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Learning to read and write requires an individual to connect addi-
tional orthographic representations to pre-existing mappings
between phonological and semantic representations of words. Past
empirical results suggest that the process of learning to read and
write (at least in alphabetic languages) elicits changes in the
language processing system, by either increasing the cognitive
efficiency of mapping between representations associated with a
word, or by changing the granularity of phonological processing
of spoken language, or through a combination of both. Behavioural
effects of literacy have typically been assessed in offline explicit
tasks that have addressed only phonological processing. However,
a recent eye tracking study compared high and low literate partic-
ipants on effects of phonology and semantics in processing mea-
sured implicitly using eye movements. High literates’ eye
movements were more affected by phonological overlap in online
speech than low literates, with only subtle differences observed in
semantics. We determined whether these effects were due to cog-
nitive efficiency and/or granularity of speech processing in a multi-
modal model of speech processing – the amodal shared resource
model (ASR, Smith, Monaghan, & Huettig, 2013a,b). We found that
cognitive efficiency in the model had only a marginal effect on
semantic processing and did not affect performance for phonologi-
cal processing, whereas fine-grained versus coarse-grained
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phonological representations in the model simulated the high/low
literacy effects on phonological processing, suggesting that literacy
has a focused effect in changing the grain-size of phonological
mappings.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Approximately 16% of the world’s adult population are illiterate, defined as ‘‘the ability to read and
write with understanding a simple statement related to one’s daily life’’ (UNESCO Institute for
Statistics., 2013). Learning to read has a profound effect on cognitive processing, resulting in qualita-
tive changes to the representation of phonological information about words, but also correlating with
a general increase in cognitive processing performance. Much of our understanding of language pro-
cessing is based on data and theoretical and computational models only of literate participants, but a
full understanding of language comprehension and production must also take into account the role of
literacy in processing. Previous models of literacy effects on language processing have not effectively
distinguished between accounts based on a general cognitive ability increase and more specific pho-
nological processing changes.

Here, we test an implemented computational model of language processing that was previously
applied only to data from literate participants. We extended the model to simulate both the general
cognitive processing account as well as the phonological representation account in order to account
for data from literate and illiterate participants in language processing tasks. We first review the
two theoretical accounts of effects of literacy on language processing – the phonological processing
change and the general cognitive processing accounts – before describing previous models of effects
of literacy on language processing. We then present the advantages of a language processing task that
tests online, implicit processing of information between vision, phonology and semantics in order to
examine the effects of literacy on the language processing system, before presenting our model’s
design and results.
1.1. Changes to phonological representations and literacy

The aspect of speech processing for which there has been most exploration for an influence of lit-
eracy is in the domain of phonological awareness, defined as ‘‘one’s degree of sensitivity to the sound
structure of oral language’’ (Anthony & Francis, 2005). There is substantial evidence indicating that,
over the course of development, individuals become increasingly sensitive to smaller linguistic units
within the speech signal. Children first gain awareness of larger units such as syllables before they are
able to display an awareness of smaller units such as onsets and rhymes (Alcock, Ngorosho, Deus, &
Jukes, 2010; Anthony & Francis, 2005; Goswami, 2003). However, debate remains as to the cause of
this improvement. Firstly, what is the role of literacy acquisition? Is perceptual categorisation of
speech sounds dependent on reading acquisition (Burnham, 2003)? Does literacy lead to a finer tuning
of perceptual categories and, consequently, improvements in the precision of phoneme identification
(Hoonhorst et al., 2011; Serniclaes, Ventura, Morais, & Kolinsky, 2005)? Or does literacy not play a cru-
cial role, instead is it that the fidelity of phonological representations increases across development
driven by the need to differentiate, within an increasingly large lexicon, between an increasing num-
ber of phonologically similar items (Garlock, Walley, & Metsala, 2001; Storkel, 2002)?

There is growing evidence that for (at least) explicit awareness of fine grain phonological units,
individuals require exposure to alphabetic literacy training. Experiments that require children to make
explicit judgements regarding a word’s phonological structure show that children perform largely at
chance prior to literacy training, however once engaged in training their performance on such tasks
greatly improves (Alcock et al., 2010; De Jong & Van Der Leij, 2003; Hulme, Snowling, Caravolas, &
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Carroll, 2005; Morrison, Smith, & Dow-Ehrensberger, 1995; Treiman & Zukowski, 1991). Critically,
similar tests have been conducted on illiterate adults with such individuals also displaying chance
level performance on tasks requiring explicit phoneme manipulation or judgments (Adrián, Alegria,
& Morais, 1995; Loureiro, Willadino Braga, Souza, Queiroz, & Dellatolas, 2004; Morais, Cary, Alegria,
& Bertelson, 1979; Scliar-Cabral, Morais, Nepomuceno, & Kolinsky, 1997). It has also been observed
that late literates (individuals who learn to read in adulthood) although displaying improved perfor-
mance compared to illiterates on phonological awareness tasks still perform worse than early literates
(individuals who learn to read during childhood) (Morais, Bertelson, Cary, & Alegria, 1986). Although
performance of illiterates on phonological awareness tasks has been shown to be very poor, illiterates
display improved performance (although performance is still lower than literates) on metaphonemic
judgement tasks (Syllable Detection: Morais, Content, Cary, Mehler, & Segui, 1989; Rhyme Awareness:
Adrián et al., 1995; Morais et al., 1986; Phonological Length: Kolinsky, Cary, & Morais, 1987). Such data
indicates that increases in phonological awareness, displayed by literate children, do not emerge sim-
ply as a result of greater exposure to spoken language or as the system matures, instead this evidence
implicates literacy training as the critical factor in enabling explicit phonological awareness.

What is less clear is the impact of literacy on online speech processing. The above studies require
participants to make explicit judgements regarding phonological properties of words. Based on this
evidence alone it is not possible to say whether the progression towards explicit knowledge of more
fine-grained components in the speech signal is also mirrored in an individual’s implicit abilities when
processing speech online.

Evidence for effects of literacy for online speech processing is less prevalent and less conclusive.
Reis and Castro-Caldas (1997) observed that illiterates performed worse than literates on a pseudo
word repetition task, whereas both populations performed equally well when repeating real words,
suggesting that sub-lexical representations of spoken words were less readily accessible to the illiter-
ate participants. Literacy has also been shown to influence categorical perception in speech. Serniclaes
et al. (2005) showed that literates displayed sharper boundary precision in response to ba-da contrasts
than illiterates, an effect that correlated with reading level (Hoonhorst et al., 2011). Such findings are
consistent with an increase in the fidelity of phonological representation as a consequence of literacy,
yet could instead indicate a more subtle refinement of categorical boundaries rather than confirming a
prior absence of phoneme level representations (Burnham, 2003).

Although this evidence is largely consistent with literacy leading to more fine grained processing of
the speech signal, it provides little insight regarding the stages in online speech processing affected by
literacy training, for example does literacy lead to changes in early perceptual processing or are
observed differences dependent on feedback from later activated orthographic knowledge? Such
insight is important as phonological processing occurs rapidly with effects often transitory and
dynamic in nature, so understanding the timing of these effects may provide the necessary evidence
required to isolate differences in underlying cognitive processing.

Behavioural evidence is scarce regarding time-course effects of literacy, though one study that
isolates timing differences (Ventura, Kolinsky, Querido, Fernandes, & Morais, 2007) compared perfor-
mance of literates and illiterates on a picture word interference task in which named pictures shared
only the first phoneme with a spoken word. Results showed a phonological priming effect for both
groups. However, illiterates only displayed an effect at later SOAs. This is compatible with more coarse
grained processing of the speech input in illiterates, as it could be argued that more of the speech sig-
nal needs to unfold before overlapping representations are activated and can exert an influence on
behaviour. ERP (Event-related potential) data has also provided a productive means of probing
time-course effects of literacy on online speech processing. Such studies demonstrate an early influ-
ence of orthography during spoken word processing, critically with effects observed in windows prior
to points that are classically viewed as the time point of lexical access (Semantic categorisation task:
Pattamadilok, Perre, Dufau, & Ziegler, 2009; Lexical decision task: Perre, Midgley, & Ziegler, 2009a;
Perre, Pattamadilok, Montant, & Ziegler, 2009b; Perre & Ziegler, 2008).

Ziegler and Ferrand (1998) suggest that the mechanisms underlying the effects of orthography on
online speech processing are that following literacy training orthographic representations are acti-
vated online when processing spoken words and it is such online activation that leads to effects of
orthography on speech processing. Neuroimaging evidence consistent with this hypothesis can be
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found in Dehaene et al. (2010) in which online speech processing tasks in literates, but not illiterates,
were observed to activate brain regions associated with orthographic processing. However, such
evidence is not incompatible with an alternative restructuring hypothesis in which the process of
learning orthographic mappings leads to adaptation in other language processing regions. For exam-
ple, phonological processing regions may be restructured so that processing reflects characteristics of
orthographic representations, such as being finer grained (Muneaux & Ziegler, 2004; Taft, 2006; Taft &
Hambly, 1985). Neural data has also provided evidence in support of a restructuring account, by iso-
lating effects of literacy on speech processing to regions associated with phonological processing. For
example, Perre et al. (2009b) localized the source of orthographic consistency effects during spoken
word recognition observed in ERP data to classic phonological processing regions (left BA40). Further,
Pattamadilok, Knierim, Duncan, and Devlin (2010) demonstrated that orthographic consistency effects
during auditory lexical decision tasks can be removed when disturbing processing in these phonolog-
ical processing regions (left supramarginal gyrus) using repetitive transcranial magnetic stimulation,
while they were not affected by disturbance of orthographic processing regions (left ventral occipito-
temporal cortex).

Psycholinguistic grain size theory (Ziegler & Goswami, 2005) offers a processing level model that
connects exposure to the written forms of words to increased granularity of phonological processing.
It is also largely consistent with the behavioural and neural data presented earlier. Grain size theory
proposes that learning to map between orthographic and phonological representations leads to a
restructuring of phonological representations and is necessary to develop awareness of fine grained
structure in the phonological lexicon, with the nature of the correspondence between orthographic
units and phonological units within a given language determining the granularity of restructuring
for that language. Ziegler et al. (2010) found a relationship between phonological awareness and read-
ing performance across a range of alphabetic orthographies in children in second grade of school.
Though this relation was found to be stronger for more opaque orthographies, this may be because
readers of transparent orthographies develop ceiling effects in phonological awareness skills earlier
in reading exposure than readers of opaque orthographies (Caravolas, Volin, & Hulme, 2005). Nonethe-
less, training on orthographies, where the correspondence between individual phonemes and letters is
largely consistent, as in the case of alphabetic languages, is likely to lead to finer-grained phonological
representations, in comparison to orthographies where orthographic units correspond only to larger,
coarser-grained phonological units comprising multiple phonemes, for example in logographic lan-
guages. Awareness of larger units within words (i.e. syllables, onsets, rhymes) may proceed without
literacy training; however for awareness of fine grain units to emerge (i.e. phonemes) it has been pro-
posed that explicit training is necessary. Evidence in support of this position comes from observed
similarities in processing between illiterates and logographic literates, for example Chinese literates,
where there is little systematic correspondence between orthographic representations and the
sequence of speech sounds that constitute their spoken form (Brennan, Cao, Pedroarena-Leal,
McNorgan, & Booth, 2013; Cao et al., 2011; Cheung, Chen, Lai, Wong, & Hills, 2001; Ho & Bryant,
1997; Huang & Hanley, 1995, 1997; McBride-Chang, Bialystok, Chong, & Li, 2004; Read, Yun-Fei,
Hong-Yin, & Bao-Qing, 1986; Shu, Peng, & McBride-Chang, 2008).

In our model of online speech processing we test a phonological restructuring hypothesis consis-
tent with psycholinguistic grain size theory, in which learning to map between orthographic and
phonological representations leads to changes in the granularity of phonological processing that
reflect the structure of the orthographic system on which the system is trained. Therefore, training
on alphabetic languages, in which there is a regular mapping between individual orthographic and
phonological units leads to more fine grained phonological processing.

1.2. Cognitive efficiency and literacy

The effects of literacy, however, have not been isolated only to the domain of phonological process-
ing. Historically, illiteracy has been linked to reduced performance on a range of cognitive tasks, e.g.,
visual perception (Luria, 1976), reasoning (Levi-Bruhl, 1923), and memory (Vygotsky, 1978). However,
isolating the role of literacy from other factors such as pre-existing cognitive deficits or increased
exposure to formal schooling is a substantial challenge. Yet, more recent studies that have attempted
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to control for such factors have continued to demonstrate a link between literacy and changes in cog-
nitive performance on tasks that extend beyond the domain of phonological processing.

Performance on standardized memory tasks has been observed to differ between literate and illit-
erate groups. Specifically, illiterates display worse performance than literates on digit span tasks, in
which participants are required to repeat a sequence of digits (Reis, Guerreiro, & Petersson, 2003).
In the domain of semantic processing, performance on semantic fluency tasks, in which participants
are required to produce as many items from a pre-specified semantic category as possible, has also
been shown to differ between literate and illiterate groups (Kosmidis, Tsapkini, Folia, Vlahou, &
Kiosseoglou, 2004; Reis & Castro-Caldas, 1997), though see da Silva, Petersson, Faísca, Ingvar, and
Reis (2004) for an alternative account of semantic effects being due to differences in general
knowledge.

Effects on visual processing have also been observed and appear to extend as far as low level
perceptual processing. For example in a recent study by Szwed, Ventura, Querido, Cohen, and
Dehaene (2012), illiterates performed worse than literates on a contour integration task, in which par-
ticipants were required to indicate the direction of an image when the image was distorted by low
level visual noise. In a visual target detection task in which participants were required to touch red
squares placed among yellow squares on a computer screen, illiterates were shown to be slower
and less accurate than literates (Bramao et al., 2007). However, such effects do not seem to be driven
purely by low level perceptual differences. A more recent study examining visual search behaviour in
literate and illiterate groups also observed slower performance in illiterate groups (Olivers, Huettig,
Singh, & Mishra, 2014), yet demonstrated that the observed difference in behaviour was largely
accounted for by low literates needing more time between fixating the target and producing a
required motor response. A possible explanation for this consistent reduction in performance dis-
played by illiterates across many cognitive domains would be that literacy leads to a general increase
in efficiency of cognitive processing.

General processing speed (Kail & Salthouse, 1994; Salthouse, 1996) has been shown to correlate
with performance on a wide range of cognitive tasks (Kail & Salthouse, 1994; Li et al., 2004;
Salthouse, 2005), and has been proposed to be the mechanism of increased cognitive efficiency as a
consequence of literacy training. For instance, Stoodley and Stein (2006) showed that literacy skills
correlated with a general increase in speed of performance on a pure motor task. It has been suggested
that general processing speed is related to the rate at which information propagates from one node in
a network to another (Kail & Salthouse, 1994; Salthouse, 1988). Such arguments are consistent with
recent research in the field of neuroscience, into the effects of myelination in the human brain. Mea-
sures of myelination and white matter integrity have been shown to be reflected in the efficiency
(Deary et al., 2006; Engel, Fries, & Singer, 2001; Li et al., 2009) and the speed (Gutiérrez, Boison,
Heinemann, & Stoffel, 1995; Madden, Bennett, & Song, 2009; Penke et al., 2010; Tolhurst & Lewis,
1992; Waxman, 1980) of information processing, with such factors shown to modulate performance
on a range of cognitive tasks (Deary et al., 2006; Li et al., 2009; Turken et al., 2008). Critically, myeli-
nation has been shown to be modifiable by experience (see Fields, 2008) and to increase as a result of
learning (Bengtsson et al., 2005) and therefore has the potential for modulation by environmental
variables such as exposure to literacy training. Studies have indeed shown that myelination of brain
regions associated with language processing coincides with vocabulary acquisition (Pujol et al., 2006).

1.3. Models of literacy effects on language processing

Many of the most influential cognitive models of speech processing do not implement a role for
orthographic knowledge (e.g., Cohort Model, Marslen-Wilson & Tyler, 1980; MERGE, Norris,
McQueen, & Cutler, 2000; Shortlist B, Norris & McQueen, 2008; TRACE, McClelland & Elman, 1986),
however there is one model of which we are aware that provides insight into potential effects of lit-
eracy on phonological processing of words. Harm and Seidenberg (1999) compared behaviour of a
computational model trained to generate stable phonological representations of monosyllabic words,
where the phonological representation was input as a set of phoneme features representing each
phoneme in the word, to a model that in addition mapped orthographic representations onto the
phonological representations, and assessed the effect of this literacy on the model’s performance on
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a range of single-word phonological processing tasks. They found that when one phoneme within a
word was affected by noise, the literate model was better able to restore the phoneme. They also
found that the literate model represented words with the same rhymes as more similar in terms of
the internal state of the model than the illiterate model.

These simulations provide an explicit description of how learning orthographic mappings can lead
to emergent effects on phonological processing, modulating the componential nature of processing.
They observed that changes to connection weights within the phonological network as a consequence
of literacy training were greater for within-segment weights (within rhyme and within onset connec-
tions), rather than intersegmental weights (those crossing the onset-rhyme boundary). This they
argue is consistent with evidence indicating that literacy leads to increased sensitivity to smaller pho-
nological units. Harm and Seidenberg’s (1999) model suggests that increased componentiality may be
a consequence of literacy, consistent with the psycholinguistic grain-size theory and the restructuring
hypothesis. However, the model represented phonology in terms of individual phonemes, thus
increasing the chances that the model will discover phoneme-level representations. The model also
did not test the potential effect of general cognitive processing advantages as a consequence of literacy
within the model. For instance, similar observations of increased componentiality within the model
could equally be a consequence of a model with greater fidelity of representations rather than (due
only to) changes in the granularity of processing. For example, a model that possesses noisier repre-
sentations is likely to perform worse on restoration tasks and may also represent words with the same
rhymes as less similar.

1.4. Explicit and implicit phonological processing tasks

The above behavioural and computational studies provide substantial converging evidence for a
connection between acquisition of literacy and the fidelity of phonological representations of words
(Dijkstra, Roelofs, & Fieuws, 1995; Chéreau, Gaskell, & Dumay, 2007; Hulme, Bowyer-Crane, Carroll,
Duff, & Snowling, 2012; Kolinsky, Pattamadilok, & Morais, 2012; Ventura, Morais, Pattamadilok, &
Kolinsky, 2004; Ziegler & Ferrand, 1998). However, these previous studies have generally focused
on explicit tasks addressing manipulations of the phonological forms of isolated words, and there is
little extant evidence for behavioural consequences that may result from differences in phonological
activation during online speech processing. This is important ecologically because these previous
studies have focused either on manipulations of the phonological representation itself, or on the
extent to which phonological representations are similar to one another, rather than the use that
the language processing system makes of these representations. Language processing involves combi-
nations of phonological, orthographic, and semantic representations in interaction with sensory input
about the environment, and so determining the effects of literacy on language processing should take
this complexity into account, rather than only focusing on one small aspect of the language processing
system. Implementing the complexity of the system also permits testing the various accounts of
effects of literacy on representations other than only phonological forms, which may prove important
for distinguishing competing accounts based on cognitive efficiency or grain-size of phonological
representations.

One way in which use of phonological representations can be studied is through the visual world
paradigm (Cooper, 1974; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). In studies of this
kind, participants are presented with a visual display while simultaneously hearing a spoken utter-
ance, and as these events unfold their eye gaze is recorded. The paradigm has been previously used
to examine integration of information between visual and linguistic representations by manipulating
the relationships between items in the visual scene and words presented in the auditory stimulus (for
review, see Huettig, Rommers, & Meyer, 2011).

Huettig, Singh, and Mishra (2011) conducted a visual world paradigm study with two populations
in India both of which were native Hindi speakers (all materials were in Hindi). One was a high literate
population, comprising undergraduate university students, and the other was a low literate popula-
tion, that complied with the UNESCO definition of illiterate (provided earlier in this paper) yet who
were fully integrated within Indian society. Low literates were employed and displayed no obvious
social, cognitive or neurological deficits. The critical difference between populations was the amount
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of exposure to formal education. In their Experiment 1, participants listened to sentences containing a
target word and were shown scenes containing a semantic competitor (item that shares a subset of its
semantic features with the spoken target word; e.g. target = beaker, semantic competitor = fork), a
phonological onset competitor (item that shares its phonological onset with the spoken target word;
e.g. target = beaker, phonological competitor = beetle) and two unrelated distractors (items that did
not share either a phonological or semantic relationship with the spoken target word). In their
Experiment 2, scenes only displayed a phonological competitor and three unrelated distractors. On
experimental trials visual scenes did not contain the named item, whereas filler trials contained
scenes displaying pictures of the spoken target word in addition to three unrelated distractors. In both
experiments participants performed a look and listen task, this simply required participants to look at
the scenes while listening to the spoken sentence with no additional explicit task.

The results of Huettig et al.’s (2011) two experiments are displayed in Fig. 1. When presented with
scenes containing phonological onset competitors and semantic competitors, high literates looked
first at phonological competitors and then later at semantic competitors once information within
the unfolding speech mismatched with the name of the phonological competitor, replicating earlier
research (Huettig & McQueen, 2007). Low literates on the other hand only displayed increased fixation
of semantic competitors, at no point fixating phonological competitors consistently more than unre-
lated distractors. Also, overall fixation of semantic competitors by low literates was lower than that
Fig. 1. Results of Huettig et al. (2011). Charts display the change in fixation proportions for high (A and C) and low (B and D)
literates when presented with scenes containing either a phonological competitor, semantic competitor and unrelated
distractors (A and B), or a phonological competitor and unrelated distractors (C and D). (Figures as published in Huettig et al.
(2011). Language-mediated visual orienting behaviour in low and high literates. Frontiers in Psychology, 2, 285. doi: http://
dx.doi.org/10.3389/fpsyg.2011.00285).

http://dx.doi.org/10.3389/fpsyg.2011.00285
http://dx.doi.org/10.3389/fpsyg.2011.00285
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displayed by high literates. In the second experiment, when participants viewed scenes containing
only a phonological onset competitor accompanied by unrelated distractors, high literates again dis-
played a pattern of fixation toward the phonological competitor that tightly mirrored the phonological
overlap in the speech signal. Low literates on the other hand, unlike in Experiment 1, did display
increased fixation of the phonological competitor compared to unrelated distractors, but in contrast
to high literates, their fixations of phonological competitors were not tightly time locked to the
unfolding speech signal. Low literates looked marginally more at the phonological competitor over
the first 1000 ms post word onset but did not display the rapid increase and decrease in looks towards
this category of item in response to signal overlap as shown by high literates.

These results support a qualitative difference between high and low literate populations in their
use of phonological information, whereas only a small quantitative difference in terms of semantic
processing. In terms of the two theories of effects of literacy on language processing – the fine-grained
phonological representation and the cognitive efficiency theories – the results may be consistent with
either. For high literate participants, they are sensitive to the phonological overlap between represen-
tations of words at the point at which the phonology of competing visual objects applies. For low lit-
erate participants, such sensitivity is not observed suggesting that fine-grained phonological
distinctions between words are a consequence of literacy. The low literates may be instead biased
toward mapping at a semantic level and only map at a phonological level when pushed by restrictions
on the nature of the representational overlap in the environment. Huettig et al. (2011) conjecture that
literacy results in these effects by strengthening existing phonological representations and providing a
tighter coupling between phonological representations activated by the visual environment and
phonological representations activated by spoken language input.

However, an alternative perspective is that the results are a consequence of greater efficiency in
cognitive processing. Turken et al. (2008) highlight the efficiency of signal transmission across white
matter tracts as a particularly significant factor in determining performance on tasks that require the
complex integration of information from multiple operations. Therefore, the processes driving
language mediated eye gaze, in which information from auditory, visual, semantic and eye gaze
processing regions must be tightly integrated and used to coordinate behaviour, may be greatly influ-
enced by such a variable. In terms of this theory, the observed results are then just due to the greater
effectiveness and fidelity of the phonological representations for the high literate participants, rather
than a qualitative difference in the grain-size of the processing.

The results of Huettig et al. (2011) alone do not provide a means of testing these two alternative
hypotheses for the effects of literacy training on online language processing. However, the current
study aims to demonstrate that through combining the rich behavioural data provided by the visual
world paradigm with a computational model of language meditated visual attention it is possible to
gain traction on such questions of effects of literacy on language processing that to date have eluded
researchers.

The visual world paradigm is well suited to the investigation of phonological processing effects as it
enables researchers to test effects not only of phonological processing but also of semantic effects on
processing. Capturing these two effects in a single online task is required in order to distinguish
between these alternative theories. Further, the use of a dense sampling method such as eye gaze,
to compare between literate and illiterate behaviour, allows examination of moment by moment per-
formance providing additional constraints on underlying processing differences during online speech
processing that would otherwise be lost in more global measures. Within the current modelling
approach, we use this rich behavioural measure to compare alternative theoretical explanations for
the observed data by testing the behaviour of explicit implementations of each theory in a computa-
tional model.

In order to test these theories of literacy effects on language processing, we adapted the amodal
shared resource (ASR) model of language mediated visual attention (Smith, Monaghan, & Huettig,
2013a,b). This model offers an explicit description of the information and processes that drive complex
multimodal behaviour in language processing. The model has previously been shown to replicate a
broad range of word level effects, displayed by literate populations, reported in the visual world liter-
ature (see Table 1). For example, the model successfully replicates contrasts across modalities in the
effect of representational overlap on fixation behaviour of literate populations. The model replicates



Table 1
Table presenting visual world data successfully replicated by the ASR model of language mediated visual attention (Smith et al.,
2013a,b).

Study Scene

Authors (year) Item 1 Item 2 Item 3 Item 4

Allopenna et al. (1998) Target Onset Rhyme Distractor
Dahan and Tanenhaus (2005) Target Visual Distractor Distractor
Huettig and Altmann (2007) Visual Distractor Distractor Distractor
Yee and Sedivy (2006) Target Semantic Distractor Distractor
Huettig and Altmann (2005) Semantic Distractor Distractor Distractor
Mirman and Magnuson (2009)a Target Near Sem Far Sem Distractor
Huettig and McQueen (2007)b Onset Semantic Visual Distractor

The items displayed within scenes in each empirical study are listed with observed competitor effects highlighted in bold.
Visual = visual competitor, Semantic = semantic competitor, Onset = phonological onset competitor, Rhyme = phonological
rhyme competitor.

a Study presented near and far semantic competitors on separate trials.
b Experiment 1.
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semantic effects observed in the visual world paradigm (Huettig, Quinlan, McDonald, & Altmann,
2006; Mirman & Magnuson, 2009; cf. Yee & Sedivy, 2006) in that it fixates items that share a semantic
relationship at levels proportional to the number of semantic features shared between items. In con-
trast fixation of items that share purely phonological relationships is, in addition, dependent on the
temporal location of overlapping phonological features. The model also replicates the difference
between effects of phonological rhyme and phonological onset overlap as reported in Allopenna,
Magnuson, and Tanenhaus (1998), fixating items that share initial phonemes earlier and with
increased probability than items that share phonemes in final positions.

This model of language mediated visual attention has been shown to be not only sufficient to
account for the experimental effects of the visual world paradigm for literate participants but also,
importantly for this investigation, demonstrates how such features of behaviour are emergent prop-
erties of both the structure of representations and the computational properties of the mappings per-
formed between them. The model achieves this through capturing both the process through which
this behaviour is acquired and through use of a parsimonious architecture that implements only min-
imal assumptions about processing mechanisms. The model therefore is appropriate for testing the
impact of differences between populations in representational structure on eye gaze in the visual
world paradigm.

Previous computational models of the effects of phonological processing used in conjunction with
visual world data have tended to model processing in a single modality (Allopenna et al., 1998;
Mirman, Dixon, & Magnuson, 2008), the model used in this study however captures the processing
of phonological, semantic and visual information. The model provides as an output a dynamic measure
of the location of fixation across multi-object scenes over time, which is dependent on the integrated
processing of information across all three modalities. The model also differs from previous models of
effects on phonological processing where phonology has been used as both an input and output mea-
sure (Harm & Seidenberg, 1999). In contrast the chosen model has a different dependent variable ‘eye
gaze’ therefore phonological manipulations are only indirectly related to behaviour. The ability to
detect simultaneously the effect of phonological and semantic influences on performance permit
greater discrimination of the effects of the phonological representation or the cognitive efficiency the-
ory of literacy by investigating whether each implemented theory matches the effects of literacy in
both representational domains.

We manipulate both grain-size in phonological processing as well as processing efficiency within
this neural network model of language mediated eye gaze (Smith et al., 2013a,b). As finer grained rep-
resentations more clearly encode the regions of representations that differ or overlap, we predict that
increasing the granularity of phonological processing will increase the salience of phonological onset
competitors at points in which the phonology of the unfolding spoken word overlaps with the phono-
logical representation corresponding to the phonological onset competitor and reduce its salience at
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points in which the signal mismatches. Therefore a system that processes phonological information at
a finer grain size will be able to use such information to distribute attention more dynamically in
response to information in the unfolding auditory input.

We also predict that semantic effects on the other hand should not be affected significantly by the
granularity of phonological processing. In previous computational simulations of language mediated
eye gaze (Smith et al., 2013a,b), semantic effects are driven by overlap between the semantic repre-
sentations of the visually depicted object and the spoken word. Overlap effects are therefore depen-
dent on the level of activation of overlapping semantic features triggered by the concurrent visual
and auditory input. As more of the phonological signal unfolds, the activation of corresponding seman-
tic features will increase. When the words’ semantic properties are maximally activated, if the level of
representational overlap does not differ across distinct phonological grain sizes, then the literate and
illiterate simulations should activate semantic representations equally.

In addition, we predict that manipulations of processing efficiency will have a greater impact on
semantic effects than phonological effects. Within the model (see Section 2.1), activation of semantic
information is more sensitive to the efficiency of information transfer within the network as it is not
directly activated by the visual or auditory input, but instead activated as a consequence of signals
that flow through the network from phonological and visual input layers. We also predict that such
effects will be quantitative rather than qualitative in nature as the structure of signal overlap will
not differ but simply lead to an overall reduction in the activation of overlapping features, which in
turn will result in a quantitative reduction in the saliency of semantic competitors.
2. Method

2.1. Architecture

The neural network model used within this paper is based on the ASR model of language mediated
eye gaze presented in Smith et al. (2013a). The same network architecture (see Fig. 2) was used for all
simulations. The model consisted of four modality specific processing layers connected via a central
resource. We know from behavioural data recorded in visual world studies that language mediated
visual attention is driven by the interaction of information extracted from the visual environment
and speech signal in terms of semantic, visual and phonological representations (e.g., Huettig &
Fig. 2. The ASR Model of language mediated visual attention.
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McQueen, 2007). The ASR architecture offers a parsimonious solution to how these modalities interact,
and a means by which the emergent properties of this complex interaction can be harnessed. The
architecture allows competition at multiple levels of representation, parallel activation of representa-
tions, the integration of information from multiple modalities and allows for both inhibitory and excit-
atory associations between representations, all of which have been proposed as important
theoretically for reflecting behavioural effects in the Visual World Paradigm (see Smith et al.,
2013a, for review). The philosophy of the model was to investigate the extent to which information
from different modalities interacts in language processing tasks, with constraints within the model’s
processing resulting from the nature of the mappings between representations, rather than imposed
architectural assumptions.

The visual layer (80 units) simulates the extraction of visual information from up to four locations
in the visual field. The layer is divided into four 20 unit slots. Each slot encodes the information avail-
able at a single location in the visual field, with active units representing visual feature information
about objects. The phonological layer (60 units) simulates the temporally unfolding speech signal. It
comprises six time slots, each of which contains 10 units which encode the phonological features of
the auditory input at a given time point. Phonological layer time slots are activated sequentially
during the presentation of the spoken word to the model. For example, at word onset the activation
pattern corresponding to the initial information of the unfolding spoken word will be presented to
the first 10 units in the phonological layer, while all other units in the layer remain inactive. At the
next time step the activation pattern corresponding to the second portion of the spoken word will
in addition be presented to units 11–20 in the phonological layer, while again all subsequent units will
remain inactive. This process continues, with an additional phonological portion presented at each
subsequent time step until the entire phonological representation of the spoken word is presented
to the phonological layer (i.e. all six portions corresponding to the six time slots). The semantic layer
(160 units) represents the semantic features for items presented either in spoken or visual object form.
Finally, the eye layer (4 units) provides a measure of the model’s direction of gaze across the four
possible locations in the visual field, with each unit in the eye layer associated with one of the four
quadrant locations in the visual field. Activation of eye layer units was taken to correspond to the
probability of fixating associated locations in the visual environment, with the location associated
with the most highly activated eye layer unit interpreted as the location currently fixated. All four lay-
ers were fully connected to a central integrative layer (400 units) which was fully self-connected and
also fully connected to allow activation to feed back to eye and semantic layers.

At each time step activation passed between all layers in the network. Training trials extend over a
total of 14 time steps to enable activation to cycle between representations in the model. During
testing, this period was extended to allow for insight into the time-course of interaction between
representations across modalities within the model.

2.2. Representations

To ensure the overlap for visual, phonological, and semantic representations was fully controlled
both within and across modalities, a fundamentalist approach was taken in their construction, i.e., that
‘‘a model should embody only the principles that are theorized to account for the phenomenon in
focus’’ (Kello & Plaut, 2000). Consequently, artificial corpora were constructed each consisting of
200 items (or words in the artificial corpus), with each item defined by a unique visual, a unique
semantic and a unique phonological representation. We constructed 15 versions of the corpus for each
manipulation of grain size, though corpora were matched across cognitive efficiency manipulations,
resulting in 45 artificial corpora (3 grain sizes � 15 instantiations of each grain size). This was to
ensure that chance variation in distribution of the spoken forms of words, and chance random starting
states of the model, did not bias model performance.

Visual representations were 20 unit binary vectors with each unit representing the presence or
absence of a distinct visual feature. Visual representations were composed of two distinct compo-
nents, one component representing coarse (low frequency) visual features and the other fine (high
frequency) visual features. Visual features were randomly assigned to items with p(active) = 0.5.
Ten units per component meant that encoding of 200 unique representations was possible without
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populating the representational space to maximal density, ensuring that visual representations could
be distinguished by one or more visual features.

Semantic representations were designed to reflect discrete and relatively sparse semantic feature-
based representations for words (Harm & Seidenberg, 2004). For each item a unique set of 8 from a
possible 200 semantic features were activated, with features randomly assigned.

Representational overlap between items was controlled in visual, semantic and phonological
dimensions (see Table 2). Embedded within each corpus were 40 target items. Within the corpus were
also embedded for each target item a semantic competitor (n = 40) and a phonological competitor
(n = 40). Competitors shared increased representational overlap with their assigned target item in a
single modality (either semantic or phonological). Semantic competitors shared 4 of 8 semantic prop-
erties with their assigned target, while all unrelated items shared a maximum of 1 semantic property
with any other item. For a definition of phonological competitors see Section 2.3.
2.3. Simulating differences in phonological processing

To simulate differences in the granularity of speech processing three forms of processing of the
phonological input were constructed: fine, medium, and coarse grained phonological representations,
reflecting variations in the componentiality of the phonology, from single phonemes up to a holistic
word-level representation. Fine grained representations simulated phonological processing in which
the unfolding speech signal activates a componential sequence of phonemes, and this was the repre-
sentation used in previous simulations of standard speech processing with the ASR model (Smith et al.,
2013a,b). For the fine grained simulations, an inventory of 20 possible phonemes was constructed.
Each phoneme was encoded as a unique 10 unit binary vector with units assigned with p(active) = 0.5,
and each unit representing a phonological feature. For each word, a unique sequence of 6 phonemes
was constructed by randomly sampling from the set of 20 phonemes. For the overlapping target-
competitor pairs, the target and competitor shared their initial 2 phonemes (in Huettig et al., 2011
phonological competitors shared at least the first two phonemes with the target word). No other word
pairs within the corpus shared their initial two phonemes and no two words shared their initial three
phonemes. These constraints applied equally to all the grain size conditions in order to ensure that
comparisons between the grain sizes were controlled. However, the overall amount of overlap
between items in the whole corpus is less than that observed in natural language, where overlap even
up to the first 5 phonemes of 6 phoneme words is observed. This minimal overlap may have enhanced
the size, rather than the qualitative nature, of phonological overlap observed in the results. All items
had a unique sequence of the final three phonemes and no item contained more than two of the same
phonemes in its entire representation.
Table 2
Cosine distance between target and distractor representations. Records mean (�x) and standard deviation [r] calculated across all
items and corpora (15 per grain size).

Modality Simulation Distractor Cosine distance (�x, (r))

Onset Rhyme Overall

Phonological
Fine grain Competitor 0.00 (0.00) 0.51 (0.12) 0.34 (0.08)

Unrelated 0.51 (0.16) 0.49 (0.11) 0.50 (0.09)
Moderate grain Competitor 0.17 (0.10) 0.42 (0.09) 0.33 (0.07)

Unrelated 0.51 (0.14) 0.51 (0.10) 0.51 (0.08)
Coarse grain Competitor 0.35 (0.12) 0.34 (0.09) 0.34 (0.07)

Unrelated 0.51 (0.14) 0.50 (0.10) 0.50 (0.08)

Overall
Semantic

All simulations Competitor 0.50 (0.00)
Unrelated 0.96 (0.06)
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For moderate grained representations two components encoded each word, analogous to syllable
level representation of the stimulus. Each component was a unique 30 unit binary vector with units
assigned with p(active) = 0.5. For the phonological overlap items, the target and competitor shared
2/3 of the features present in the initial component, and the remaining features in both the initial
and second component were either shared or distinct with p = 0.5. The number of overlapping features
was thus controlled across the fine and medium grained representations for phonologically overlap-
ping items (see Table 2), though they differed in terms of the componentiality of the overlap. Unre-
lated items shared all features with p = 0.5. Phonological similarity was thus simulated as
distributed over the first half of the item, rather than, as in the case of the fine grained simulations,
with precise similarity over the first two phonemes of the item.

For coarse grained representations each word was defined by a single component, simulating a
word-level phonological representation. This component was a unique 60 unit binary feature vector
with p(active) = 0.5. For the overlapping pairs of target and competitor items, 1/3 of the features were
identical between the two items, and the remaining features were shared with p = 0.5. Thus, the total
number of similar features was the same as for the overlapping items in the fine and medium grained
representations. Unrelated items shared features with p = 0.5.

To simulate the time-course of the unfolding phonological input, for all simulations sequences of 10
features of the spoken input were gradually presented. Thus from word onset an additional 10 features
of the spoken input were presented at each subsequent time step, until by word onset +5 time steps, all
60 features that define an item’s spoken representation were presented as input to the phonological
layer. This controlled for the temporal presentation of the auditory signal for each grain-size encoding,
but the grain size of representations differed in terms of the componentiality of the presented features.
Thus, for the fine grained representations, the presentation was phoneme-by-phoneme, whereas for
the moderate grained representation, the presentation partially unfolded the syllable across three time
steps, such that after three time steps the model was exposed to a full component. However, early
stages of presentation did provide the model with information about the general sound of the syllable
(so two similar syllables would have similar representations in the first ten features). For the coarse
grained representation, again the presentation partially unfolded the word across six time steps, with
similar sounding words having similar representations as the spoken form unfolded. Although, during
language processing listeners would receive the same auditory signal with identical temporal proper-
ties, the grain size at which an individual processes speech will determine their ability to identify the
components of words. Hence, when an onset competitor shares its initial two phonemes with a spoken
target word (but not the entire syllable) a system processing at a finer grain will be quicker to detect the
speech sound overlap than a system processing at a coarser grain. The fine, moderate and coarse grain
representations implemented within this model capture this assumption.
2.4. Simulating differences in cognitive efficiency

There are several ways to simulate variation in cognitive efficiency in neural network models,
including addition of noise to activations of units, reductions in processing resources to form map-
pings between representations, or reduction in overall levels of activation within the network
(Harm & Seidenberg, 1999; Monaghan & Shillcock, 2004). We chose to simulate cognitive efficiency
in the current models in terms of addition of noise. This decision was made so as to link the implemen-
tation of cognitive efficiency as closely as possible to theories about the information processing effects
of literacy on neural processing, in terms of myelination of highly-trained pathways reducing noise
levels in neural transmission via faster processing of high quality information (see Section 1.2). Gauss-
ian noise was thus applied [N(l = 0, r2 = 0.02)] to the output of all units in the network for the lower
cognitive efficiency simulation, but no noise was added to the higher cognitive efficiency version.1 This
1 The cognitive efficiency hypothesis as implemented within this study does not argue for a reduction of cognitive efficiency
within the entire cognitive system. Instead, based on the argument of increased myelination in heavily trained networks,
differences in cognitive efficiency would only result in networks that experience a difference in levels of training as a consequence
of literacy acquisition. Within the model we only model such networks and therefore manipulation of global cognitive efficiency
within the model is a valid reflection of the neural network changes associated with literacy.



A.C. Smith et al. / Cognitive Psychology 75 (2014) 28–54 41
resulted in differences in the fidelity with which information passed through the network, and
consequently the speed at which activation could accumulate in different modality layers in the model.
Pilot simulations were used to establish an appropriate level of noise for the lower cognitive efficiency
simulation. Simulations trained with noise sampled from [N(l = 0, r2 = 0.05)] failed to learn some of the
mappings between modalities that were a precursor to testing experimental performance of the model
against the behavioural data (see Section 2.5) and simulations trained with noise sampled from [N(l = 0,
r2 = 0.01)] displayed negligible differences in performance from simulations in which no noise was
applied.

For each simulation set (fine grain, low efficiency; fine grain, high efficiency; moderate grain, low
efficiency; moderate grain, high efficiency; coarse grain, low efficiency; coarse grain, high efficiency),
15 versions were trained on one of the distinct corpora and each was initialised with a different
random seed.

2.5. Training

For each grain size (fine, medium, and coarse) we manipulated the model’s cognitive efficiency
(high, low) leading to a total of six sets of parameters for the model, and as mentioned in Section
2.2, there were 15 different simulation runs for each of these parameterisations.

All simulations were trained on four tasks (see Table 3) that aimed to simulate the tasks performed
by participants in the natural learning environment. We assume that participants gain knowledge of
an item’s visual, semantic and spoken form by repeated and simultaneous exposure to these multiple
forms of representation: It is through such experience that individuals acquire the associations
between representations across modalities that later drive the behaviour observed in the laboratory
setting.

2.5.1. Vision to semantics
This task aimed to simulate the learning that occurs during events in which individuals simulta-

neously view an item and determine some of its semantic properties, e.g., its function: seeing a fork
and determining its use for eating. This was simulated by first randomly selecting four items from
the artificial corpus, one of which was randomly selected as a target. The visual representations of
each of the four items was then presented to the model at trial onset (time step 0), with each item
randomly assigned to one of the four locations in the model’s visual field. The eye unit relating to
the location of the target’s visual representation was also fully activated at trial onset with all other
eye units fixed at zero activation. These values remained fixed for the remainder of the training trial.
Throughout the trial small levels of variable background noise were provided as input to the phono-
logical layer, simulating ambient background sound. Once sufficient time had passed allowing for acti-
vation to flow from the visual and eye layers to the semantic layer (i.e. time step 3) the item’s semantic
representation was provided as a target and error was backpropagated through the network up to
time step 14.

2.5.2. Phonology to semantics
This aimed to simulate the learning that takes place when an individual is exposed to an item’s spo-

ken form and is required to determine its semantic properties, for example, when hearing the word
fork and eating from a fork. To simulate such occurrences, an item was first randomly selected from
the training corpus and assigned the role of target. At trial onset the first 10 features of its phonolog-
ical representation were presented in the initial slot of the phonological layer. At each subsequent
time point a further 10 features of the target’s representation were presented in the corresponding
phonological input layer slots until the entire representation had unfolded. This remained present
until the end of the training trial. Throughout such trials, random background noise was presented
to the visual layer to simulate ambient stimulation of the visual system. Once the entire word had
unfolded and sufficient time had elapsed for a signal discriminating the target from possible compet-
itors to pass to the semantic layer (time step 5), the item’s semantic representation was presented as a
target and error was backpropagated until time step 14.



Table 3
Procedure for the model’s training trials.

Task Vision Phonological Semantic Eye

Description Time
step

Description Time
step

Description Time
step

Description Time
step

1. Vision to
Semantics

4 visual
representations
randomly selected
from the training
corpus, 1 of which
is randomly selected
as a target

0–14 Random time
variant noise
provided as
input

0–14 Target’s
semantic
representation
provided

3–14 Target location
fully activated,
all other
locations
inactive

0–14

2. Phonological
to Semantics

Random time
invariant noise
presented to all
visual input slots

0–14 Target speech
signal provided
as staggered
input

0–14 Target’s
semantic
representation
provided

5–14 No constraints
on activation

3. Phonological
to Location

Identical to
procedure
in task 1 and 4

0–14 Identical to
procedure
in task 2

0–14 No Constraints
on activation

Target location
fully activated,
all other
locations
inactive

5–14

4. Semantics
to Location

Identical to
procedure in
task 1 and 3

0–14 Identical
procedure
in task 1

0–14 Semantic
representation
of target
provided

0–14 Target location
fully activated,
all other
locations
inactive

2–14
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2.5.3. Phonology to vision
Orientating to an item when hearing its spoken form was trained by first selecting four items ran-

domly from the training corpus and selecting one as a target. The visual representation of all four
items was presented to the visual input layer at trial onset with locations in the visual field randomly
assigned. Also coinciding with trial onset, the phonological representation of the target item began to
unfold, with an additional 10 features of the target’s phonological representation presented at each
subsequent time step. Once the entire word had unfolded and sufficient time had passed to allow a
discriminating signal to reach the eye layer (time step 5), the training signal was provided. This con-
sisted of fully activating the eye unit relating to the location of the target’s visual representation while
fixing activity in all other eye units to zero.

Semantics to vision. A similar procedure was applied when training the model to orientate to the
location of a target when provided with its semantic representation. Again four items were randomly
selected from the training corpus and one randomly assigned as the target. The visual representations
of all four items were presented to the visual input layer at trial onset, with locations randomly
assigned. Also coinciding with trial onset, the semantic representation of the target was presented.
Throughout such training trials small levels of variable noise were provided as input to the phonolog-
ical layer to simulate auditory background noise. Once sufficient time had elapsed for the signal from
both visual and semantic layers to pass to eye layer units (time step 2), the training target signal was
provided. This consisted of fully activating the eye layer unit associated with the location of the tar-
get’s visual representation with zero activation in all other eye layer units.

All training tasks were randomly interleaved. In the natural language learning environment, items
around the child are frequently left unnamed (Yu & Ballard, 2007). Hence, we assume during training
that items based on their semantic properties are selected more frequently than items based on their
spoken form, and so phonology to vision tasks were four times less likely to occur in training than
other training tasks.

Connection weights were initialised with random weights taken from a uniform distribution [�0.1,
0.1]. Weights were adjusted online during the training process using recurrent back-propagation with
learning rate 0.05. All simulations were trained on 850,000 training trials as this provided sufficient
exposure for simulations to perform accurately on all four training tasks.
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3. Results

3.1. Pre-test

Post-training, all simulations were tested on their ability to perform each of the four training tasks.
Table 4 presents the accuracy of simulations on each task, averaged across 15 instantiations of each
simulation. For tasks requiring the model to reproduce the semantic representation of the target when
presented with its visual representation, simulations were tested on their ability to perform this task
with the target presented in all possible locations in the visual field. Similarly, on orientation tasks,
simulations were tested on their ability to orientate to the location of the target when the target
was positioned in each of the four possible locations in the visual field. For phonological to semantic
mapping tasks the model was tested four times on each item. Two measures were used to assess per-
formance on each training task. For semantic mapping tasks we calculated the cosine distance
between mean activation in the semantic layer during test trials and the semantic representation of
all items within the training corpus. In Table 4, mean accuracy indicates the proportion of test trials
for which the target’s semantic representation was closest in terms of cosine distance to activation
within the semantic layer. The second measure indicates the proportion of items within the training
corpus for which activation in the semantic layer was closest to the semantic representation of the
target in at least three out of four test trials. Two measures were also collected to assess model per-
formance on orientation tasks. Mean accuracy indicates the proportion of test trials in which the eye
unit relating to the location of the target’s visual representation was most highly activated. The second
measure provides the proportion of items within the training corpus for which the eye unit relating to
the location of the target’s visual representation was most highly activated on 3 out of 4 test trials.

The measures of model performance presented in Table 4 demonstrate that all simulations were
able to complete each of the four training tasks with a high degree of accuracy and displayed compa-
rable levels of performance. There are significant differences between high and low cognitive effi-
ciency simulations in task performance for visual to semantic mappings for the mean activation but
not the % items measure, indicating that cognitive efficiency drives a small difference in mapping loca-
tion to semantic representations, as was predicted, but does not affect mapping from semantics, nor
mappings from other modalities to semantics.
3.2. Simulating the effects of grain size and cognitive efficiency on language mediated visual attention

To simulate the conditions under which participants were tested in Huettig et al. (2011), Experi-
ment 1, we presented the model with scenes containing a semantic competitor, a phonological onset
Table 4
Trained model’s performance on training tasks.

Simulation Task

Efficiency Grain Visual to
semanticb

Phonological to
semanticb

Phonological to
locationa

Semantic to
locationa

Mean % items Mean % items Mean % items Mean % items

High Fine 0.88 0.98 1.00 1.00 0.91 0.96 0.92 0.98
Low Fine 0.85 0.97 1.00 1.00 0.90 0.97 0.92 0.99
High Moderate 0.86 0.97 1.00 1.00 0.91 0.97 0.92 0.98
Low Moderate 0.83 0.97 1.00 1.00 0.90 0.96 0.93 0.99
High Coarse 0.87 0.98 1.00 1.00 0.91 0.97 0.93 0.99
Low Coarse 0.82 0.97 1.00 1.00 0.90 0.96 0.93 0.99

a Location task: mean = mean proportion of test trials in which eye unit corresponding to target location was most highly
activated, % items = proportion of items within corpus for which target location was most highly activated on at least 3 of 4 test
trials;

b Semantic task: mean = proportion of test trials for which semantic layer activation was closest to target’s semantic repre-
sentation, % items = proportion of items for which semantic layer activation is closest to target’s semantic representation on at
least 3 of 4 test trials.
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competitor and two unrelated distractors while simultaneously presenting the phonological represen-
tation of the given target word. This was achieved using the following procedure. At trial onset the
visual representations of the four items within the scene were presented. After a short delay, to enable
pre-processing of the visual information, the spoken target word began to unfold (time step = 5), with
an additional component of the target word’s phonological representation presented at each subse-
quent time step until the full representation was revealed. The model’s ‘‘gaze’’, was interpreted as
being directed towards the location in the visual display associated with the most highly activated
unit in the eye layer. ‘Gaze’ was recorded in this manner at each time step throughout the test trial,
which lasted in total 29 time steps. For each instantiation of each simulation there were in total
960 test trials, with each item (n = 40) occurring with competitors in all possible spatial configurations
(n = 24). Fig. 3 displays the change in p(fix) from word onset (time step = 5), for each simulation
(Fig. 3A: High cognitive efficiency simulations; Fig. 3B: Low cognitive efficiency simulations), with
p(fix) recording the Luce ratio of fixations for each category of item within displays, averaged over
all test trials (n = 960) and instantiations (n = 15).

We used linear mixed effects models (Baayen, Davidson, & Bates, 2008; Barr, 2008; Jaeger, 2008) to
analyse the influence of grain size and cognitive efficiency on differences between competitor and dis-
tractor fixation. As a baseline for behaviour, we identified a preview time window (time steps 0–7), the
period from trial onset until the first time point in which a signal discriminating between target and
competitor within the phonological input can influence eye layer units. We then compared this base-
line eye gaze performance of the model to its behaviour in time windows after this point, where the
information from the phonological input met the visual system, distinguishing between early (time
steps 8–18), and late (time steps 19–29) processing.

For each time window in each test trial we calculated the total number of time steps a given cat-
egory of item was fixated, fix(item category). As two unrelated distractors were present in each scene,
for each time window (preview [time step 0–7], early [8–18], late [19–29], or early & late [8–29]) we
divided the total number of fixations towards unrelated distractors by two. These totals were then
used to calculate the empirical logits (log odds were used to avoid issues arising from calculating esti-
mates based on proportion data, see Jaeger, 2008) for each category of item within each time window.
We then calculated the difference between the log-odds of fixating a given competitor type and the
log-odds of fixating unrelated distractors. This difference (competitor bias, see Eq. (1)) formed our
dependent measure as it reflects the difference in fixation behaviour as a consequence of representa-
tional overlap. Separate analyses were conducted for each competitor type (semantic competitor –
unrelated distractor [semantic bias], and phonological competitor – unrelated distractor [phonological
bias]).

Our initial analysis compared across simulations to examine whether the difference between fixa-
tion of competitor and distractor altered between the preview period and the period post target word
onset (interest window = time steps 8–29), and whether this difference was influenced by either
decreases in the granularity of phonological processing (i.e. whether behaviour in coarse and moder-
ate grain size simulations differed from fine grain size simulations) or as a consequence of differences
in cognitive efficiency. To compare behaviour between simulations we predicted the dependent mea-
sures with fixed effects: phonological grain size (coarse, moderate or fine: with fine grain mapped
onto the intercept forming the baseline condition), cognitive efficiency (coded as a numerical factor
centred on zero: high = �0.5, low = 0.5) and time window (coded as a numerical factor centred on
zero: preview = �0.5, interest window = 0.5). The random effects structure included random inter-
cepts for both instantiation and item as well as random slopes for time window both by instantiation
and by item. This is the maximal random effect structure (Barr, Levy, Scheepers, & Tily, 2013), as both
grain and noise were varied between instantiation and item. To derive p-values we assumed t-values
were drawn from a normal distribution (Barr, 2008).
competitor bias ¼ log
fixðcompetitorÞ þ 0:5

fixðcompetitorÞ � total time stepsþ 0:5

� �
� log

fixðdistractorÞ þ 0:5
fixðdistractorÞ � total time stepsþ 0:5

� �

ð1Þ



Fig. 3. Time course of fixation behaviour displayed by the ASR Model. Figures A and B display the proportion of fixations [p(fix)]
directed towards items within scenes containing a phonological onset competitor (Pho), a semantic competitor (Sem) and two
unrelated distractors (Dist). Fixation proportions are plotted for fine grain (Fine), moderate grain (Moderate) and coarse grain
(Coarse) simulations with high cognitive efficiency (Fig. 3A) and low cognitive efficiency (Fig. 3B) (compare to behavioural data
in Fig. 1A and B). Figure A1 and B1 display the difference in fixation of phonological competitors compared to distractors in the
high cognitive efficiency condition and low cognitive efficiency condition respectively, while figures A2 and B2 display the
difference in fixation of semantic competitors compared to distractors in the high cognitive efficiency condition and low
cognitive efficiency condition respectively.
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Results of this analysis showed that simulations displayed an increased phonological bias post word
onset (b = 0.454, SE = 0.056, t = 8.064, p < 0.001). Coarse grain simulations differed from fine grain
simulations displaying a reduced phonological bias (b = �0.202, SE = 0.036, t = �5.551, p < 0.001),
importantly there was also an interaction between grain size (fine compared to coarse) and time win-
dow showing that fine grain simulations compared to coarse grain simulations displayed a further
increased phonological bias post word onset (b = �0.338, SE = 0.073, t = �4.646, p < 0.001). Fine grain
simulations also displayed an increased phonological bias compared to moderate grain simulations
but only in the period post word onset (b = �0.182, SE = 0.073, t = �2.509, p = 0.012). There was no
effect of cognitive efficiency on phonological bias.

Applying the same analysis to examine semantic bias showed that simulations displayed an
increased semantic bias post word onset (b = 0.853, SE = 0.060, t = 14.242, p < 0.001). There was no dif-
ference in semantic bias between moderate and fine grain simulations. The only significant difference
between simulations of differing grain size was in the significant interaction for coarse compared to
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fine grain and cognitive efficiency (b = �0.167, SE = 0.074, t = �2.248, p = 0.025). This shows that
reductions in cognitive efficiency lead to a lower semantic bias in coarse grain simulations compared
to fine grain simulations. There was also an overall marginally significant increased semantic bias as a
result of reductions in cognitive efficiency (b = 0.100, SE = 0.052, t = 1.905, p = 0.057).

We also applied the same approach to examine differences between simulations over the three
theoretically motivated time regions (preview, early, and late), as previous research suggests that pro-
cessing may differ in how effects are distributed across time, post word onset (e.g. Huettig & McQueen,
2007). This was done by splitting the remainder of the test trial, post preview, equally into two further
windows, an early window (time step 8–18) and a late window (time step 19–29). The model struc-
ture used for analysis was identical to previous analyses except that we also included the additional
window in the fixed effect of time window (preview, early or late: with preview mapped onto the
intercept forming the baseline condition).

Results showed that simulations displayed a significant increase in phonological bias in the early
versus preview window (b = 0.531, SE = 0.075, t = 7.048, p < 0.001). This effect was only marginally sig-
nificant in the late window (b = 0.148, SE = 0.085, t = 1.737, p = 0.082). A positive yet lower parameter
estimate in late over early windows suggests a reduced bias towards fixating phonological competi-
tors in later windows. We did not observe a main effect of either coarse or moderate grain. However,
there was an interaction between coarse compared to fine grain and early versus preview window
(b = �0.411, SE = 0.098, t = �4.202, p < 0.001), and coarse compared to fine grain and late versus pre-
view window (b = �0.300, SE = 0.098, t = �3.063, p = 0.002). This means that although coarse and fine
grain simulations did not differ in the preview period they did differ in both the early and late window.
Parameter estimates indicate that the phonological effect was stronger in the fine grain simulation
than the coarse grain simulation in both early and late windows, although a lower parameter estimate
suggests this difference was lower in the late window. An interaction between moderate versus fine
grain and early versus preview window (b = �0.230, SE = 0.098, t = �2.351, p = 0.019) was also
observed, however there was no interaction between moderate versus fine grain and late versus
preview window. This shows that the phonological effect only differed between moderate and fine
grain simulations in the early window. A negative parameter estimate suggests fine grain simulations
displayed a greater phonological effect in this window than moderate grain simulations. Thus, cogni-
tive efficiency had no influence on phonological bias, with no significant main effect nor interactions.

Applying the same model structure to predict semantic bias yielded a main effect for both early
(b = 0.499, SE = 0.073, t = 6.877, p < 0.001) and late windows (b = 1.261, SE = 0.087, t = 14.475,
p = 0.001). Increasing positive parameter estimates suggest an increasing bias toward fixating seman-
tic competitors in early and late windows over preview periods, with a greater bias displayed in late
over early windows. No other model parameters were significant.

We also examined the effects displayed by coarse, moderate and fine grain simulations individu-
ally. For each grain size we again used mixed effects models to predict measures of semantic bias
and phonological bias. Models included fixed effects of time window (preview, early or late: with pre-
view mapped onto the intercept forming the baseline condition) and cognitive efficiency (coded as a
numerical factor centred on zero: high = �0.5, low = 0.5), in addition to a random effects structure that
included random intercepts for both instantiation and item, and random slopes for time window both
by instantiation and item (maximal random effects structure, Barr et al., 2013).

Fine grain simulations displayed increased fixation of phonological competitors over unrelated dis-
tractors in the early window compared to the preview window (b = 0.531, SE = 0.075, t = 7.081,
p < 0.001), yet no difference was observed in this measure in the late window when compared to pre-
view. Moderate grain simulations displayed a similar pattern of behaviour with an increased bias
towards fixating phonological competitors in early windows over preview (b = 0.301, SE = 0.071,
t = 4.228, p < 0.001), yet no difference between late windows and preview. Coarse grain simulations
however, did not display a significant difference in phonological bias in either early or late windows
when compared to preview. There was no evidence for an influence of cognitive efficiency on
phonological bias for coarse, fine or moderate simulations.

Fine, coarse and moderate grain size simulations all displayed an increased bias towards fixating
semantic competitors over distractors in both early and late windows when compared to the baseline
preview window (fine [early: b = 0.499, SE = 0.076, t = 6.596, p < 0.001; late: b = 1.261, SE = 0.106,
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t = 11.880, p < 0.001], moderate [early: b = 0.450, SE = 0.073, t = 6.178, p < 0.001; late: b = 1.196,
SE = 0.103, t = 11.666, p < 0.001]; coarse [early: b = 0.474, SE = 0.085, t = 5.586, p < 0.001; late:
b = 1.184, SE = 0.120, t = 9.865, p < 0.001]). There was no evidence for an influence of cognitive effi-
ciency on semantic bias in either the moderate or fine grain simulations. However, in the case of coarse
grain simulations there was a significant interaction between cognitive efficiency and the late versus
early time window (b = �0.386, SE = 0.138, t = �2.786, p = 0.005). A negative parameter estimate indi-
cates that low cognitive efficiency leads to a reduction in the magnitude of the semantic effect in the
late window over preview, for coarse grain simulations.

A further post hoc analysis was also conducted to examine whether there was any evidence in the
fixation behaviour of coarse grain simulations, post word onset, for an effect of phonological overlap.
The phonological competitor bias in the preview period was compared to the same measure aggre-
gated over all time steps in both early and late windows (cf. Huettig et al., 2011, Experiment 2).
The model used for this analysis was identical to that used previously to examine effects at a single
grain size, the only difference being to the fixed effect of time window (coded as a numerical factor
centred on zero: preview = �0.5, combined early and late window = 0.5). This analysis showed that
coarse grain simulations displayed a marginally significant increased bias in fixating phonological
competitors over distractors post word onset (b = 0.116, SE = 0.060, t = 1.942, p = 0.052). There was
no evidence from this analysis for an effect of cognitive efficiency (b = �0.052, t = �0.497, p = 0.619).

In summary, both moderate and fine grain simulations displayed a phonological effect limited to
early periods post word onset, with fine grain simulations displaying an increased phonological bias
over moderate grain simulations in this period. Coarse grain simulations in contrast displayed a mar-
ginal increase in fixation of phonological competitors over unrelated distractors only when aggregat-
ing fixation across all time windows post word onset. Compared to fine grain simulations coarse grain
simulations displayed a reduced phonological bias in both early and late windows post word onset.
There was no evidence for an effect of cognitive efficiency on phonological bias.

Conversely, a marginal effect of cognitive efficiency was observed on semantic bias but only when
pooling fixation behaviour across all time windows post word onset. All simulations displayed an
increased semantic bias in early and late windows. The only difference between simulations of differ-
ing granularity in their semantic bias was observed in the interaction between coarse versus fine grain
and cognitive efficiency. Also coarse grain simulations displayed a reduced semantic bias in late
windows as a consequence of a reduction in cognitive efficiency.
4. Discussion

Our modelling results successfully replicated qualitative differences observed between high and
low literates in sensitivity to phonological competitors, reported in Huettig et al. (2011). As was dis-
played in the behaviour of high literates, fixation of phonological onset competitors by fine and mod-
erate grain size simulations was closely time locked to overlap between the competitor’s phonological
representation and the unfolding speech signal. Fine and moderate grain size simulations displayed an
initial bias towards fixating phonological competitors shortly after word onset, and a rapid decline in
fixation and return to baseline distractor levels once the phonological signal mismatched. Coarse grain
simulations on the other hand displayed less dynamic changes in fixation of phonological competitors
in response to overlap in the speech signal and fixated phonological competitors at levels close to
unrelated distractors. Unlike fine and moderate simulations, for coarse grain simulations a marginal
bias toward fixating phonological competitors over distractors was only observed when pooling fixa-
tion behaviour across both early and late windows. Such behaviour is similar to that displayed by low
literates (Huettig et al., 2011): When presented with scenes containing semantic and phonological
competitors low literates did not display a bias towards phonological competitors. When tested under
more sensitive conditions, in which only phonological competitors were present, low literates did
display sensitivity to phonological overlap and looked marginally more towards phonological compet-
itors compared to distractors in the first 1000 ms post word onset. As in the case of the coarse grain
size simulations, low literates did not display the rapid increase and decrease in looks towards
phonological competitors in response to signal overlap as was shown by high literates.
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Our simulations therefore demonstrate that differences in the granularity of phonological process-
ing can modulate the phonological effect displayed in studies of language mediated visual attention,
reflecting effects of literacy in the use made of phonological information in processing visual and
semantic representations of stimuli. This feature of model behaviour was largely driven by the fact
that more fine grained representations more precisely encode the regions of the word’s phonological
representation that differ or overlap. This information can then be exploited by the system to dynam-
ically adjust fixation behaviour.

In contrast to the phonological effects, grain size did not modulate the magnitude of the semantic
effect. In Huettig et al. (2011), differences in fixation of semantic competitors between high and low
literates were only observed in later time windows, once the spoken word has unfolded. Within our
simulations, fixation of semantic competitors is dependent on the level of activation of semantic
properties shared by the semantic competitor and target. This activation is maximal when the entire
phonological representation of the target has been input to the model. At this point, at the word level,
representational overlap does not differ across grain sizes and therefore as the simulations show we
do not observe a difference in semantic competitor fixations as a result of grain size manipulations.

For the cognitive efficiency manipulation in the model, it was predicted that phonological effects
would be less evident than semantic effects following reductions in cognitive efficiency, because
within the model, activation of semantic representations is entirely dependent on the efficiency of
information transfer within the network, unlike phonological representations which are provided as
a direct input. Pilot simulations demonstrated that increasing noise levels within the network (i.e.
N[l = 0, r2 = 0.05]) were unlikely to lead to modulation of phonological effects, as this led to a failure
in the model’s ability to learn training tasks, tasks that we know both literates and illiterates are able
to perform accurately. We also suggest that alternative methods of implementing cognitive efficiency
within neural networks would also not simulate the pattern of the low-literate participants. For
instance, reduction in the resources available for forming mappings between representations (Harm
& Seidenberg, 1999) would impede the model’s ability to learn tasks that both high and low literacy
groups are capable of performing, such as vision to semantics, or phonological to semantics mappings.
A further alternative implementation by reducing the overall levels of activation passing between lay-
ers within the model (Monaghan & Shillcock, 2004), or by increasing the threshold such that more
activation is required before activating a response, is also unlikely to simulate the focused distinctions
between high and low literate populations. Such an implementation would result in the same
information being processed, just requiring longer in order to be processed. Thus, the same peaks of
performance for the phonological competitors condition would be observed, but at a later point in
time, and similar delays for all other mapping tasks that the model is required to perform. Therefore,
phonological effects would still be observed yet would be delayed, along with delays to a broad range
of other tasks, which is not the behaviour displayed by low literates. Although we accept that it is
possible for other implementations of reductions in cognitive efficiency to have implications for pro-
cessing beyond those captured by our simulations, our results are sufficient to indicate that reducing
the quality of information transfer within networks was not adequate for explaining the qualitative
difference in sensitivity to phonological overlap displayed by low literates in Huettig et al. (2011).

Also replicating the behaviour of both low and high literates, all simulations displayed an increas-
ing bias toward fixating semantic competitors, across early and late windows, when compared to pre-
view periods. Further, similar to the quantitative difference observed between high and low literates,
the semantic bias was greater for fine grain simulations compared to coarse grain simulations with
low cognitive efficiency. Analysis of the influence of cognitive efficiency on coarse grain simulations
shows that, unlike fine and moderate simulations, who displayed no cognitive efficiency effects,
low cognitive efficiency lead to a reduction in semantic bias in late windows. This is similar to the
observed behaviour of low literates, as it is only in late windows that levels of semantic bias are sig-
nificantly lower than those displayed by high literates, with a lower asymptote in fixation of semantic
competitors for low literates. Semantic bias is dependent on the activation of semantic properties
shared by both target and competitor. The strength of this effect is dependent on the level to which
these units are activated by the visual input provided by the semantic competitor, and the phonolog-
ical input from the spoken target word. Reducing the efficiency of information transfer within the
network will reduce the strength of the signal travelling from visual and phonological layers, to
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activate associated semantic layer units, and hence the level of activation of overlapping semantic fea-
tures. Unlike fine and moderate simulations, low cognitive efficiency only led to reduced semantic bias
in coarse grain simulations. We suggest that this is most likely due to the componential structure of
phonological representations in moderate and fine grain simulations that ensured activation of
semantic features by phonological input was more robust to the introduction of noise. Importantly
the differences between coarse and fine grain simulations captured the quantitative rather than qual-
itative differences in semantic bias observed between high and low literates. Within the model the
effect of noise (cognitive efficiency) did not qualitatively alter the structure of information processed,
but instead reduced the level to which overlapping semantic representations were activated and
therefore semantic competitors fixated. Thus, it affected the role of representational overlap and
the resulting fixation behaviour quantitatively rather than qualitatively.

Of the simulations conducted, only a comparison between a fine grain, high cognitive efficiency
simulation and a coarse grain, low cognitive efficiency simulation replicated both the qualitative dif-
ference in sensitivity to phonological onset competitors and quantitative difference in sensitivity to
semantic competitors observed between high and low literates in Huettig et al. (2011). Therefore,
our simulations suggest differences in language mediated visual attention as a consequence of literacy
training may well be driven by both mechanisms: changes to phonological encoding as well as
increased cognitive efficiency. The model thereby presents the first explicit account of the conse-
quences of literacy that extend beyond phonological processing to other aspects of language process-
ing and highlights the necessity for multimodal computational models in order to gain insight into the
inherently complex issue of multimodal interaction within human cognitive processing.

Although there is substantial evidence for an effect of literacy on speech processing, there have
been very few computational modelling studies that focus on understanding the emergent conse-
quences of training on orthographic mappings for phonological or semantic systems involved in
speech processing. For instance, previous models of reading acquisition have made important contri-
butions demonstrating an influence of orthographic transparency on phonological processing (Harm &
Seidenberg, 1999; Yang, McCandliss, Shu, & Zevin, 2009) and semantic processing (Harm &
Seidenberg, 2004; Yang, Shu, McCandliss, & Zevin, 2013). However, such models have tended to be
trained on prototypical phonological representations in which substantial phonological structure is
embedded, and then the processing of the phonological structure itself is investigated as both the
input and output system. Such features of a model will have dramatic consequences for the type of
structure to which the system develops sensitivity, and therefore these previous modelling studies
are likely to have misrepresented the impact of orthographic training on the effects of the phonolog-
ical grain size on processing within the language system more generally.

There remains a gap in our understanding of the extent to which literacy alters online speech pro-
cessing (and broader aspects of cognitive processing) and the mechanisms through which it exerts an
influence. To date the most influential cognitive models of speech processing do not allow for an influ-
ence of literacy on this process and have focused on modelling the behaviour of alphabetic literates
(e.g. Distributed Cohort Model: Gaskell & Marslen-Wilson, 1997; TRACE: McClelland & Elman,
1986; Shortlist B: Norris & McQueen, 2008). We emphasise that a model of human speech processing
should be sufficient to describe representations within the language system and their interaction, ade-
quate for accounting for behaviour of literate and illiterate participants, as well as literates learning
from different orthographies. The model presented in this paper does not simulate the emergent
processes by which exposure to orthographic mappings leads to a restructuring of phonological rep-
resentations or improved cognitive efficiency. It is possible that training on orthographic mappings
also has emergent consequences for semantic processing that then give rise to increased sensitivity
to semantic overlap. The empirical evidence suggests at most only a subtle effect of literacy on seman-
tic processing (da Silva et al., 2004; Kosmidis et al., 2004), however previous computational modelling
studies of reading acquisition demonstrate that differences in the orthographic transparency of a
language can have implications for the distribution of labour between phonological, semantic and
orthographic processing networks (Harm & Seidenberg, 2004; Yang et al., 2013). Without knowing
the emergent consequences of the additional orthographic mapping performed by such networks, it
is not possible to rule out the possibility that such training could result in a modulation of semantic
competitor effects without requiring a reduction in cognitive efficiency to be implemented.
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It is important to emphasise that the ASR model was not specifically designed to simulate effects of
literacy, but rather was an effective model of multimodal effects on language processing that was co-
opted to extend to testing theories of literacy. However, a further means of validating the ASR model is
to examine its additional predictions. Our results suggest that the representations governing language
mediated eye gaze in low literates are more coarse grained and therefore gaze is less sensitive to the
temporal location of phonological overlap. One means of testing the coarseness of low literates’
phonological representations would be through examining their sensitivity to phonological rhyme
overlap. It has been previously observed that literate individuals display greater sensitivity to phono-
logical overlap in the onset of words than in the rhyme (Allopenna et al., 1998). This may be because,
in the case of rhyme competitors, by the time later overlapping phonemes unfold, earlier phonological
information can be used to eliminate the rhyme competitor as a possible target, hence onset compet-
itors are fixated more than rhyme competitors. If the model’s coarse grain representations equate to
word level representations in low literates then such representations would be unsuitable for deter-
mining whether the overlap occurs in the onset or rhyme of a given word. If onset and rhyme are
matched for length, then the word level representations will be equally similar and therefore will
generate fixations equally in a network processing at this word level. The model therefore predicts
that unlike high literates, low literates should display little difference in their bias towards fixating
phonological onset and phonological rhyme competitors.

A second prediction of the effects of orthographic transparency on language mediated visual atten-
tion also follows from the framework outlined in this paper. Our simulations indicated that training on
orthographic mapping is critical to developing more fine grained processing of phonological informa-
tion and subsequently displaying increased sensitivity to phonological competitors. The processing
level model on which our hypothesis was based, psycholinguistic grain size theory, posits that the
level of transparency between orthography and phonology determines the granularity of processing
that is developed. It then follows that in non-alphabetic languages, in which there is little componen-
tiality in the correspondence between the orthography and the speech sounds that make up a word,
literacy training will have little effect on the granularity of speech processing. Therefore, logographic
literates should behave more like illiterates on tasks that aim to measure this aspect of processing.
There is already substantial empirical evidence within the literature to support such a position with
Chinese literates who have not been exposed to an alphabetic writing system displaying reduced lev-
els of phonological awareness (Cheung et al., 2001; Ho & Bryant, 1997; Huang & Hanley, 1995, 1997;
McBride-Chang et al., 2004; Read et al., 1986; Shu et al., 2008). Further, recent evidence from neuro-
imaging studies support the critical role of orthographic transparency in modulating effects of literacy
on speech processing, with less involvement of associated orthographic processing regions observed
in logographic literates compared to alphabetic literates when processing speech (Cao et al., 2011)
and greater developmental changes in phonological processing regions as a consequence of literacy
training in English over Chinese students (Brennan et al., 2013).

These results suggest that there may be similarities between illiterates and logographic literates in
their phonological processing, and are compatible with the argument that literacy training on an
alphabetic language leads to rearrangement in phonological processing networks such that phonolog-
ical processing becomes more fine grained. Should the phonological effect observed in studies of lan-
guage mediated eye gaze be modulated by the granularity of speech processing in the manner our
simulations suggest, then we would predict that logographic literates (not exposed to training on
alphabetic systems e.g. Hanyu Pinyin) like illiterates should display reduced sensitivity to phonolog-
ical overlap compared to alphabetic literates, and, unlike alphabetic literates, their fixation of such
competitors should not be tightly time locked to overlap in the speech signal. However if, as our
simulations indicate, quantitative differences in the semantic bias observed between high and low
literates result from increased efficiency of information transfer within the networks trained during
literacy acquisition, we would not predict a reduction in semantic bias in logographic literate
populations, as training of relevant networks should be similar in both literate groups.

To conclude, influential models of human language processing have been developed largely only
with reference to the behaviour of alphabetic literates, and generally do not take into account the
influence of literacy, or of varying orthographic systems, on the processing system. Those that cur-
rently do are likely to underrepresent its consequences because of their inclusion of pre-specified
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componential phonological representations. Our modelling work using the ASR model demonstrated
that two competing theories of effects of literacy on language learning may well be compatible and
complementary contributors to language processing: both cognitive efficiency and phonological
grain-size differences were required to simulate the detailed data on phonological and semantic
processing in literate and illiterate participants. Given that approximately 16% of the adult human
population are illiterate (UNESCO Institute for Statistics, 2013) and a further 15%2 (approximately)
of the human population are literate in logographic languages, understanding the consequences of these
factors for human cognition remains an important challenge for future research, for which multimodal
computational models are likely to provide an informative, even necessary, tool.
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