanish climate forecasting into account. 

The second dissemination scenario ‘Global’ assumes that climate forecasts generated for 

Spain are shared globally and ROW farmers adapt their decisions as well.  

 

Finally, we distinguish different cropland availability scenarios in Spain. First, farmers could 

decide to increase or decrease the cultivated land according to the provided seasonal climate 

forecasts. Hill et al. (1999) also showed that climate information could affect the planted 

acreage at different market price levels. Secondly, the available cropland could be decreased 

by increased land demands for other purposes, e.g. renewable energy installations. To reflect 

these differences, we first simulate an autonomous response of Spanish farmers’ to climate 

forecasts. Here, farmers decide on optimal crop land use by comparing climate information, 

predicted yields, and crop land expansion or abandonment costs. In addition, we force the 

model exogenously to use a certain level of cropland in Spain ranging from a 20 percent 

reduction to a 5 percent expansion of the observed cropland in 2010. This represents possible 

changes in governmental policy and socio-economic states. 
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2.7 Results  

 

 Climate variability impacts on Spanish agriculture  2.7.1

We firstly examine the 30 years historical climate variability impacts on the Spanish 

agricultural market without employing climate forecasting (probabilistic decision mode) and 

calculate market impacts on the basis of consumer surplus per capita and producer revenue. 

We take these outputs as the baseline.  

 

Figure 2-2 Climate variability impacts on consumer surplus per capita and producer 
revenue in Spain. Grey bars & line: output anomaly values by climate variability 
compared with baseline values at year 2000 level. Distributions are fitted with the 
generalized extreme value distribution. Lines: climate information scenarios: Proactive 
crop mix (P-mix), Conservative mix (C-mix), Climate forecasting only in Spain (Spain), 
Climate forecasts shared globally (Global).  

 

Without climate forecasting and compared to the baseline year 2000 economic levels, total 

agricultural consumer surplus in Spain decreases by €250 million under adverse conditions 

and increases by €234 million under favorable conditions. These values correspond to a per 

capita loss of €6.22 and a per capita gain of €5.86 in Spain (Figure 2-2), respectively. 

Likewise, total producer revenue from six crops and one aggregate livestock commodity 

ranges from a €2.30 billion loss to a gain of €3.49 billion. These changes correspond to a 14.5 

percent decrease and a 22.0 percent increase relative to the revenue of the reference period. 
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Producers incur greater impacts than consumers because climate variability directly affects 

the agricultural production and producer revenue. Consumers face smaller impacts because 

production deficits can be compensated by international commodity trade.  

 

Barley and winter wheat account for 87 percent of the represented area with cotton, 
rice, potato, and corn being grown on the rest ( 

Table 2-2). Table 2-3 shows that crop yields substantially differ across climate conditions. 

The climate sensitivity of barley yield is highest. Barley and winter wheat also require more 

water than the other crops. These results indicate that it is important for Spanish farmers to 

choose a suitable crop management – i.e. area and technology (rainfed and irrigated) – for 

winter wheat and barley corresponding to seasonal climate forecasts, saving natural resources 

(land, water). 

 
 Value and impact of climate forecasts on Spanish agriculture 2.7.2

We group 30 years of climate data into three categories based on the effect climate has on 

consumer surplus in Spain. Particularly, we compare the VOI under different climate states: 

adverse (lower 10th percentile), normal (10th ~ 90th percentile), favorable (upper 90th 

percentile) climate states for communicating our results. We consider adverse climate as 

extreme climate, e.g. drought and heat waves, favorable climate as optimal weather 

conditions for the growing season and the rest as normal climate. We use economic metrics, 

e.g. consumer surplus, to classify climate states because they are easily comparable, unlike 

temperature and rainfall, which are heterogeneous in each region.  

 
The results (Figure 2-3) show that both agricultural consumers and producers in Spain can 

benefit from climate forecasts. On average, the consumer surplus increases between 

€0.82/capita and €3.10/capita and the producer revenue increases between 1.94 percent and 

7.04 percent with irrigation water savings of 2.01 percent to 4.36 percent. Spanish welfare in 
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agriculture increases between €30 million and €118 million (Table 2-4). Proactive crop mix 

decisions create higher surplus values than conservative crop mix decisions both for 

consumers and producers in Spain under all scenarios, as farmers have a wider range of 

options and thus are able to fully take advantage of the climate information.  

 

Table 2-3 Measured (FAO) and simulated (EPIC) Spanish crop yields at national level 
in three categorized climate states: adverse, normal, and favorable (lower 10th 
percentile, 10th – 90th percentile, upper 90th percentile of baseline outputs), and 
simulated irrigation water use (total irrigation water consumption at national level in 
categorized climate states).   

  

 

Crop 

 FAO 
(ton/ha)  

 EPIC yield 
 (ton/ha) 

 EPIC irrigated water 
 (10-3 km3) 

 
AVG 

 
AVG SD/ CV Adverse Normal Favorable 

 
AVG SD/ CV Adverse Normal Favorable 

Barley 

 
2.60 

 
2.64 0.50/0.19 2.00 2.62 3.47 

 
1253.13 141.84/0.11 1315.30 1253.09 1191.22 

(%)  
 

  (-24.48) (-0.86) (+31.35) 
 

  (+4.96) (0.00) (-4.94) 

Corn 
 9.14 

 
9.16 1.02/0.11 8.19 9.08 10.79 

 
243.67 18.03/0.07 266.88 242.10 233.04 

(%)  
 

  (-10.56) (-0.90) (+17.72) 
 

  (+9.52) (-0.64) (-4.37) 

Cotton 
 3.44 

 
3.47 0.47/0.14 2.91 3.48  3.89 

 
78.79 3.61/0.05 82.53 78.39 78.24 

(%)  
 

  (-16.19) (+0.49) (+12.26) 
 

  (+4.75) (-0.51) (-0.70) 

Potato 
 24.34 

 
25.34 3.65/0.14 19.94 25.31 30.97 

 
59.17 4.12/0.07 61.90 58.69 60.25 

(%)  
 

  (-21.30) (-0.11) (+22.20) 
 

  (+4.62) (-0.81) (+1.84) 

Rice 
 7.08 

 
7.50 0.87/0.12 6.84 7.41 8.90 

   
83.72 

4.14/0.05 88.11 83.64 79.98 

(%)  
 

  (-8.79) (-1.24) (+18.71) 
 

  (+5.24) (-0.10) (-4.47) 

Wheat 
 2.64 

 
2.60 0.31/0.12 2.29 2.58 3.04 

 
1281.53 137.82/0.11 1372.06 1278.66 1213.92 

(%)  
 

  (-11.84) (-0.65) (+17.08) 
 

  (+7.06) (-0.22) (-5.28) 

*AVG: Average, SD : Standard deviation, CV : Coefficient of Variation 
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Figure 2-3 Effects of climate forecast information on (a) consumers, (b) producers and 
(c) welfare in Spain under different climate conditions: adverse, normal, and favorable 
(lower 10th percentile, 10th ~ 90th percentile, upper 90th percentile of baseline outputs). 
Bars: four scenarios of different climate information use: Proactive crop mix (P-mix), 
Conservative crop mix (C-mix), Climate forecasting only in Spain (Spain), Climate 
forecasts shared globally (Global). 
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Table 2-4 Effects of climate forecasts on Spanish consumers and producers (30 years 
average values) under baseline and four climate information use scenarios: Proactive 
crop mix (Proactive), Conservative crop mix (Conservative), Climate forecasting only in 
Spain (Spain), Climate forecast shared globally (Global). 

 
 No climate forecasts  Perfect climate forecasts 

   Baseline  Conservative  Proactive 

     Spain Global  Spain Global 

Consumer  
surplus 

Change 
(€ Mil)    +32.84 +33.11  +124.16 +115.33 

(€/capita)   +0.82 +0.83  +3.10 +2.88 

Producer  
revenue 

Absolute (€ Mil.) 15,834.68  16,149.31 16,184.11  16,812.86 16,956.98 

Change 
(€ Mil.)    +314.63 +349.43  +978.18 +1,122.30 

(%)   +1.94 +2.16   +6.13 +7.04 

Irrigation 
 water 

Absolute (km3) 2.98  2.92 2.92  2.85 2.85 

Change 
 

(km3)   -0.06 -0.06  -0.13 -0.13 
(%)   -2.01 -2.01  -4.36 -4.36 

Welfare Change (€ Mil.)   +29.68 +29.96  +118.03 +109.00 

 

 

Furthermore, the VOI depends substantially on the forecasted climate state. In adverse 

climate conditions, the VOI is not as high as in the other two conditions. Figure 2-3 shows 

that under favorable climate conditions, consumer surplus per capita in Spain increases up to 

€5/capita and producer revenue up to 14 percent. Under adverse climate conditions in Spain, 

consumer surplus per capita changes between -€1.1 and +€2.1 and producer revenue changes 

between -1.1 percent and 2.0 percent. Interestingly, we can see that seasonal climate forecasts 

on adverse conditions may not benefit Spanish consumers and producers regardless of 

informing ROW or not: If farmers change their crop mixes only within historical limits 

(conservative reaction), total cultivated area declines up to -10 percent and crop production in 

Spain declines (Table 2-5, Table 2-6) and crop prices increase (Table 2-7) in response to 

climate forecasts and international agricultural market production (Table 2-8). Disseminating 

climate information lowers the market damage, but still Spanish consumers and farmers lose 
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compared with the scenario of no climate forecasting. Thus, a conservative use of climate 

forecasts may reduce their economic benefits in Spain (Figure 2-3, Table 2-5). 

 

Table 2-5 Negative changes in Spain’s producer revenue in the adverse climate 
condition (10th percentile of baseline climate output) with various climate information 
use scenarios: Proactive crop mix (Proactive), Conservative crop mix (Conservative), 
Climate forecasting only in Spain (Spain), Climate forecasts shared globally (Global). 
Unit: € 1 mil. 

 Conservative  Proactive 

 Spain Global  Spain Global 

Total revenue 
change 

-152.6 -108.8 +195.46 +254.6 

Production 
change effect on 
revenue 

-201.4 -82.50 +224.5 +396.7 

Price change 
effect on 
revenue  

+48.7 -26.3 -89.0 -142.4 

Total cropland 
change (%) 

-9.6 -9.9 -7.6 -7.8 

 

 

Table 2-6 Production changes (%) in the Spanish agricultural market with climate 
forecasts compared to the baseline output without climate forecasts under different 
categorized climate conditions: adverse, normal, favorable (lower 10th percentile, 10th 
– 90th percentile, upper 90th percentile of baseline outputs). Four climate forecast use 
scenarios: Proactive crop mix (Proactive), Conservative crop mix (Conservative), 
Climate forecasting only in Spain (Spain), Climate forecasts shared globally (Global). 

 Adverse  Normal  Favorable 

 Conservative  Proactive  Conservative Proactive  Conservative Proactive 

 Spain Global Spain Global  Spain Global Spain Global  Spain Global Spain Global 

Barley -1.10 -1.76 +3.52 +1.71  +1.74 +1.74 +4.08 +4.19  +4.31 +4.78 +6.64 +8.49 

Corn -7.56 -8.12 +1.31 +1.35  +5.47 +5.66 +28.28 +30.15  +36.05 +38.24 +75.89 +79.46 

Cotton -1.66 -1.37 +12.29 +12.21  -3.37 -3.26 +1.32 +1.46  -0.78 +-0.79 -4.02 -3.28 

Potato -3.20 -6.17 +15.9 +14.15  +5.71 +6.04 +16.56 +18.77  +12.71 +16.9 +20.92 +21.33 

Rice +0.18 -0.84 +26.37 +27.78  +9.06 +9.91 +43.77 +52.43  +36.79 +46.41 +78.92 +100.02 

Wheat -7.21 -7.28 -2.21 -0.08  +0.16 +0.22 +4.14 +4.28  +2.5 +2.11 +6.27 +3.33 

Animal  
calorie 

-0.61 +0.76 +1.34 +2.48 
 

+1.56 +1.53 +4.74 +5.13 
 

+5.27 +5.27 +10.36 +11.36 
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The global dissemination of climate forecasts (scenario ‘Global’) shows consistent benefits 

for Spanish producers (Figure 2-3). Climate forecast information helps ROW producers to 

adjust their production with respect to Spanish climate conditions. Global food supply 

decreases under favorable climate conditions (Table 2-8). This keeps prices stable and 

Spanish producer revenues at higher levels (Table 2-7). Under adverse climate conditions, 

global dissemination may also benefit Spanish producers, because ROW producers may 

increase cultivation of those crops which suffer worst from climate damage in Spain, but 

decrease the cultivated area of crops which suffer relatively little (Table 2-8). As a 

consequence, Spanish producers may receive better prices. However, the effect of global 

climate forecast dissemination on Spanish consumers is ambiguous. Under favorable climate 

conditions, Spanish consumers are better off without climate forecast dissemination because 

overall crop supply is higher. Under adverse climate conditions, consumers benefit from 

information sharing because the expected supply shortage in Spain is partially compensated 

by ROW producers who can then increase exports to Spain and slow down commodity price 

increases. 

 

Finally, climate forecasts serve to lessen irrigation water use in Spain: In all scenarios, the 

amount of irrigation water used decreases because famers can choose suitable crops 

according to climate forecasts. This could be beneficial in the future where water resource 

depletion is anticipated to become aggravated in Spain (Table 2-4).  
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Table 2-7 Domestic market price changes (%) in the Spanish agricultural market with 
climate forecasts compared to the baseline output without climate forecasts under 
different categorized climate conditions: adverse, normal, favorable (lower 10th 
percentile, 10th – 90th percentile, upper 90th percentile of baseline outputs). Four 
climate forecast use scenarios: Proactive crop mix (Proactive), Conservative crop mix 
(Conservative), Climate forecasting only in Spain (Spain), Climate forecasts shared 
globally (Global). 

 Adverse  Normal  Favorable 

 
Conservative Proactive  Conservative Proactive  Conservative Proactive 

 Spain Global Spain Global  Spain Global Spain Global  Spain Global Spain Global 

Food 

Barley +0.17 -3.41 -1.94 -4.54  -0.36 -0.39 +1.03 +1.37  +3.55 +6.92 +12.55 +15.54 

Corn +1.25 +1.12 -0.01 -0.16  -0.65 -0.57 -5.02 -4.89  -6.94 -6.32 -18.85 -18.47 

Cotton -1.3 -1.21 -12.17 -12.18  +3.69 +3.73 -1.15 -1.09  +2.93 +2.95 +6.58 +6.37 

Potato +0.74 -0.60 -5.57 -5.75  -3.49 -3.55 -9.91 -9.79  
-

15.05 
-14.00 -21.62 -21.86 

Rice 0 -0.38 -5.98 -6.01  -2.11 -1.84 -9.11 -8.22  -8.71 -6.21 -16.86 -15.05 

Wheat +2.12 +3.06 +1.13 +1.65  +0.26 +0.30 -0.47 -0.22  +0.62 -0.61 +0.44 +0.36 

Animal calorie +0.23 -0.15 -0.21 -0.50  -0.09 -0.08 -0.36 -0.30  -0.28 -0.02 -0.51 -0.24 

 

 

Table 2-8 Production changes (%) in the global agricultural market with climate 
forecasts compared to the baseline output without climate forecasts under different 
categorized climate conditions: adverse, normal, favorable (lower 10th percentile, 10th 
– 90th percentile, upper 90th percentile of baseline outputs). Four climate forecast 
use scenarios: Proactive crop mix (Proactive), Conservative crop mix 
(Conservative), Climate forecasting only in Spain (Spain), Climate forecasts shared 
globally (Global). 

 

Adverse  Normal  Favorable 
Conservative Proactive  Conservative Proactive  Conservative Proactive 

Spain Global Spain Global  Spain Global Spain Global  Spain Global Spain Global 

Barley -0.054 +0.507 +0.171 +0.619  +0.111 -0.219 +0.262 -0.086  +0.357 -0.914 +0.55 -0.606 

Corn -0.045 +0.091 +0.008 +0.13  +0.037 -0.027 +0.189 -0.045  +0.301 -0.214 +0.634 -0.293 

Cotton -0.012 -0.088 +0.092 +0.037  -0.032 -0.066 +0.013 -0.053  -0.009 -0.271 -0.046 -0.313 

Potato -0.024 +0.093 +0.122 +0.103  +0.054 -0.153 +0.157 -0.154  +0.151 -0.674 +0.248 -0.662 

Rice 0 -0.075 +0.029 -0.064  +0.012 -0.055 +0.056 -0.076  +0.061 -0.105 +0.13 -0.087 

Wheat -0.064 -0.068 -0.02 -0.032  +0.002 -0.042 +0.04 -0.031  +0.027 -0.094 +0.067 -0.066 

Animal  
calorie 

0 +0.039 +0.016 +0.049 
 

+0.004 -0.007 +0.019 -0.004 
 

+0.013 -0.043 +0.026 -0.043 
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 Impacts of Spanish climate forecasting on international agriculture 2.7.3

With the implementation of climate forecasting only in Spain, ROW consumer surplus 

increases, and ROW producer revenue decreases by around 0.2 percent on average due to 

declining market prices (Figure 2-4). This reflects that Spanish producers with climate 

information become more competitive: They can make more cost-efficient management 

decisions and reduce their vulnerability to climate events, whereas ROW producers are not 

able to change their decisions. However, when crop production declines in Spain due to 

adverse climate forecasts, ROW producers benefit (Fig. 2-4b, ‘C-mix.Spain’). Their revenue 

increases because they can export more to Spain due to a production deficit there.  

 

The effects of global dissemination of climate information are ambiguous for consumers and 

producers of ROW. For example, in adverse climate conditions, sharing of climate 

information can lead to a production increase in the ROW regions and both consumers in 

Spain and ROW can benefit (Table 2-8). But in favorable climate conditions, it results in 

production decreases (Table 2-8) and ROW consumer surplus decreases. However, the global 

dissemination of climate information consistently benefits producer revenue in Spain, as 

global production surplus is reduced by employing climate information. These results show 

that the economic outputs of the ROW are uncertain in extreme climate conditions (adverse 

and favorable) and that they are determined by specific scenario combinations of climate 

conditions, crop mix, and the sharing of climate forecast information (Figure 2-4, Table 2-9). 

 

Despite the foregoing distributional impacts, total global welfare increases by US$61 - 

US$189 million by employing climate forecasts only in Spain. However, these benefits are 

distributed largely to Spain (Figure 2-4, Table 2-9, Table 2-10).  
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Figure 2-4 Effect of the use of climate forecasts in Spain on (a) consumers, (b) producers 
and (c) welfare in the ‘Rest of the World’ (ROW). Values are shown in categorized 
climate conditions; adverse, normal, and favorable (lower 10th percentile, 10th ~ 90th 
percentile, upper 90th percentile of baseline outputs). Bars: four different scenarios of 
employing climate information: Proactive crop mix (P-mix), Conservative crop mix (C-
mix), Climate forecasting only in Spain (Spain), Climate forecasts shared globally 
(Global). 
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Table 2-9 Distributional impacts on the Rest of the World (ROW) caused by employing 
climate forecasting in Spain (30 years average) under baseline and four climate 
information use scenarios: Proactive crop mix (Proactive), Conservative crop mix 
(Conservative), Climate forecasting only in Spain (Spain), Climate forecasts shared 
globally (Global). 

   No climate forecasts  Perfect climate forecasts 

   Baseline  Conservative Proactive 
     Spain Global Spain Global 

ROW 
consumer  
surplus 

Change (€ Mil.)   +274.91 -171.75 +1210.06 -113.81 

 (€/capita)  
 

+0.05 -0.03 +0.20 -0.02 

ROW 
producer  
revenue 

Abs (€ Mil.) 906,191  905,605 905,789 904,020 904,964 

Change (€ Mil.)   -586 -4012 -2,170 -1,227 

 %   -0.06% -0.04% -0.24% -0.14% 

ROW 
welfare 

Abs (€ Mil.) 
  

+274.63 -171.94 +1,209.79 -113.94 

 
 

 

Table 2-10 Global welfare (model objective value) change caused by employing climate 
forecasting adaptation in Spain (US$ million 2000) under baseline and four climate 
information use scenarios: Proactive crop mix (Proactive), Conservative crop mix 
(Conservative), Climate forecasting only in Spain (Spain), Climate forecasts shared 
globally (Global). 

  No climate forecasts  Perfect climate forecasts 

  Baseline  Conservative  Proactive 

    Spain Global  Spain Global 

Global 
welfare 

Base 
($ Mil.) 

30,694,937  30,694,997 30,694,587  30,695,938 30,694,713 

Change 
($ Mil.) 

  + 61.05 +66.54  +180.38 +189.46 

(%)   0.02% 0.02%  0.06% 0.07% 
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Table 2-11 Changes of rainfed (Rain) and irrigated (Irr) cultivated area (%) in Spain 
under different categorized climate conditions: adverse, normal, and favorable (lower 
10th percentile, 10th – 90th percentile, upper 90th percentile of baseline outputs). 
Values are compared with average crop area data at year 2000 in two crop mix 
scenarios; conservative crop mix (Conservative), proactive crop mix (Proactive). 

Crop Adverse  Normal  Favorable 

 Conservative Proactive  Conservative Proactive  Conservative Proactive

 Rain Irr Rain Irr  Rain Irr Rain Irr  Rain Irr Rain Irr 

Barley -9.2 +2.2 -8.3 +6.3 -1.0 +2.0 0 +1.4 +2.3 +2.2 +8 -6.8

Corn -23.5 -6.3 -36.5 -0.2 -9.9 -4.4 -13.3 -1.6 +8.4 +5.3 +16 +2.7

Cotton -29.7 -3.7 -36.7 +12 -12.6 -3.5 -12.8 -3.6 -12.4 -3.3 -19 -13.7

Potato -38.1 -5.1 -36 +1.2 -18 -7.8 -24.2 -26.7 -9.7 -20.2 -16.1 -50.5

Rice -33.6 -11 -45.6 +2.1 -10.8 -11.3 -6.3 -20.8 +4.9 +5.6 +28.2 -15.9

Wheat -11.5 -1.8 -4.1 -5.5 -1.2 -1.2 -0.5 +2.6 +0.9 +1 -6.1 +18.1

Total Area -9.4 -7.6 -1.8 -1.2 +1.8 +3.0
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 Changes in cultivated area and their impacts on the agricultural 2.7.4

market 

With seasonal climate forecasts, Spanish farmers can manage agricultural land more 

efficiently. On average, total cropland area decreases by around 2 percent in Spain (Table 

2-11). Depending on climate conditions, cropland changes range from -9 percent to +3 

percent. Climate forecasts drive the least fertile fraction of the land out of production. The 

cultivated land area can decrease because of enhanced agricultural productivity or 

abandonment of farming due to predicted poor growing conditions. 

 

Figure 2-5 shows how agricultural welfare of Spain and ROW change in response to different 

cropland endowments in Spain. Without climate forecasts, an increase of cropland in Spain 

enhances economic surplus and a decrease lowers it. Under the climate forecast scenarios, 

both Spanish and global welfare peaks at 2 percent cultivated land reduction level in Spain 

(asterisk marks on Figure 2-5) on 30 years average. The surplus of ROW slightly increases or 

decreases, depending on scenario. Dissemination of climate forecasts yields higher benefits 

for Spain and losses for ROW. From the viewpoint of welfare changes in Spain, cultivated 

land in Spain could decrease up to 5 percent in conservative crop mix scenarios and more 

than 20 percent in proactive crop mix scenarios. However, cultivated land reductions beyond 

5 percent result in losses to consumers and producers in the ‘conservative crop mix’ 

scenarios. From consumers’ and producers’ views, forced arable land reductions between 0 

percent and -5 percent due to governmental policy changes would be justifiable in climate 

forecast scenarios (Figure 2-6, Figure 2-7). This implies that in conservative crop mix 

scenarios 5 percent, and in proactive crop mix scenarios 15 percent of cultivated land 

reduction is a feasible level in this analysis, protecting domestic farmers and consumers.  
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Figure 2-5 Welfare changes in Spain, Rest of the World (ROW) due to cultivated land 
area changes in Spain, and  baseline welfare value without climate information.  Four 
other scenarios are in employing climate information; Proactive crop mix (P-mix), 
Conservative crop mix (C-mix), Climate forecasting only in Spain (Spain), Climate 
forecasts shared globally (Global). 
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Figure 2-6 Consumer surplus (€/capita) changes in Spain and the Rest of the World 
(ROW) due to changes in cultivated land area and the baseline welfare value without 
climate information. Four other scenarios are in employing climate information; 
Proactive crop mix (P-mix), Conservative crop mix (C-mix), Climate forecasting only in 
Spain (Spain), Climate forecasts shared globally (Global). 
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Figure 2-7 Producer revenue changes (%) in Spain and the Rest of the World (ROW) 
due to changes in cultivated land area and baseline welfare value without climate 
information. Four other scenarios are in employing climate information; Proactive crop 
mix (P-mix), Conservative crop mix (C-mix), Climate forecasting only in Spain (Spain), 
Climate forecasts shared globally (Global). 
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2.8 Discussion 

Using climate forecasting in Spain increases both the economic surplus of domestic 

agricultural consumers and the overall revenue of domestic agricultural producers in Spain. 

The value of climate predictions to society depends on farmers’ willingness to deviate from 

historical decisions, the nature of the predicted climate states, and the possible sharing of 

climate information with other countries. Proactive producer adaptation and global 

dissemination of climate information show higher benefits for the agricultural market in 

Spain. However, the proactive crop mix is feasible only when farmers actively work to 

optimize their benefits with higher flexibility (Hansen, 2002; Letson et al., 2005) and fully 

trust the climate information given to them. Farmers’ responsiveness to climate prediction is 

jointly influenced by the forecasting skill and by farmers’ ability to use this information 

(Hansen, 2002; Rubas et al., 2006). The level of farmers’ trust is determined by the level of 

forecasting skill and the farmers’ experiences working with forecasts (Ziervogel et al., 2005). 

It is thus important that forecasting skills and forecast user education should be enhanced 

together for the successful implementation of climate forecasting as a management tool. In 

this study, perfect climate forecasting skill is assumed, as well as the full adoption of climate 

forecasts by farmers. The reported VOI should therefore be interpreted cautiously, as they are 

limited to the model framework used in this study. 

 

It is notable that a negative VOI may materialize in Spain under adverse climate conditions. 

Here, Spanish producers lose revenue by abandoning cultivation due to forecasted poor 

growing conditions, considering only historical crop mix options (conservative reaction), and 

ROW producers’ revenue increases. Letson et al. (2005) also reported negative VOI in a 

whole farm model from the interactions between extreme prices, unusual weather and 

historical decision options in 3.8% out of all possible weather and price realizations. In 
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decision theory, based on expected utility maximization in which our framework operates, 

VOI should be non-negative (Gollier, 2001), but it can become negative in a multi-person 

non-cooperative game (Baiman, 1975; Pfeifer et al., 2009). Additional information produced 

by new information systems, e.g. seasonal climate forecasting, may not always benefit 

information users because it is affected by other persons’ decisions. In our model, Spanish 

farmers’ decisions could impair their market surplus by using the information in a 

conservative way as it results in a production decline. This implies that the prediction of 

extreme climate events may not be sufficient to adequately deal with them. To take advantage 

of climate information, coordinated plans and actions are needed for climate information 

users and they should be able to employ all possible adaptation options. Otherwise, 

conservative responses to climate forecasts could impair the market, which proves the fact 

that climate forecasting should not be considered as a panacea to solve agricultural sector 

vulnerability to climate variability (Broad and Agrawala, 2000). A long-term investment into 

the agricultural sector is needed as well.  

 

The adoption of climate prediction systems in one country can affect producers and 

consumers in other countries. Improved information for some producers increases their 

efficiency and decreases the marginal cost of production. This will affect the market and 

trade equilibrium with benefits for foreign consumers and losses to ROW producers. This 

shows that agricultural producers without climate information incur higher losses and an 

asymmetric distribution of climate information between the rich and the poor farmers can 

exacerbate the disparity of agricultural competitiveness at national or international level (Hill 

et al., 2004). Additionally, distributional impacts are also dependent on the country’s 

willingness to disseminate forecasting information to other countries and on ROW countries’ 

capability to employ this information. If regional climate predictions are shared and used by 
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agricultural decision makers globally under adverse climate conditions, ROW producers’ 

reactions contribute to the increase of global welfare, as global commodity production 

becomes more balanced with concerted reactions to climate variability. However, this study 

does not account for climate variability and climate prediction in regions outside Spain. As 

more regions install climate prediction systems, the individual value of predictions in a 

particular region could decrease (Rubas et al., 2008). Thus, the VOI for Spain as estimated in 

this study could decrease as more regions outside Spain adopt climate prediction. 

 

Climate prediction can enable farmers to use resources more efficiently and affect the 

cropland area under cultivation and could entail agricultural land surplus. It would be 

advantageous for farmers and policy makers to take land use change into account when they 

adopt a climate forecast because land surplus can be utilized for new purposes, e.g. renewable 

energy production. Our model results show an average land reduction of 2 percent in Spain. 

With a conservative crop mix, around 5 percent of Spanish agricultural area can be spared. 

With a proactive crop mix, around 15 percent can be spared, and it is still assured that 

Spanish agricultural welfare is higher than in the reference scenario and consumers and 

producers in Spain do not suffer losses. Other studies (Hill et al., 1999; Mjelde and Hill, 

1999; Hill et al., 2004) also qualitatively show climate and market condition-dependent 

changes of cultivated land area and commodity production. They indicate that climate 

information could affect cultivated land changes. If farmers want to sustain their income with 

other agricultural crops, they should know what to grow as alternatives - e.g. more heat 

resistant crops or biofuel crops. If severer climate extremes become more frequent due to 

climate change, and market profitability is poor, farmers may abandon farming, and seasonal 

forecasts could stimulate this development. The resulting land surplus could then be utilized 
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for more resilient biofuel crop cultivation on seasonal basis, or for a permanent transition to 

solar energy production, depending on policy options.  

 

2.9 Conclusion 

This study shows that the value of climate forecasts is variable and that a country using 

forecasts can become more competitive than the ROW. It is more beneficial for Spain to react 

proactively in crop mix decisions to climate forecasts, and to share climate forecasts in 

adverse climate conditions. However, climate forecasts serve best to optimize agricultural 

management under favorable conditions, but fail to address problems pertaining to negative 

climate variability impacts in conservative crop mix scenarios. Additionally, climate 

forecasting could entail a land surplus, so that new land use plans considering sustainable 

agriculture and demanding renewable energy targets need to be established. The negative 

VOI is not much discussed in the field of climate forecasting adaptation and the potential 

chance of negative VOI should be considered before its implementation. Thus the learning of 

a strategic use of climate forecasts is essential for farmers to make proactive decisions. For its 

proper utilization in agriculture, further interdisciplinary studies are necessary to investigate 

its effect on marketing, international trade and plausible land use changes of cropland area. 

The side effects of using climate information, e.g. negative VOI, distributional effects of VOI 

on other farmers or countries could be examined in various conditions.  
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2.10 Appendix – model equations 

 
Indexes 

Symbol Description 

,r r  aggregated international regions {Spain and 28 other regions} 
n  NUTS-2 regions in Spain 
h  homogeneous response units 

 ,e e  crops {Barley, Corn, Rice, Wheat, Potato, Cotton} 
p  commodities {six crops and one aggregated livestock good (‘lv’)} 
 ,t t  technologies (rain-fed, irrigation) 

f   livestock feed {Barley, Corn, Rice, Wheat, Potato, Cotton} 
a  crop mix alternatives 
s  states of nature (30 years climate) 

 

Linear Coefficients  

Symbol Description 
  maximum arable land area (1000 ha) 

  land allocation to crop management system in base period (1000 ha) 
  historical crop areas (1000 ha) 
  maximum crop shares 
  crop yields (tonnes/ha ) 

  irrigation water requirements (1000 m3/ha) 
  feed requirements per unit of aggregate livestock product (tonnes/Gcal) 
  crop management cost ($/ha) 
  new cropland expansion cost ($/ha) 
  abandoned cropland cost ($/ha) 
  probability of climate state 
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Non-linear Functions 

Symbol Description 
d  integral of inverse demand function 
t  integral of trade cost function 
m  integral of management change cost function 
w  integral of inverse water supply function 
a  integral of livestock production cost function 

 
 
 
Variables 

Symbol Description 
D demand quantity (1000 tonnes, Tcal) 
L land management (1000 ha) 
A livestock production (Tcal) 
T trade quantity (food, 1000 tonnes, Tcal) 
F livestock feed quantity (1000 tonnes) 
C management change area (1000 ha) 
W irrigation water use (km3) 
S crop mix choice (unitless) 
M new land management area (1000 ha) 
X abandoned management area (1000 ha) 
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Objective function2 
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Constraints 

1. Crop land limits  , , , ( )r n h s  

  , ,, , , , ,
,

r n hr n h e t s
e t

L
  

2. Water use accounting equations ,r s  

  , , , , , ,, , , , ,
, , ,

0r n h e t s r sr n h e t s
n h e t

    L W    

3. Crop mix restrictions , , , ,( )r n h e s  

   , , , , , , ,( ), , , , , 0r n e a r n
t a

h a sr n h e t s   L S  

4. Maximum crop share restrictions , , , ,( )r n h e s  

                                                 

2 Note the model has two decision modes: probabilistic model with and without seasonal climate forecasting. In 
absence of forecasting, all climate state indexes given in parentheses vanish.  
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   , , , , , , , , , ,
,

0 er n h e t s r n h e t s
t e t

   LL 


 

5. Crop management balance equations , , , ,( )r n h t s  

      , , ,, , , , , , , , , , , , , , , r n h tr n h e t s r n h t t s r n h t t s
t te

    L C C 
 

  

6. Land use change balance equations , , , , ( )r n h t s  

      , , ,, , , , , , , , , , , , ,  r n h tr n h e t s r n h t r n h t s
e

s  L X M   

7. Crop product supply demand balance , ,r p s  

  , , , , , , , , , , , , , , , , , , , ,
, ,

     0r e s r e s r r e s r r e s r n h e t s r n h e t s
r r n h t

L     D F T T 
 

  

8. Feed product supply demand balance equations , ,r f p s   

, , , , 0r f r s r f s   A F   

9. Livestock product supply demand balance equations ,r s  

,' ', , ,' ', , ,' ', ,  0r lv s r r lv s r r lv s r s
r r

  D T T A 
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Chapter 3.  Climate change impacts on cropland area and 

adaptation: case study Spain using a stochastic model 

framework 

 

Abstract 

Climate change alters the productivity of agricultural land and consequently induces land use 

changes. To quantify the effect, we analyse climate change impacts on the agricultural sector 

in Spain, explore how two different land use policies influence total acreage, consumer 

surplus and gross producer revenue, and evaluate the benefit of seasonal climate predictions. 

We consider annual climate impacts by employing physically and temporally consistent daily 

weather data from three Regional Climate Models (REMO, RegCM, and Aladin) of the 

ENSEMBLE project for the SRES A1B scenario. Climate impacts on crop productivity are 

projected with the process-based crop model Environmental Policy Integrated Climate 

(EPIC) and subsequently used in a stochastic partial equilibrium for the agricultural sector 

model. 

 

The results show that already in the period of 2020-2039, the average consumer surplus and 

gross producer revenue are more than 1 standard deviation below the mean of the baseline 

period (1995-2014). A statistically significant deviation from baseline values is reached only 

in the period of 2080-2099, however, where consumer surplus decreases by 2 – 3 percent, 

gross producer revenue decreases by 5 to 20 percent, and cultivated land declines by 20 – 50 

percent. 
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An analysis of adaptation options shows that a land retaining policy in Spain would benefit 

Spanish consumers by increasing production. Keeping marginal land in production, however, 

imposes a resource overuse, and the overall costs for land retention are thus higher than those 

of land abandonment by a factor of two. Climate predictions have two effects: If land 

abandonment is an option, consumers benefit from climate predictions. For producers, their 

revenue decreases. Furthermore, under moderate climate change scenarios, the value of 

climate predictions decreases over time because cultivated land can be abandoned. However, 

under strong climate change scenario, producers react to keep their land and revenue loss 

decreases. With a land retaining policy, on the other hand, the value of climate predictions 

becomes minimal for consumers than with a land abandonment policy because production 

increment is smaller with climate information.   

 

Climate change induced crop productivity changes put pressures on Spanish agricultural land. 

Future land use policy should consider that land retention in Spain under climate change 

leads to increasing costs because of over production and the benefit of using climate 

predictions is shrinking.  
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3.1 Introduction 

Climate change is anticipated to have adverse impacts on agriculture in large parts of the 

world.  Yet future climate change assessments still face large uncertainties due to factors such 

as the emergence of extreme climate events, CO2 fertilization effects, technological progress 

in new cultivars, and farmers’ adaptation to climate variability (Tubiello et al., 2007; 

Ackermann, 2013).  Among these factors, changes in the frequency and magnitude of climate 

extremes and their impact on agricultural sectors are major concerns for stakeholders (Katz 

and Brown, 1992; Easterling et al., 2007). In the last decades already, heat waves increased 

globally (Coumou et al., 2013) and manifested on ever larger areas of land (Hansen et al., 

2012), causing economic damages (Coumou and Rahmstorf, 2012). Developing countries 

experienced price shocks and social instability, partially attributable to climate extremes. The 

2010 heat wave in Russia substantially reduced wheat production, and the Russian 

government banned wheat exports (Godfray et al., 2010; Arezki, 2011; Trostle, 2011). These 

events show that climatic extremes and their influence on production and markets have to be 

taken into account, and adaptation policies formulated accordingly are needed  to supply not 

only food in adequate quantities in future, but also energy and ecosystem services.  

 

In climate impact research on agriculture, studies on the economic impacts of extreme 

climate and weather are rare. Most of the economic studies have estimated the impact of 

climate change on agriculture at continental or global scale (Table 3-1). In those analyses, 

averaged climate change impacts were used as input to economic assessments to evaluate 

long term market equilibrium. Coarse resolution monthly mean temperature and precipitation 

sums were used as input to production functions. Thus, impacts of extreme events and their 

consequences on markets could not be taken into account. Recently, Willenbockel (2012) 

attempted to simulate price responses to extreme events in the decade of the 2030s by 
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employing production shock scenarios. He could show that historical weather related shocks 

to crop exporting countries could increase export prices and impact food importing countries; 

but a limitation of the study is that it uses historically observed yield variability and future 

climate change is not considered.  

  

Table 3-1 Benchmark study for climate impacts on agriculture 

 
Region 

Climate 
model 

Climate  
data 

Impact 
model 

Crop 
Yield 

Economic 
model 

Period 

Reilly et al. 
(2003) 

US GCM×2 
Monthly 
average 

Crop model 
Averaged 
impacts 

FASOM (PE) 2030, 2090 

Darwin (2004) World GCM×8 
Monthly 
average 

Land classes  
(growing 
seasons) 

Averaged 
impacts 

FARM (CGE) 
End of 21st 

century 

Parry et al. 
(2005) 

World GCM 
Averaged 

trends 

Yield response 
function  

 

Averaged 
impacts 

BLS(CGE) 2060 

(Willenbockel, 
2012) 

World GCM 
Averaged 

trends 
Yield response 

function 

Averaged 
impacts + 
stochastic 

 
GLOBE(CGE) 

2030 

Iglesias et al. 
(2012) 
 

Europe 
RCM×4 

 
Monthly 
average 

Yield response 
function 

Averaged 
Impacts 

GTAP(CGE) 
2071- 
2100 

* ‘×’ in climate model column denotes the number of climate model used in the analysis. 
* FASOM (Forest and Agricultural Sector Optimization Model), FARM (Future Agricultural Resources Model),  
   BLS (Basic Link System), GLOBE (A SAM Based Global CGE Model using GTAP Data), GTAP (Global Trade 
Analysis Project) 
 

Another approach is to use ensemble climate scenarios to conduct probabilistic impact 

assessments on biophysical factors, e.g. crop yields or growing degree days (Tebaldi and 

Lobell, 2008; Goergen et al., 2013; Tao and Zhang, 2013). Such probabilistic biophysical 

assessments have not yet been linked to an economic model at national level to assess annual 

market impacts. Reasons for this could be that stochastic weather generation does not 

produce spatially and temporally coherent daily weather data at larger scales. Statistically 

downscaling global weather data to regional levels weakens the correlation between 

temperature and precipitation (Piani and Haerter, 2012). Dynamic downscaling, however, can 

provide weather variables which are physically consistent on a daily basis and spatially 

consistent over multiple sites (STARDEX, 2005). These daily weather time series can be 
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used to run process-based crop growth models for impact simulations. This way, both climate 

scenario and agricultural decision model work on the same scale, facilitating a consistent 

analysis of potential climate change impacts on a national agricultural sector.   

 

In this context it is important to not only assess the impacts of climate change, but also to 

explore different adaptation strategies. Land use change, for example, is essential for rural 

economic viability and also for the energy sector, as land surplus can be used for renewable 

energy production. The seasonal climate anomaly prediction is regarded as an effective 

measure to avoid production risks induced by climate extremes (Hansen et al., 2011; 

Hellmuth et al., 2011). However, the value of climate predictions in decades to come has not 

yet been investigated. 

 

To address the limitations of current research outlined in the previous paragraphs, in this 

study we want to assess the economic consequences of different land use policies and of 

climate predictions, all in the framework of a model sequence from a regional climate 

scenario to a crop model to a stochastic partial equilibrium model for Spain. Spain is selected 

as the study region because the country is expected to be most vulnerable in Europe (Iglesias 

et al., 2012).  
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3.2 Methods 

 

 Three regional climate models (RCMs) 3.2.1

For the analysis of climate change impacts on local crop productivity, the resolution of global 

circulation models (GCM) is too coarse. To estimate local climate developments, three 

downscaling methods can be applied: statistical downscaling, stochastic weather generation, 

and dynamic downscaling. Statistical downscaling is computationally inexpensive and can be 

applied to a wide range of GCM experiments. It is useful in addressing uncertainty issues by 

considering model differences, yet it assumes that the statistical relationship between large 

scale predictors and local predictands remains unchanged even under altered climatic 

conditions, which can be problematic for the projection of future climate extremes (Luo and 

Yu, 2012). Stochastic weather generation methods produce daily weather series 

independently for every site in a region by using perturbed parameters from GCMs; yet for 

multisite crop impact studies spatially and temporally consistent weather data should be 

employed (Wilks, 2012). In the dynamic downscaling method, a regional climate model 

(RCM) is applied to generate daily weather data at high resolution from coarse resolution 

boundary GCM circulations, considering local topography and land surface. Dynamic 

downscaling was chosen for this study, because it has the advantage that the climate variables 

are physically, temporally, and spatially consistent over the entire study region. Some 

limitations remain, however, as RCMs show weaknesses in hindcasting and are 

computationally costly (Luo and Yu, 2012).  

 

The specific daily weather time-series (1995-2100) we use were generated with three 

different RCMs within the FP6-ENSEMBLE project (http://ensemblesrt3.dmi.dk/). The 

spatial resolution of the data is 25 km, and the scenario is SRES A1B. Table 3-2 shows the 

respective combinations of GCM and RCM. The RCMs – REMO, Aladin, and RegCM – 
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were chosen for their relatively high performance on the Iberian Peninsula (Lorenz and 

Jacob, 2010). We use daily maximum and minimum temperature, precipitation, solar 

radiation, and relative humidity for the EPIC simulations.  

 
 
Table 3-2 RCMs from ENSEMBLE project in A1B scenario (1951~2100) 

Institution RCM Driving GCM 
Horizontal  
resolution 

MPI-M REMO ECHAM5-r3 25km 

CNRM Aladin ARPEGE_RM5.1 25km 

ICTP RegCM ECHAM5-r3 25km 

* MPI-M : Max Planck Institute for Meteorology, CNRM : Meteo France, ICTP : The Abdus 
Salam Intl. Centre for Theoretical Physics 
 
 

 

 Crop productivity simulations 3.2.2

For the simulation of crop productivity we use the EPIC model (Environment Policy 

Integrated Climate), which is a process-based crop growth model, widely used for regional 

and global climate impact analysis (Williams and Singh, 1995). Simulation units for Spain 

are derived by intersecting Homogeneous Response Units (HRU), land cover data, and 

NUTS2 (nomenclature of territorial units for statistics) regions. HRUs are delineated by 

clustering units within the same altitude, soil, and slope class (Schmid et al., 2006). Irrigated 

sites are identified through the Land Use/Cover Area frame Statistical Survey, LUCAS 

(Stolbovoy and Montanarella, 2007). Crop calendar data come from the MARS (Monitoring 

Agricultural ResourceS) project. We simulate five crops (winter wheat, spring barley, rice, 

corn, and potato) with an automatic fertilization scheme on all sites and water-stress induced 

automatic irrigation on irrigated sites. We use the automatic fertilization option because we 
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assume that farmers adapt to climate change by minimizing nutrient deficits. Crop rotations 

are set according to observed crop maps. EPIC simulations are repeated on each simulation 

unit with different crop sequences until each crop is grown at least once in each year. Crop 

yields are scaled to NUTS2 region level by multiplying the simulation unit yields with the 

actual crop area in the year 2005. A bias correction is done with multiplicative factors for 

crop yields also on NUTS2 level.   

 

 Spanish agricultural sector model 3.2.3

We use a partial equilibrium economic model for the agricultural sector for  five crops and 

one aggregated livestock pool. Conversion factors from livestock feed quantity to produced 

livestock calorie are estimated and used in the livestock supply equation. The model uses 

explicit demand curves with price-demand elasticities for each commodity, and Leontief 

production functions for every simulation unit. Land expansion and land abandonment costs 

are also considered for each simulation unit. 

 

We use and compare three modes of economic decision making: deterministic, stochastic, 

and stochastic with perfect information. The deterministic model calculates the market 

equilibrium for climate change impacts averaged over four distinct time periods in the future. 

The stochastic model computes the market equilibrium taking into account producer 

uncertainty about future climate conditions. Thus, this model version maximizes the expected 

market welfare over different states of nature with a specific probability. Conceptually, the 

stochastic model version is analogous to the Discrete Stochastic Programming with Recourse 

(Lambert et al., 1995). The stochastic model with perfect information represents the use of 

seasonal climate anomaly predictions. Farmers are provided with information on projected 

crop yields for the current year, and choose crop mixes and management options accordingly.  
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We estimate welfare changes in the Spanish agricultural sector by calculating the changes in 

Marshallian consumer surplus and the changes in Marshallian water resource surplus. In 

addition, we calculate impacts on gross producer revenue. The Rest of the World (ROW) 

regions are explicitly depicted using the same regional disaggregation as the GLOBIOM 

model (Sauer et al., 2010). The sum of consumer, resource, and trade surplus changes over all 

regions yields a measure of global welfare changes. Climate change impacts are only applied 

to Spain; productivities in the ROW remain as in the reference period. The base model is 

calibrated to FAO data of the year 2005. We consider five distinct time periods: baseline 

2005s (1995 – 2014), 2030s (2020 – 2039), 2050s (2040 – 2059), 2070s (2060 – 2079) and 

2090s (2080 – 2099). We employ a comparative static approach to assess the climate change 

impacts for each time period. The other socio-economic factors such as GDP growth, income 

changes, and technological changes are not considered and only climate change induced 

productivity changes are taken into account. Land area and management levels are 

recursively transferred to the next time slice. 

 

 Deterministic, Stochastic decisions and stochastic decisions with 3.2.4

perfect information 

Most agricultural sector models are deterministic, mainly due to the limits of data availability 

and computational efficiency. Deterministic models can reproduce long-term market 

equilibrium, but are of limited use in the endogenous depiction of short term market 

variability of e.g. crop yields and prices. In reality, agricultural decision makers consider 

historical climate and market conditions, but deterministic decisions do not take into account 

expected market instabilities. In a deterministic model, the control variable X (management 
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decisions) is computed with respect to parameter   (e.g. crop yield) by maximizing the 

welfare:  

 ( , )
X

Max W X  (1) 

  
Stochastic decisions are different from deterministic decisions in that they take into account 

the probability of certain decision-relevant variables p , e.g. yield and price (equation 2), and 

that decision outputs are also related to decision makers’ risk preferences. This is an 

important feature, as many studies have shown that at farm level decisions change under 

various yield and market conditions.  However, it is challenging to build a stochastic model at 

sector level with high resolution geophysical data due to increasing data requirements for 

each state of nature ( i ). In this study, only crop yield variability in each 20 year time slice is 

set as state of nature.  

 ( , )i i
X

i

Max pW  X     (2) 

 

The model with stochastic decisions with perfect information depicts yet another situation. 

Farmers are given information on projected crop yields   every year prior to management 

decision making, which facilitates the implementation of management strategies tailored to 

the market situation and climate. In each year, farmers make the best possible decisions, 

yielding the highest welfare levels of all three modes (Gollier, 2001).  

 

( , )
i

i i i
X

i

P MaxW  X     (3) 

  

See Figure 3-1 for a graphical summary of the different decision modes. 
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Figure 3-1 Decision modes used in this study. Most of the previous analyses use the 
deterministic mode.  

 
 Scenarios for adaptations to climate change 3.2.5

We consider two adaptation measures: cropland change and the use of climate predictions 

seasonal climate prediction. Cropland change has two cases: land abandonment and land 

retention at present level. The “Land abandonment’ scenario indicates that cropland is 

endogenously determined under climate change induced productivity changes and liberalized 

trade. Spanish farm land is abandoned when the marginal revenue is less than marginal cost. 

The ‘Land retention’ scenario indicates that the government supports farmers if they continue 

cultivating the same land area they also cultivated in the baseline time slice.  
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In the climate prediction scenario, the same two cropland change scenarios are used, but this 

time the farmers employ the climate information to flexibly expand or abandon cultivated 

land. This depicts the situation in which farmers leave the market easily. The other scenario is 

that farmers continue cultivation on the same area and instead employ the climate 

information to increase production. In this scenario, farmers are inclined to stay in 

agricultural business.  

 
 
3.3 Results 

 

 Climate change impacts on crop productivity for Spain 3.3.1

The three regional climate models show different patterns of change regarding temperature 

and precipitation (see Appendix, Figure 3-10, Figure 3-11). The Aladin time series generally 

shows a smaller increase in temperature than the RegCM and REMO time series. Regarding 

precipitation, Aladin and RegCM show a slight increase in the spring season, whereas REMO 

shows a decrease in April and June. The simulated precipitation reduction in REMO is 

generally higher than in the two other models, and stays like this over the whole century.  

 

Due to these differences, the resultant crop yields show different trends (Figure 3-2). Crop 

yields simulated with Aladin data show higher mean values and a larger deviation, especially 

for barley and wheat. Runs with REMO and RegCM data show smaller deviations in crop 

yields. An analysis of the results reveals that some years of the daily weather data generated 

with Aladin facilitate near ideal crop growth in EPIC, so that yields are exceptionally high. 

On average, the REMO weather data shows stronger and more consistent negative climate 

impacts on all crops than the other two time series.  
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Figure 3-2 Aggregated yield changes  for all five crops   simulated with three different 
regional climate model outputs in comparison  to the baseline period (1995 – 2004). 
Asterisk: mean; upper whisker: 95th percentile; lower whisker: 5th percentile; upper 
box: 75th percentile; lower box: 25th percentile; centerline: median. 

 

If one looks at the changes in yield over time, in the early decades (2030s − 2070s), climate 

change impacts are consistent and do not exhibit clear differences. In the 2090s the negative 

impacts are prevalent, and barley yield e.g. decreases by 30 to 40 percent on average, but 

winter wheat moderately benefits from climate change in Spain and yields increase by 5 to 10 

percent on average (Figure 3-3). Unlike mean yield values, the 5th percentile of crop yields 

does not steadily decline. For barley, the minimum yield simulated with REMO data e.g. 

stays constant at levels of around -60 percent compared to baseline values. For the other 

crops and climate models, low extreme values decline over time, but they do not decline 

consistently.  
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Figure 3-3 Barley and wheat yield changes simulated using three different regional 
climate model outputs and a comparison  to the baseline period (1995 – 2004). Asterisk: 
mean; upper whisker: 95th percentile; lower whisker: 5th percentile; upper box: 75th 
percentile; lower box: 25th percentile; centerline: median.   
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 Cropland change and economic impacts 3.3.2

The simulations with all three RCMs show that cropland area in Spain decreases over time, 

until only 50 − 80 percent of the original area remains in the 2090s (Figure 3-4). Farmers 

abandon land when the marginal revenue is less than the marginal cost, both in the 

deterministic and the stochastic model. In the stochastic model with perfect information, 

farmers abandon even more land, because they know of adverse climatic condition in 

advance and act accordingly. 

 

Consumer surplus follows a similar trend and decreases by 2 − 3 percent over the time 

course, whereas gross producer revenue decreases by 5 – 20 percent (Figure 3-5). These 

damages are attributed to changes in productivity caused by changes in climate, and also 

cropland reductions. Simulations done with climate data from Aladin, which is driven by a 

different GCM than the other two RCMs, show slight benefits in the early periods. All 

models agree, however, that by the 2090s, climate change impacts are negative. The 

deterministic model and the stochastic model do not show much difference in consumer 

Surplus, but it show higher impacts on gross producer revenue. The stochastic model with 

perfect information, however, shows a slight benefit for consumer surplus and a more 

pronounced loss for gross producer revenue in comparison to the other two models. With 

climate predictions, farmers abandon cropland more, causing revenue losses for producers. In 

this study, technological progress to use climate information is not considered and farmers 

make decisions to reduce cultivated land with respect to adverse climate conditions. Finally, 

the Aladin output (Figure 3-5) shows high anomaly of consumer surplus and producer 

revenue in 2070s. This shows that projected climate in 2070s from Aladin do not contain 

rather favourable conditions and crop yield output also shows less pronounced impacts in 

2070s from Aladin (Figure 3-2). 
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Figure 3-4 Simulated changes of cultivated land in Spain using three RCM outputs 
(REMO, RegCM, Aladin) and different decision modes. Baseline cultivated land area is 
5.8 mil. ha in 2005s. ‘De’ indicates deterministic mode decisions, ‘STO’ indicates 
stochastic mode decisions and ‘STO-Perfect’ indicates perfect information output. 
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Figure 3-5 Simulated changes of consumer surplus and gross producer revenue in Spain 
using different RCM outputs (REMO, RegCM, Aladin) and decision modes. ‘De’ 
indicates deterministic mode decisions, ‘STO’ indicates stochastic mode decisions and 
‘STO-Perfect’ indicates perfect information output. 
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 Climate variability impacts on the market and adaptation using 3.3.3

climate prediction 

Figure 3-6 shows climate variability impacts on consumer surplus and gross producer 

revenue in each year from stochastic model solutions. Both changes are fitted with a linear 

regression. Changes in producer revenues simulated with data from REMO show a steeper 

slope than changes simulated with RegCM and Aladin. The Aladin scenario shows a wider 

range of confidence bounds, whereas the REMO scenario shows stronger negative climate 

change impacts on consumer surplus and gross producer revenue. Both REMO scenarios 

exhibit extreme values outside of confidence bounds.  

 

Figure 3-7 shows the same data as Figure 3-6, but this time aggregated to four time slices and 

with all three decision modes. In the 2030s, the REMO and RegCM scenarios show gross 

producer revenue decreases of more than 1 standard deviation, whereas values in the Aladin 

scenario stay above that level.  By the 2090s, average impacts amount to changes of  -1 to -2 

standard deviations. Changes in the 5th percentile producer revenue levels show stronger 

declines than average levels, but no consistent pattern of decline is visible over time.  

 

Seasonal climate anomaly predictions (stochastic mode with perfect information) markedly 

affect gross producer revenue. In the ‘Land abandonment’ scenario, producer revenue could 

decrease visibly, as land abandonment due to forecasts of adverse conditions diminished farm 

production. In the ‘Land retention’ scenario, on the other hand, negative impacts are lessened 

because farmers do not abandon cropland, yet total management costs increase due to the use 

of less productive lands.   
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Figure 3-6 Linear regression fits on consumer surplus and gross producer revenue 
change from the stochastic model solutions. Consumer surplus and gross producer 
revenue anomalies are compared with the standard deviation ( ) of the baseline value. 
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Figure 3-7 Impacts of climate variability and climate extremes on gross producer 
revenue in Spain. ‘DE’: deterministic model outputs, ‘STO’: stochastic model outputs, 
‘STO-perfect’: stochastic model outputs with perfect information. (Asterisk: mean; 
upper whisker: 95th percentile; lower whisker: 5th percentile; upper box: 75th 
percentile; lower box: 25th percentile; centerline: median) 

 

To test whether the observed differences in producer revenues are statistically significant, we 

applied a Kruskal-Wallis test to the data. The test is a non-parametric method for testing 

whether samples originate from the same distribution, which can be applied to non-Gaussian 

distributions.  P-values smaller than 0.01 indicate that the null hypothesis has to be rejected 

and that the samples come from different distributions. The test result (Table 3-3) shows that 

gross producer revenue changes from all RCMs do not make significant differences between 

2030s and 2050s. RegCM outputs show that the period from 2030s to 2070s have the same 

impact distribution and Aladin outputs have the same impact distributions from the baseline 

to 2070s. Only REMO shows distinct distributions from one period to the next, except 2030s 

– 2050s). 
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Table 3-3 Kruskal-Wallis test results on gross producer revenue changes over each pair 
of neighboring periods from each regional climate model output. Statistical test is 
applied to each climate scenario on a group of periods at the 1% significance level. The 
p-value below 0.01 rejects the null-hypothesis that comparing samples are from the 
same distribution (d.f. : Degree of Freedom, M.S. : Mean Squared error)  

 Climate Group of periods D.F M.S. P 

Gross 
Producer 
revenue 

REMO 

Baseline, 2030s 1 3240 <<0.0001
2030s, 2050s 1 3.6 0.8711 
2050s, 2070s 1 1822 0.0003 
2070s, 2090s 1 2856 <<0.0001

RegCM 

Baseline, 2030s 1 2340 <<0.0001
2030s, 2050s 1 25.6 0.6652 
2050s, 2070s 1 490 0.0583 
2030s, 2050s, 2070s 2 583.55 0.0609 
2070s, 2090s 1 3312 <<0.0001

Aladin 

Baseline, 2030s 1 313 0.1298 
2030s, 2050s 1 4.9 0.8498 
2050s, 2070s 1 8.1 0.8077 
Baseline, 2030s, 2050s, 2070s 3 337 0.5987 
2070s, 2090s 1 1587 0.0007 

 
 
 

 Adaptation effects with cropland and climate prediction 3.3.4

In Figure 3-8, the effects of the adaptation scenario ‘Land retention’ is shown in relation to 

the scenario ‘Land abandonment’. In the ‘Land retention’ scenario, consumer surplus is 

higher than in the ‘Land abandonment’ scenario, as Spanish producers retain more land in 

production and thus produce more food. Yet, the scenario also induces higher additional 

(‘over-production’) costs, because producers are forced to cultivate marginal land with higher 

management costs, while market prices decline simultaneously with the rising production. 

Regarding resource effects by land retention, water surplus increases in Spain when a larger 

irrigated area is cultivated under water-stressed conditions.  
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Figure 3-8 Time-dependent land retention effects on consumer surplus, over-production 
costs, water surplus and land price on marginal cropland in comparison to the land  
abandonment scenario. 

 
Figure 3-9 shows climate prediction effects on consumer surplus and gross producer revenue 

for each land scenario. In the ‘Land abandonment’ scenario, consumer surplus increases and 

gross producer revenue decreases when climate predictions are used. Climate predictions lead 

to a higher rate of land abandonment (see Figure 3-4), and domestic production decreases as a 

consequence. The consumer surplus increases in this situation due to food commodity 

imports from more productive regions at lower prices. However, when the more benign 

Aladin model output is considered, both consumers and producers benefit from climate 

predictions. In the ‘Land retention’ scenario, prediction effects are smaller. Less productive 

land is still cultivated, and a restriction of the crop mix to historically observed states also 

contributes to the smaller value of climate predictions. Even though the changes are less 

pronounced, the results show a higher diversity of effects, differing from time period to time 
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period and RCM to RCM.  In the REMO and RegCM scenarios in the 2090s, the value of 

prediction is negative for both consumers and producers, because climate information does 

not help farmers to increase their production. In the Aladin scenario, the values are positive, 

because the Aladin weather time series includes a higher number of climatically favorable 

years in the 2090s (see also Figure 3-5, Figure 3-6).  

 

 

 

Figure 3-9 Climate prediction effects for ‘land abandonment’ and ‘land retention’ 
scenarios.  Consumer surplus and gross producer revenue are compared in each time 
period with climate prediction and without climate prediction in Spain. ‘Cropland 
change’ with use of climate prediction is plotted on the bottom figure. 
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The value of climate predictions also depends on the land use scenarios. Under the ‘Land 

abandonment’ scenario, the prediction value for consumer surplus remains stagnant or 

increases, whereas the value for gross producer revenue is on a downward trend, again due to 

land abandonment rates, except for the REMO scenario. For the REMO scenario, in 2090s, 

negative impacts on gross producer revenue is smaller than in previous periods because 

farmers abandon less land with climate prediction because Spain already abandoned 50 

percent cropland and climate prediction leads to production increase compared with previous 

periods. Consumers benefit as long as international trade compensates for the domestic 

production deficit. Under the ‘Land retention’ scenario, the value of climate predictions 

decreases or remains stagnant for consumer surplus, and the values for gross producer 

revenue are ambiguous. 

 

 
3.4 Discussion 

 

 Climate data  3.4.1

For the evaluation of annual climate change impacts on regional or national scale high quality 

regional climate data are required. To assess annual climate change risks for the Spanish 

agricultural sector, we thus use climate data from three different regional climate models. The 

risks calculated with our model framework are different depending on the RCM used, even 

though all three were run with the SRES A1B scenario. Two RCMs (REMO, RegCM) use 

input from the ECHAM5 GCM and exhibit similar results, while Aladin, which is run with 

data from the ARPEGE GCM, shows different trends in the results. GCMs provide boundary 

conditions for RCMs, and substantially influence the projection of precipitation. It is thus not 

surprising that different GCMs run with the same scenario still show large differences in 
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climate impact assessment (Olesen et al., 2007; Turco et al., 2013). RCMs, too, include large 

biases in the model output (Turco et al., 2013), and the large variability of crop yields 

presented in this study can be explained by direct use of climate model outputs. If bias-

corrected climate data are used, the yield variability becomes smaller (Olesen et al., 2007). 

The results thus show that for near-term climate change impact analyses, the climate model 

output should be carefully considered, and that for economic damage analyses, a bias 

correction considering all correlations between climate variables should be performed. 

 

Concerning our results, they indicate that by the end of the century agricultural GDP 

(producer revenue) loss amounts to approximately 5 − 20 percent, and yield loss to an 

average of 19 percent.  Other impact studies report a total GDP loss of 1.3 percent and a yield 

change of −27 percent with a 5.4 degree warming by 2080s in southern Europe (Ciscar et al., 

2011; Ciscar et al., 2012). However, the studies are not directly comparable to our SRES 

A1B scenario, as Ciscar et al. used the emission scenarios SRES A2 and B2 and RCMs from 

the PRUDENCE project (Christensen et al., 2007a) and also a Computable General 

Equilibrium (CGE) model in comparison to our Partial Equilibrium (PE) model. The CGE 

measures welfare based on utility derived from household consumption, whereas the PE uses 

a Marshallian surplus. Moreover, climate impacts on the agricultural supply can be mitigated 

by macroeconomic adjustments in the CGE, but the PE directly absorbs the supply change 

impacts.  

 

 Decision modes  3.4.2

The results in cropland and management change differ slightly between the deterministic and 

the stochastic model. However, the stochastic model higher economic impacts on agricultural 

GDP than the deterministic models.  Lambert et al. (1995) also showed that the stochastic 
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agricultural sector model yielded greater climate change impacts than the deterministic 

model, but was not greatly different. Each time period considered has 20 states of nature, 

represented by 20 years of climate variability, which influence land change decisions. A low 

probability and strong climate impacts affect land management decisions although the total 

cropland remains at the similar level. In addition, the climate scenario has stronger impact on 

economic parameter than the decision modes. Finally, the stochastic model output could yield 

higher producer surplus Adams et al. (2003b) and resource surplus (Figure 3-8) as farmers 

make decision to avoid a wider range of risks.  

 

 The value of climate predictions  3.4.3

The ‘stochastic decision with perfect information’ mode shows considerable effects on 

cropland area and the market in Spain (Figure 3-4 and Figure 3-5). The value of climate 

prediction is substantially affected by climate conditions. More frequent occurrences of 

adverse climate conditions, as seen in the REMO scenario, induce detrimental effects on 

producers given that they have no adaptation measures to cope with them. On the other hand, 

a relatively favorable climate (Aladin scenario) could be beneficial to both consumers and 

producers, more so if land is free to be abandoned. If the cultivated area is fixed (‘Land 

retention’), climate predictions have a lower value. This indicates that policies like farm 

subsidies, which promote agricultural land in cultivation, lower the value of climate 

prediction.   

 

The change in the value of climate prediction is rarely investigated. Chen and McCarl (2000) 

show that the future value of climate predictions may slightly increase with changes in ENSO 

frequency and intensity. In his study, land use change due to the climate prediction is not 

reported. We show that the value of information decreases when climate conditions become 
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adverse to agriculture and no efficient adaptation measures are at hand, as producers then lose 

profits regardless of climate prediction availability. Our model shows large cropland 

abandonment with the use of climate information regarding adverse climate conditions.  Hill 

et al. (1999) also show the same effects with using of climate information. Unless other 

profitable crops are substituted on the cropland, the total area would decrease and it leads to 

negative value of information. 

 

 

3.5 Conclusions 

In this work, we integrated annual crop productivity changes, based on data from ensemble 

regional climate models (3 members, 3 RCM, 2GCM), with a Spanish agricultural sector 

model, and could thus compare impacts of climate change in terms of distributions of annual 

stochastic damages. This work represents a new attempt to quantify impacts from extreme 

climate events on the agricultural market.  The results show that, based on the RCM used, 

economic impacts differ in the early decades of the 21st century, but all models agree that 

strong negative impacts will be observed late in the century. Annual climate variability 

impacts on consumer surplus and gross producer revenue also show a large variance 

depending on the RCM. All RCMs do not show significant difference between 2030s and 

2050s. GCM and RCM should be selected judiciously, bias correction methods should be 

applied, and ensemble simulations should be done to get a measure of uncertainty.  

 

Cropland in Spain may be reduced by 20 to 50 percent, and producer revenue may decrease 

by 5 to 20 percent. By implementing a cropland retaining policy, consumers in Spain gain, 

but the cost of the policy is more than twice higher than the consumers’ gain. Climate 



Chapter 3 Climate change impacts on cropland area and adaptation: case study Spain using a 
stochastic model framework 

 

84 

 

predictions increase consumer benefit, but decrease producer revenues when farmers can 

abandon cropland. With a cropland retention policy, prediction effects substantially decrease. 

 

Climate change impacts from different RCMs show that Spain has to confront negative 

impacts under climate change. Climate prediction may decrease agricultural producers’ 

revenue if farmers abandon cultivating without right strategic adaptation measures to adverse 

climate condition in the future. Farm support programs have to be designed to efficiently use 

cropland with climate prediction or to stimulate land use transitions to other sectors e.g. 

afforestation, renewable energy. 	
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3.6 Appendix - regional climate data and EPIC results  

 
 

 

 

 
Figure 3-10 Monthly maximum temperature anomalies to the baseline mean monthly 
maximum temperature. The values are averaged over the cultivated land in Spain. 
upper whisker: 95th percentile; lower whisker: 5th percentile; upper box: 75th 
percentile; lower box: 25th percentile; centerline: median 
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Figure 3-11 Monthly precipitation sum anomalies to the baseline mean monthly 
precipitation sum. The values are averaged over the cultivated land in Spain. upper 
whisker: 95th percentile; lower whisker: 5th percentile; upper box: 75th percentile; 
lower box: 25th percentile; centerline: median 
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Figure 3-12 Potato, Rice and Corn (Maize) yields simulated with three different 
regional climate model outputs compared to the baseline period (1995 – 2004). Asterisk: 
mean; upper whisker: 95th percentile; lower whisker: 5th percentile; upper box: 75th 
percentile; lower box: 25th percentile; centerline: median.  
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Chapter 4. Agricultural land abandonment under climate 

change and its potential use for renewable energy - A case 

study for Spain 

 
 

 

Abstract 

Land abandonment is a future concern that may occur due to climate change or technological 

progress in Europe. We investigate potential agricultural land abandonments in Spain induced 

by climate change. We use a stochastic agricultural sector economic model coupled with crop 

yield changes driven by an ensemble of regional climate model outputs. We also examine the 

potential use of abandoned agricultural land for renewable energy such as solar and biomass.  

The results show that cropland in Spain will decreases by 5 to 20 percent in the 2030s and by 

10 to 70 percent in the 2090s by climate change induced productivity changes. By granting 

subsidies to land owners, abandoned cropland could further increase up to 30 percent of total 

agricultural area in the 2030s. Photovoltaic potential on abandoned cropland in Spain is 

estimated to be 50 percent of current total EU electricity consumption (2010 values) and 

biofuel potential is estimated to be 40 percent of biofuel target of Spain from PRIME energy 

scenarios. Land use and energy policy should consider such tremendous difference in energy 

potential for adaptation and mitigation policy decisions.  
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4.1 Introduction 

Land resource is essential not only for food production, but also for renewable energy 

production. As more lands are used for biofuel production, competition for agricultural land 

between food and biofuel energy production increases (Smith et al., 2010). With regards to 

food production, agricultural land will have to be able to feed a population of about 9 billion 

by 2050 and food production will need to increase by 60 percent globally (OECD/FAO, 

2012c). Global agricultural land is required to increase by 5 to 10 percent (excluding biofuel 

needs) in order to meet global demand by 2050, simultaneously with higher yields and 

cropping intensity (OECD/FAO, 2012a; Spiertz, 2012). On the other hand, in 2007, an 

estimated 1.6 percent of the global cultivated land or 25.1 million ha was devoted to the 

production of biofuel feedstock (FAO, 2008). First generation biofuel feedstock is grown on 

agricultural land and directly competes with food cropland, creating conflicts with food 

production (Howard et al., 2009; Gomez et al., 2011). Globally, biofuel production affects 

food production and increases the pressure on food prices (Harvey and Pilgrim, 2011).  

 

On the other hand, other renewable energy sources such as solar and wind also occupy land 

with low fertility, while solar panels are also installed on rooftops. For the future expansion 

of solar energy to meet renewable energy target, more ground area may be required 

(Nonhebel, 2005). Due to climate change, the productivity of biofuel feedstock is declining in 

vulnerable regions and in southern Europe; all temperate oilseeds, starch crops, cereals, and 

solid biofuel crops are predicted to decline substantially (Tuck et al., 2006). Solar 

photovoltaic (PV) energy has much larger energy intensity than biofuels, by a factor of 42, 

taking energy input into account (Dijkman and Benders, 2010). Land use competition would 

be affected by future climate change impacts on crop productivity and technical progress in 

renewable energy.  
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For land use change studies, previous research mainly considered socio-economic drivers 

(e.g., technological changes, biofuel production and trade policies) and biophysical pressures 

(e.g., climate change, and soil erosion) (Busch, 2006; Smith et al., 2010; Banse et al., 2011). 

Many studies report that in Europe, significant cropland reduction of up to 10 percent by 

2080 may occur due to technological changes and liberalized international trade (Rounsevell 

et al., 2006). Up to 74 percent decline of cropland in Spain is projected in the SRES A1f1 

scenario by 2080 provided rapid technological development (Rounsevell et al., 2005). On the 

other hand, it may increase due to lower technical progress and local sustainability policies 

(Rounsevell et al., 2005; Rounsevell and Reay, 2009; Hermans et al., 2010).  

 

 

Figure 4-1 Comparison of yearly solar irradiation and cereal yields in EU countries. 
Solar irradiation data source (PVGIS © European Communities, 2001-2008) and cereal 
yield data source (FAO). (AT:Austria, BE:Belgium, LU:Luxemburg, BG:Bulgaria, 
CY:Cyprus, CZ:Czech Republic, DK:Denmark, DE:Germany, EE:Estonia, ES:Spain,  
FI:Finland, FR:France, GR:Greece, HU:Hungary, IE:Ireland, IT:Italy, LV:Latvia, 
LT:Lithuania, MT:Malta, NL: Netherlands, PL:Poland, PT:Portugal, RO:Romania, 
SK:Slovakia, SI:Slovenia, SE:Sweden, UK:United Kingdom) 
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Land abandonment draws attention especially under climate change impacts. It is a complex 

process including economic, social aspects and environmental changes (Rounsevell and 

Reay, 2009; Keenleyside, 2010; Renwick et al., 2013). Climate change especially, is expected 

to induce negative impacts on crop yields as the severity and frequency of extreme climate 

events increase. Fertile lands are expected to decrease due to desertification and soil 

degradation. Land abandonment can also damage rural economic viability and degrade 

ecosystem in rural area. FAO (2006) argues that maintaining land in production is likely to be 

an ineffective and inefficient means to address the perceived negative consequences of land 

abandonment, but it provides new economic opportunities for renewable energy 

(Keenleyside, 2010).  

 
In this study, we focus on two subjects: the likely magnitudes of agricultural land 

abandonment under climate change in Spain and the potential of abandoned cropland for 

solar and bioenergy use. Spain has the highest solar energy potential and the lowest 

bioenergy feedstock productivity in the EU (Table 4-1). Due to climate change, heat waves 

and droughts will be more frequent and could lower biomass productivity (Tuck et al., 2006). 

 

We aim to show integrated views on land use change, land abandonment and renewable 

energy potential under climate change. The advantages and disadvantages of solar and 

bioenergy production are examined. We use a global warming scenario, A1B in a climate-

crop-stochastic economic model framework and consider climate variability changes for 

periods in the 2030s (2020 – 2039), 2050s (2040 – 2059), 2070s (2060 – 2079) and 2090s 

(2080 – 2099) by three regional climate models (RCM): REMO, Aladin, and RegCM. 

Climate data are taken from EU-FP6 ENSEMBLE (http://ensemblesrt3.dmi.dk/). The 

stochastic economic model computes future agricultural market equilibrium, cultivated land 

changes and land abandonment, taking into account climate change risks in the market.  
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4.2 Methodology 

 

 EPIC simulation for Spain 4.2.1

We use ensemble climate data outputs from three RCMs (REMO, RegCM, and Aladin) from 

the EU-FP6 ENSEMBLE project. Horizontal resolution is 25 km. Regional climate outputs 

are dynamically downscaled from different GCMs. We use maximum and minimum 

temperature, precipitation, solar radiation, and relative humidity to evaluate future climate 

change impacts on crop yields with a process-based crop model EPIC (Environmental Policy 

Integrated Climate). EPIC is a process-based crop growth simulation model (Williams et al., 

1989a) and it was previously employed to analyze climate change impacts on crop 

productivity. EPIC simulates the daily crop growth in five crops: barley, wheat, corn, potato, 

and rice. Simulation units are delineated with geographical, soil property, and land category. 

They are used as inputs for EPIC simulations and as a link to the agricultural economic 

model. Crop area is distributed on each simulation unit based on observed cropland and 2005 

level yields (EUROSTAT). We simulate EPIC with automatic fertilizer and automatic 

irrigation modes on the assumption that farmers adapt to nutrient deficit under climate 

change.  

 

 Crop area distribution 4.2.2

National statistics usually provide aggregated cropland area data at province level. In order to 

assess the regional land use change, however, higher resolution data are needed as inputs to 

the agricultural economic model. Here, we use a mathematical model to distribute crop area 

on simulation units for this study. Variable X depicts the proportion of land for a specific 

crop from the observed arable land in each simulation unit (Area) and X·Area indicates the 
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selected arable land area for cropland. The objective function minimizes the sum over crop 

area gap between observed cropland area (OBS_A) and assigned simulation unit area (X·

Area) at NUT2 level. The indices c, id, and n denote the set of crops, simulation unit, and 

NUT2 regions. 

 

2
, , ,

, ,

min ( Area OBS_A )n id c id n cX
n id c

 X  (1) 

 

Crop area selection is constrained by observed crop area at NUT2 level (OBS_A) (2) and 

production (3) at NUTS2. Y denotes simulated crop yields on each simulation unit and 

OBS_Y indicates observed yield at NUT2 level. 

 

, , ,_  n id c id n c
id

Area OBS A X  ,n c  (2) 

, , , ,_ _id c id id c n c n c
id

Area Y OBS A OBS Y   X  ,   n c  (3) 

 
 

In addition, the variable X is determined by maximum crop share rules (Max_share) (4) 

within the range of 0 and 1 (5) at all simulation units.  

 

, , _n id c cMax shareX   , ,n id c  (4) 

, 1  id c
c

X  id  (5) 

 

 Stochastic agricultural sector model  4.2.3

Stochastic agricultural sector model computes the market equilibrium with expected market 

welfare and risk neutral concepts. As the model considers climate variability in decision 

making, it results in different outputs and economic consequences. Lambert et al. (1995) 
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show that stochastic models yield slightly higher climate change impacts than deterministic 

ones. This model contains five crops and one aggregated livestock commodity. Agricultural 

production and trade is explicitly represented. Five crops constitute 5.8 million hectares and 

constitute around 60 percent of total agricultural land in Spain. Agricultural land area changes 

between the cultivation land for food and land abandonment. Thus, it is restricted by land 

abandonment and land expansion costs. Here, the land abandonment implies financial loss of 

capital investments. We consider financial loss of farm land based on land rent prices in 

Spain which ranges from 70 – 130 euro on rainfed cropland (Střeleček and Lososová, 2011) 

while abandonment costs are 20 euro/ha higher for irrigated land than for rainfed. We also 

apply the same costs to land expansion. We consider 20 alternative states of climate in each 

period. Only future climate scenarios affect the baseline economic model and farmers change 

land management and area with respect to this new climate state. Other future socioeconomic 

scenario changes are not taken into account. This model is calibrated to the year 2005.  

 
 Calculation of technical bioenergy potential  4.2.4

We use three biomass feedstocks: food crops, poplar coppice, and miscanthus (Table 4-1).  

Food crops are such as wheat, barley, and corn, which can be converted to ethanol by 

fermentation. Poplar coppice and miscanthus are energy crops which have higher biomass 

yields than food crops. These could be combusted to produce heat and electricity for home 

and industry. We compare the biofuel, heat, and electricity generation on abandoned cropland 

and compare these with PRIME energy scenarios (EU, 2010) for Spain in 2030. 
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Table 4-1 Biomass conversion efficiency to final fuel 

Biomass Process Final fuel GJ/ton 
Food crops Fermentation Ethanol 8.0 
Poplar coppice Combustion Heat 5.4 
Poplar coppice Combustion Electricity 2.7 
Miscanthus Combustion Heat 5.4 
Miscanthus Combustion Electricity 2.7 
 
 
 
 
Table 4-2 PRIME energy scenario in biomass for Spain 

Final fuel  Unit     2010       2015 2020   2025   2030 
Biofuel Biomass Ktoe 1783          

 
2840    3191 3296 3163 

Heat Biomass & 
Waste 

Ktoe 1972 2661 3365      3755     4118 

Electricity Biomass & 
Waste 

Gwh 7706 11013 14018 15336 17559 

 
 
 

 Calculation of technical solar electricity potential calculation  4.2.5

We use Photovoltaic Geographic Information System (PVGIS) data 

(http://re.jrc.ec.europa.eu/pvgis/) to estimate technical annual total solar electricity potential 

E  (kWh/ m2) in Spain  (Suri et al., 2007). 

PRkE P G  

kP  is peak unit power of 1kWp of a polysilicon solar cell, PR is the system performance ratio, 

and G  is the yearly sum of global irradiation on a horizontal, vertical or inclined PV module 

(kWh/m2). The area of 1kWp system is assumed to be approximately 9.5 m2.  The system 

performance ratio (PR) is the difference between the nominal output and actual output. PR is 

approximately 0.75. The horizontal PV module has a lower power output than the one at an 

optimum angle. We use horizontal PV module output data to prevent the overestimation of 

solar electricity on abandoned cropland. Average value of PV electricity potential at NUT2 
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level in Spain is calculated and used for PV electricity potential estimation at each NUT2 

region. Finally, we compare the PV electricity potential with EU electricity consumption 

level in 2010 (3,635,604 GWh/yr, EUROSTAT). 

 

 
4.3 Results 

 

 Cultivated land change 4.3.1

Figure 4-2 shows cultivated land changes in Spain through adaptation to climate change with 

free trade. Cultivated land area in Spain decreases under climate change. In the 2030s, the 

land area reduction is sensitive to land abandonment costs and climate models. REMO output 

shows more than 20 percent reduction, but Aladin shows around 10 percent. However, in the 

2090s, cultivated land area in most scenarios will decrease by 10 to 70 percent. In all climate 

models, low abandonment cost (70 euro/hectare) yields higher land reductions, while high 

abandonment cost (130 euro/hectare) shows lower land reductions.    

 

The stochastic model (SM) had a tendency of decreasing less land in the early decades and 

decreasing more land in the later decades than the deterministic model (DM). This is due to 

low probability risks being not less pronounced in the earlier decades than in the later 

decades. The SM also computes the land equilibrium at higher level than the DM. DM may 

have overestimated the land reductions in comparison to the SM. In Aladin and RegCM runs, 

SM does not yield results much different from the DM from the 2030s to 2070s. However, in 

the 2090s, SM yields around 50 percent more land declines than DM. 
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Figure 4-2 Total cultivated land changes of five crops in Spain with different climate 
models, land abandonment costs, and decision modes (Baseline crop area is 5.8 mil. ha, 
left: 70 euro, middle: 100 euro, right: 130 euro). 



Chapter 4 Agricultural land abandonment under climate change and its potential use for 
renewable energy - A case study for Spain 

 

99 

 

 Land price changes 4.3.2

Figure 4-3 shows that shadow prices of land on each simulation unit. Shadow price levels are 

ranked in order, and the area is accumulated by the rankings of shadow price level. Shadow 

prices of land here indicate effects on objective value in case an additional one hectare of 

land is added to each land site. Due to climate change, crop productivity is aggravated and 

land value decreases, but it depends on the climate scenarios. REMO shows very strong 

climate change impacts and in large land areas, the shadow price of land becomes negative. 

Even though farming is maintained, land profitability is lower than baseline period. It implies 

that most of the land is at risk to be abandoned if additional fertile cropland is supplemented. 

On the other hand, Aladin data shows that in the earlier decades, climate change increases 

land value, becoming higher than the baseline value, and in the 2090s it is expected to drop 

below the baseline. All climate model results show that shadow price has substantial impacts 

in 2090s.   

 

 Land supply curves for renewable energy 4.3.3

Figure 4-4 shows how potential land use shifts from agriculture to renewable energy by 

granting subsidies for land owners. With the free trade scenario, cropland area could be 

abandoned and transformed for renewable energy use, of up to 0.5 to 2 million ha with a 

subsidy level of 100 euro/ha. A subsidy level above 200 euro/ha, transformed land 

considerably, with an increase of up to 4 million ha for renewables. Until the 2070s, land 

transformation shows similar impacts with subsidies, but in the 2090s, it distinctly increases 

compared with previous years based on all climate models. On the other hand, with the 

limited trade scenarios, much less land area is converted to renewable energy. Only 0.1 

million ha is transformed for renewables with a 200 euro/ha subsidy.  
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Figure 4-3 Change of the shadow price of cultivated land on simulation units with 
different abandonment costs  (left: 70 euro, middle: 100 euro, right: 130 euro).  
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Figure 4-4 Land subsidy effects on agricultural transitions to land abandonments (left: 
free trade, right: limited trade). 
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The solar electricity (Figure 4-5) shows very large potential. With a 100 euro/ha subsidy, the 

transformed land could produce 106 GWh/yr from solar photovoltaics, amounting to ~50 

percent of the total EU electricity consumption. At a maximum, with a 400 euro/ha subsidy, 

land dedicated to solar energy potential could make up to ~250 percent of the total EU 

market.     

 

On the other hand, biofuel potential from food crops on the same abandoned land has 1000 

ktoe energy with a 100 euro subsidy (Figure 4-6). This energy could supply 30 percent of 

biofuel energy targets in 2030. Furthermore, the utilization of energy crops such as poplar 

coppice and miscanthus produces a larger volume of energy than the biofuel ethanol process 

from food crops (Figure 4-7), because energy crops had higher feedstock productivity than 

food crops and the conversion efficiencies from biomass to heat and electricity is higher. 

However, energy productions from all biomass scenarios show much lower energy potential 

than PV electricity in Spain.   

 

Table 4-3 Comparison of energy input and outputs of Bioethanol and Solar Photovoltaic 
(PV) in Sweden, Netherlands and Spain. Data source from Dijkman and Benders 
(2010). 

 

Country Energy source Input 

Net energy 
density 
(NED) 

GJ/ha/yr 

Ratio of Solar 
PV to 

Bioethanol in 
NED 

Sweden 
Bioethanol from Sugar beet 47    t/ha/yr 10.9 

32.6 
Electricity from Solar PV 824  kWh/kWp 356 

Netherlands 
Bioethanol from Sugar beet 62    t/ha/yr 15.5 

27.2 
Electricity from Solar PV 873  kWh/kWp 421 

Spain 
Bioethanol from Sugar beet 27    t/ha/yr 4.8 

252.7 
Electricity from Solar PV 1473 kWh/kWp 1213 
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Figure 4-5 Mean solar energy potential on abandoned cropland in Spain from three 
RCMs climate impacts. Bold line: free trade scenario, Dotted line: limited trade level to 
the baseline level (year 2005). 

 

Figure 4-6 Mean biofuel potential from food crops on abandoned land in Spain from 
three RCM climate scenarios. Left axis: bio-ethanol potential, right axis: bio-ethanol 
potential as percentage of biofuel target from PRIME scenarios. 
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Figure 4-7 Mean heat and electricity potential from energy crops (poplar coppice: bold 
line, miscanthus: dotted line) on abandoned land in Spain from three RCM climate 
scenarios. Left axis: heat and electricity potential, right axis: heat and electricity 
potential as percentage of heat and electricity target from biomass from PRIME 
scenarios. 
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4.4 Discussion 

Different climate model outputs in the same emission scenarios (A1B) affect the cultivated 

land change in Spain in different manners. Two climate model outputs (Aladin and RegCM) 

show slight benefits in the early decades of the 21st century and lower damages in later 

decades than REMO outputs.  Three models agree on climate change impacts for the 2090s. 

There are some problems for the regional climate models in early decade climate impact 

applications because the impact results diverged. Regional climate model validation and 

consistent projection are required within certain boundaries.  

 

Cultivated land in Spain decreases and is strongly affected by climate change impacts without 

considering technological progress in agriculture. Previously, many studies only assume that 

technological progress induces land reduction (Ewert et al., 2005; Rounsevell et al., 2005). 

These studies put high weights on technological progress based on historical rate and low 

weights on climate change impacts. However, we counter that climate change induced 

productivity change may also cause land abandonments, unless significant progress in 

genetically modified crops is fulfilled.  In the worst climate change scenarios (A1B), 

cropland area in Spain may decline by about -20 percent in 2030s and by -70 percent in 

2090s from the baseline level.  

 

Agricultural land profitability also decreases through climate change, whereas fertile and 

productive land decreases by a significant amount. Climate change would affect farm revenue 

and profitability. A great deal of land would face land abandonments and may require other 

income substitutes to protect rural area. For adaptation, one option is to replace or improve 

crop cultivars. In addition, biofuel feedstock can quickly replace the existing cropland. 
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However, under climate change, biofuel feedstock will also experience climate change 

impacts; all crops suffer from these negative impacts in Spain (Tuck et al., 2006).  

 

Bioenergy intensity is much lower than solar energy potential. Energy intensity of solar 

photovoltaics is ~40 times larger than biofuel on average. In Spain, the net solar energy 

output per unit area is up to 250 times larger than net bioenergy outputs (Table 4-3). Solar 

energy cost is likely to decrease further in the future. Harnessing solar energy on abandoned 

cropland could be considered as an alternative option to bioenergy. It is required to 

harmonize Common Agricultural Policy (CAP) and energy policy to develop renewable 

energy in rural areas.  

 

4.5 Conclusion 

Climate change can strongly affect land productivity in Spain and its consequent effects on 

cropland and land abandonment should be significant in terms of adaptation policies. Without 

technical progress, crop productivity will decrease over time and cropland in Spain would 

decrease by 10 to 20 percent in the 2030s and up to 70 percent in the 2090s. Biofuel 

production could be an alternative for utilization on abandoned cropland, but under the 

aggravating climate condition, harnessing solar photovoltaic energy could also be considered. 

For further research, technological changes in agricultural system should be considered in 

crop growth simulations. It should include the changes of biofuel feedstock productivity 

under climate change explicitly from high resolution climate scenarios.   
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Chapter 5. Summary and main conclusions 

 

The main objective of this thesis was to assess climate change impacts on Spanish agriculture 

from the perspective of climate anomaly prediction, welfare, and land use change. To address 

these issues, a stochastic model was developed for a Spanish agricultural sector model. The 

new model contains large datasets and numerous simulation units which represent regional 

crop management and cultivated area. Climate variability impacts on crop yields in Spain 

were simulated using a biophysical crop growth model with inputs from multiple regional 

climate models. Using this framework, stochastic decisions with no climate information and 

with perfect climate information were compared. In the following, the main findings and 

limitations of this framework will be summarized, and recommendations for future work will 

be given.  

 

Seasonal climate prediction is considered as a potential adaptation measure to address the 

changes of climate variability under global warming, provided it will become available at 

useful skill for Europe.  Under historical climate variability (1961-1990), both consumers and 

producers in Spain can generally benefit from climate prediction for their agricultural sector 

but the magnitude of these benefits depends on (i) farmers’ responsiveness and (ii) the nature 

of the predicted climate condition. However, production and welfare shifts to foreign 

countries could lead to slightly negative values of information for the Spanish agricultural 

sector as a whole due to predictions of adverse climate conditions and Spanish farmers’ 

conservative reactions to climate information (chapter 2). However, if foreign farmers have 

access to climate anomaly predictions and act accordingly, both global agricultural welfare 

and Spanish agricultural producer benefits increase regardless of the nature of the predicted 
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climate anomaly for Spain (chapter 2). This picture changes slightly when climate change is 

considered. Here, when farmers are free to abandon unproductive cropland, climate 

prediction may decrease their revenue, whereas consumers may benefit. If a subsidy is paid to 

retain all cropland, the effects of climate anomaly prediction become minimal (chapter 3).   

 

In economic impact assessments for Spain, consumer surplus decreases by 2 – 3 percent and 

producer revenue decreases by 5 to 20 percent in 2080 – 2099.  Climate extremes from 

regional climate models decrease producer revenue by two standard deviations in 2020 – 

2039 and more than three standard deviations in 2080 – 2099 in comparison to baseline 

values (chapter 3). A statistically significant deviation from baseline values is only reached in 

the period between 2080 and 2099, however.  

 

Land is an essential resource for food supply and renewable energy production. Future land 

use change is a key factor to achieve food security and to meet renewable energy targets. 

Seasonal climate prediction promotes agricultural efficiency. Climate prediction could 

maintain the current level of agricultural welfare with a national cropland reduction of 2 

percent on average under past climate variability (chapter 2). With climate prediction under 

changing climate variability, agricultural land could be further reduced and consumer surplus 

increased (chapter 3). Cropland in Spain may decrease by 5 to 20 percent in 2030s and by 10 

to 70 percent in the 2090s by climate change induced productivity changes with different land 

abandonment costs and RCM scenarios (chapter 4). Land retention policy would incur over-

production costs to Spain which are higher than consumer surplus gain by a factor of two 

(chapter 3). A subsidy on productive agricultural land may cause less productive farm land to 

be abandoned, which could facilitate land transition to renewable energy use under a 

liberalized trade environment (chapter 4).   
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Photovoltaic (PV) electricity potential on abandoned cropland in Spain is 150 - 300 times 

higher than bioenergy such as ethanol. By the 2030s, a 100 euro/ha subsidy on cropland may 

lead to 1 to 2 mil. ha of land being abandoned because receiving a subsidy is more 

economical than cultivating unproductive land where marginal revenue is less than marginal 

costs. Technical potential of PV electricity on this land amounts to approximately 50 percent 

EU electricity consumption in 2010. PV electricity generation could be considered an 

alternative use for abandoned cropland due to its high energy intensity and rural economic 

viability, rather than biofuel feedstock which is expected to become more vulnerable under 

climate change (chapter 4).   

 

The research results should be interpreted with caution. First of all, even though the new 

stochastic model for the agricultural sector model added a lot of complexity, the model still 

has difficulties conducting uncertainty analyses with respect to climate variability. To address 

this issue, it is required to harmonize climate states and obtain numerous geographical 

management datasets. Agricultural production functions could then be developed by 

combining these data with specific climate factors such as temperature and precipitation. 

Different types of model frameworks should be investigated and compared for these 

purposes. 

 

It is further assumed in the studies that the seasonal climate anomaly prediction is perfectly 

accurate. Future studies need to account for the intrinsic uncertainty of climate predictions. It 

is also important to investigate more realistic producer behaviors to uncertain climate 

predictions and weather events – e.g. droughts – taking into account farmers’ income and 

fluctuating market prices. Furthermore, only climate change induced productivity change is 

considered as a main driver in land use change. Various socio-economic factors, e.g. dietary 



Chapter5. Summary and main conclusions 
 

110 

 

preferences, income growth or technological progress in adopting new cultivars should be 

considered as well.   

 

For further studies, the effects of decadal predictions or scenario developments of major 

climate variability, i.e. ENSO (El Niño–Southern Oscillation) and NAO (North Atlantic 

Oscillation), and their use for long term investment decisions in agriculture or in other sectors 

are of interest as well. For enhanced impact analyses, consistent bias correction of climate 

model outputs should be conducted and extreme value statistics can be applied to estimate 

possible climate extreme impacts. The geographical and technical constraints of installing PV 

systems on Spanish rural area should be studied. Economic potential of PV electricity with a 

feed-in tariff scheme should also be investigated not only for Spain, comparing with other 

countries in Europe.  

 

In conclusion, this work showed that countries whose agricultural sectors are expected to be 

severely impacted by climate change will face substantial challenges in future. All policies 

and adaption strategies such an land use policy and climate anomaly prediction, devised to 

meet these challenges should to be carefully scrutinized for their advantages and 

disadvantages before implementation, and the instruments for evaluation should also be 

chosen with care. Lastly, in any decision support for stakeholders, the inherent uncertainty 

about the future should always be considered.   
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