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Abstract
The optimal policy that balances the cost of mitigation with the damages from
climate change can be assessed by examining the interactions between the socio-
economic system and the climate system. Traditionally, Cost-Benefit Analysis (CBA)
is used for this problem but requires an approximate economic evaluation of the to-
tality of climate damages which, in turn, calls for extensive impact assessments and
ethical debates. Until such damage functions are agreed upon, another operational
framework is essential for policy analysis. To fill the gap, climate (e.g. tempera-
ture) targets have been used in conjunction with Cost-Effectiveness Analysis (CEA).
However, this analysis breaks down if a violation of the target is inevitable. This
becomes especially salient when considering uncertainty and learning under temper-
ature targets, given the presently infinite tail of climate sensitivity. A remedy was
proposed that trades off the costs for mitigating climate change against the risk of
exceeding climate targets: Cost-Risk Analysis (CRA). The implicitly defined pref-
erence order contained in the formulation of a climate target is absorbed into CRA
by a calibration process, whereas it is an explicit constraint in CEA.

The UNFCCC’s climate negotiations and many other organizations refer to climate
targets in discussions, such as a 66% probability of keeping global warming below
2°C. Such a target includes an implicit assessment of the associated risk. This thesis
explores, for the first time, the consequences of using such a target to calibrate CRA.
We apply CRA to the climate problem including uncertainty and future learning and
derive optimal mitigation paths. We calculate the value of future learning about the
temperature response to be around 1/5 of total costs of climate protection (these
costs include a monetized “risk” measure). The framework of CRA is based on
expected utility maximization augmented by a risk-related term implemented by a
risk metric which is subtracted from utility. A risk metric based on the probability
of violating a temperature target leads to maximum emissions if it is learned that
the temperature response is strong. We propose that such behavior is not in line
with the preferences of the community supporting climate targets. Therefore, the
thesis explores a risk metric based on the concept of degree years.

We develop a method of attributing the value of information and the cost of cli-
mate protection to their respective sources. A source can either be a change in
consumption (i.e. economy related) or a risk-related utility change. Furthermore,
an attribution to different time steps and states of the world is also presented. We
find that about 2/3 of the value of information originates from the economy before
2050. The economic value of information offsets around 1/3 of the economic cost of
climate protection (i.e. the cost of mitigation).
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An advantage of calibrating CRA against a climate target is that the effect of nor-
mative parameters, such as the discount rate, on optimal policy is greatly reduced
making CRA very robust. CRA remains operational even if the target is violated,
and therefore, opening the possibility of investigating problems inaccessible to CEA.
In summary, this thesis shows that CRA combines the benefits of CBA and CEA
into a hybrid method that is well suited for policy advice in the next decades.
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Zusammenfassung
Um die Abwägung zwischen den Kosten der Reduzierung von Treibhausgasemis-
sionen und den Schäden des Klimawandels durchzuführen, müssen die Wechselwir-
kungen zwischen dem sozioökonomischen System und dem Klimasystem analysiert
werden. Üblicherweise wurde Kosten-Nutzen Analyse (CBA) angewendet, um die-
ses Problem zu bearbeiten. Diese Analyse benötigt allerdings umfassendes Wissen
bezüglich der Klimaschäden, was wiederum eine umfassende Klimafolgenforschung
und ethische Debatten zur monetären Bewertung voraussetzt. Solange dieses Wis-
sen nicht ausreichend vorhanden ist, wird eine alternative Methode benötigt, die
eine Entscheidungshilfe ermöglicht. Bisher haben Klimaziele (Temperaturziele), zu-
sammen mit der Kosten-Effektivitäts Analyse (CEA), diese Lücke zu schließen ver-
sucht. Diese Methode liefert allerdings keine Ergebnisse, sobald die Einhaltung des
Ziels nicht mehr möglich ist. Dies ist besonders relevant bei Berücksichtigung von
Unsicherheit und zukünftigem Lernen. Um ihre Funktionalität wieder herzustellen,
wurde die

”
Kosten-Risiko-Analyse“ (CRA) vorgeschlagen. Sie beschreibt eine Ab-

wägung zwischen Kosten und Risiko der Überschreitung. Die Formulierung eines
Klimaziels impliziert eine Präferenz, die von CRA durch eine Kalibrierung der Ab-
wägung absorbiert wird, wohingegen CEA das Klimaziel nur als Nebenbedingung
implementiert.

Klimaziele werden unter anderem in den Klimaverhandlungen der UNFCCC disku-
tiert, wie zum Beispiel das Ziel den Anstieg der globalen Mitteltemperatur auf unter
2°C, mit einer Erfolgswahrscheinlichkeit von 66%, zu begrenzen. Ein Klimaziel im-
pliziert eine Einschätzung des Risikos und diese Arbeit untersucht die Auswirkung
der Kalibrierung von CRA an solch einem Ziel. In folge dessen wird CRA zum
ersten Mal, unter Berücksichtigung von Unsicherheit und Lernen, auf das Klima-
problem angewendet. Es werden optimale Emissionspfade berechnet sowie der Wert
von Informationen über die Temperaturantwort. Der Wert liegt ungefähr bei 1/5 der
gesamten Kosten des Klimawandels (inkl. des monetarisierten Risikos). CRA basiert
auf der Erwartungsnutzenmaximierung allerdings erweitert durch einen Term, der
von der Risikometrik bestimmt und von dem Nutzen abgezogen wird. Wird die
Wahrscheinlichkeit der Überschreitung als Risikometrik gewählt, kann das zu maxi-
malen Emissionen führen, falls gelernt wird, dass eine substantielle Überschreitung
unvermeidbar ist. Ein solches Verhalten ist nicht vereinbar mit den Präferenzen ei-
ner Gesellschaft, die Klimaziele unterstützt. Diese Arbeit untersucht deshalb eine
Risikometrik, die auf Dauer und Ausmaß der Überschreitung basiert.

In dieser Arbeit wird eine Methode ausgearbeitet, die es ermöglicht, gefundene Wohl-
fahrtsunterschiede, etwa induziert durch sofortiges Lernen, verschiedenen Ursachen
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zuzuordnen. So ist es möglich, den Wert von Information einer Änderung der Kos-
ten oder des Risikos zuzuschreiben. Des Weiteren ist es auch möglich den Wert über
die Zeit oder den möglichen Zuständen der Welt aufzuteilen. Es wird gezeigt, dass
2/3 des Wertes von Information aus einer Reduzierung der erwarteten Kosten vor
2050 besteht. Dieser ökonomische Wert von Information macht 1/3 der gesamten
Mitigationskosten aus.

Eine Stärke von CRA ist ferner die Robustheit der optimalen Entscheidungen gegen-
über Veränderungen in den normativen Parametern, wie zum Beispiel der Diskontra-
te. Die Ursache dieser Robustheit liegt in der Kalibrierung anhand eines bestimmten
Klimaziels. CRA bleibt außerdem auch bei Überschreitung des Klimaziels funktional
und ist daher geeignet, einen weitaus größeren Problemkreis als CEA zu evaluieren.
Zusammenfassend zeigt diese Arbeit, dass CRA entscheidende Vorteile von CBA
und CEA vereint und deutlich besser als ihre Vorläufermodelle geeignet ist, in den
nächsten Jahrzehnten Entscheidungshilfe zu leisten.
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1. Introduction

This thesis is about decision frameworks that are used to distill policy recommen-
dations, mostly on the basis of Integrated Assessment Models (IAMs). IAMs are
formal representations of the interconnected socio-economic and climate system.
With differing levels of complexity in the representation of the economy, the en-
ergy system, the climate system, spatial resolution and decision making processes,
IAMs are versatile tools to investigate the interactions between human activities,
the environment and implications of anthropogenic climate change.

A subset of IAMs (e.g. MERGE (Manne, 2005), DICE (Nordhaus, 2008), PAGE09
(Hope, 2011), WITCH (Bosetti et al., 2006), MESSAGE (Messner & Strubegger,
1995), REMIND (Luderer et al., 2013), FUND (Tol, 1997)) apply decision theory to
determine (welfare) optimal decisions for investments or taxes. Hence, they can be
used to translate the call for stabilization of greenhouse gas concentrations to avoid
dangerous anthropogenic interference with the climate system by the United Na-
tions Framework Convention on Climate Change (UNFCCC) into concrete emission
reduction targets or investment strategies.

The appeal of this type of analysis stems from the attractiveness of the concept of a
(counter-factual) rational decision maker and from the analogy between maximizing
overall welfare and internalizing the climate externality.

1.1. Decision Frameworks

A straight forward implementation of overall welfare optimization is the Cost-Benefit
Analysis (CBA) (e.g. Nordhaus (2008)) that weighs the cost incurred by strong
mitigation action against the benefits from avoiding climate change induced damage.

However, a series of challenges complicate the application of CBA to the climate
problem: the required comparability of different types of damage, huge uncertainties
underlying the choice of an appropriate damage function (e.g. see Azar & Lindgren
(2003), Pindyck (2013)), and limits to the applicability of CBA in the case of fat-
tailed uncertainties about the climate system response to greenhouse gas emissions
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Chapter 1 Introduction

(Weitzman, 2009). More research into impact models is required to, at least, address
the issue of finding an approximate aggregate damage function (even on a sectoral
level for a single region). The scrutiny with which any proposed damage functions
are regarded is exemplified in Ackerman & Munitz (2012) who take apart the damage
function used in FUND.

The time to reach a global agreement on binding emission reduction targets (or
cumulative emission) is dwindling, if the possibility of limiting the rise of global
mean temperature to values around 2°C compared to the pre-industrial value is to
be preserved (Kriegler et al. (2014) show that an agreement after 2030 results in a
violation of the 2°C target in the majority of models). Hence, decision-aiding cannot
wait for the advent of better impact models.

The difficulties with CBA and the time pressure drove scientists to simplify the nor-
mative and ethical discussions by talking about climate targets (e.g. temperature
targets). A significant fraction of the community sees climate targets as a viable al-
ternative in the light of deep (“Knightian”) uncertainty and preferences in-line with
the precautionary principle (Iverson & Perrings, 2012; Athanassoglou & Xepapadeas,
2012). Obviously, the choice of a specific climate target is influenced in part by in-
tuitive expectations of potential climate-induced damage. Yet the construction of a
climate target avoids having to formalize the totality of all global warming impacts
and their respective uncertainties – a task that poses so far unresolved conceptual
and formal problems when having to be expressed with Knightian uncertainty. In-
stead, this so far unresolved formal task is often replaced by a climate target (or
“guard rail”) that we interpret as an informal convolution of sparse impact infor-
mation and decision preferences under Knightian uncertainty, as long as no more
robust method is available.

Thus, Cost-Effectiveness Analysis (CEA) of (exogenous) climate targets emerged as
a method that avoids the difficulties of defining a climate change damage function
and separates the evaluation problem from the policy analysis (Patt, 1999; Luderer
et al., 2012). If policy makers agree on a climate guardrail, the most cost-effective
policy can be determined. If the costs (monetary or otherwise) of a policy interven-
tion are found “sufficiently small”, societal action can be taken (Patt, 1999).

Another way of dealing with the shortcomings of IAMs is to switch focus to scenario
frameworks and notions of robust decision making (Lempert et al., 2006; Weaver
et al., 2013), thereby abandoning the appealing notion of optimality. The decisions
are then based around the concept of being safe in all possible outcomes our adapting
to each new observation in a specific way defined by scenarios. This approach is not
further discussed in this thesis.

2



1.2 Why a New Decision Framework?

1.2. Why a New Decision Framework?

Apart from the need for an agreement on a climate target, CEA leads to other
difficulties which are most evident if uncertainty and learning is included in the
decision model. A comprehensive introduction to IAMs and uncertainty in general
is given in Rotmans & van Asselt (2001) and a review of uncertainty in economic
models of climate change can be found in Golub et al. (2013).

While CBA elegantly deals with uncertainty (and anticipated learning) as it is based
on expected utility maximization (Gollier, 2004), CEA has to be modified in order to
accommodate uncertainty. The modification is necessary to accomodate for the fact
that uncertainty leads to high temperature - low probability combinations which,
if forced to be under 2°C, can dominate the analysis or even render it infeasible
(Held et al., 2009). This issue is particularly dramatic if the uncertainty has a
fat upper tail. By generalizing the target into a probabilistic guardrail, i.e. fix-
ing a maximum probability of overshooting the temperature target (Kleinen, 2005;
Meinshausen et al., 2006; den Elzen et al., 2007; den Elzen & van Vuuren, 2007;
Meinshausen et al., 2009) this problem can be solved.1 The resulting welfare op-
timization problem can be solved by chance constrained programming (CCP) as
discussed in Held et al. (2009). CCP is a general method to incorporate an unlikely
catastrophic outcome in an analysis as a probabilistic target because it can not be
avoided with certainty.

The uncertainty discussed in this thesis is assumed to lie in the conversion of a
change in CO2 concentrations in the atmosphere into a mean temperature response.
In general two factors play a role: the climate sensitivity and the transient cli-
mate response. The climate sensitivity represents the equilibrium temperature of
a doubling of pre-industrial concentrations whereas the transient climate response
characterizes the short term response to CO2 increase. To keep the analysis simple
we make use of the correlation between the two, found by Frame (2005), and deduce
the transient climate response by perfect correlation shown in Lorenz et al. (2012b).
This enables us to regard only the climate sensitivity as an uncertain parameter
adjusting the transient climate response accordingly.

The decision problem is complicated further by considering (and anticipating) fu-
ture changes in our knowledge about the climate sensitivity due to new observations
(Kelly & Kolstad, 1999), the assimilation of paleo information (Schneider von Deim-
ling et al., 2006; Lorenz et al., 2009) and improvements in theory and modeling of
sub-scale processes.

The possibility of receiving new information has been shown to change the resulting
optimal policy substantially (e.g. O’Neill & Melnikov (2008); Webster et al. (2008);
Webster (2000)). Allen & Frame (2007) even argue that a substantial fraction of
climate response uncertainty could be compensated by learning after 2050 in order

1Probabilistic guardrails have also been explored in the “tolerable windows approach” (Bruckner
& Zickfeld, 2008) that can be interpreted as “CEA without optimization”.
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Chapter 1 Introduction

to still be able to comply with ambitious climate targets. We recognize that it can
not always be clearly stated in which direction the incorporation of learning affects
the optimal policy (Webster, 2000), although evidence is accumulating that it does
not support postponing mitigation (Ha-Duong et al., 1997; Ha-Duong, 1998; O’Neill
et al., 2006; Lange & Treich, 2008). We do not want to elaborate on this discussion,
but rather focus on the novel method of analysis.

It is important to be able to model future changes in uncertainty to find the effect
on decision but also to calculate the economic value of new information about the
climate response (e.g. Nordhaus & Popp (1997)). It is of vital importance for
technologies and projects that have information as an output to be able to estimate
its value and therefore justify investments (e.g. projects such as GEO-BENE (EU-
FP6) (Fritz et al., 2008) and EuroGEOSS (EU-FP7) (Pearlman et al., 2011)).

It has been shown, however, that formulating CEA as a CCP, by defining a proba-
bilistic target, still can not deal with future learning (Schmidt et al., 2011). As it
does not comply with two of the axioms of rational decision making (von Neumann-
Morgenstern Axioms), or equivalently by not being structurally synonymous to an
expected utility maximization (Gollier, 2004), this CCP formulation leads to a break
down of the analysis. The following problems can occur:

1. After a perfect learning event, the probability of violation is either zero or
unity for each state of the world. The only way to meet a probability target
is to reduce the probability of violation to zero. This implies that all states of
the world have to remain below the guard rail if learning is anticipated which
forces the decision maker to do as much mitigation as needed to keep the state
of the world with the highest climate sensitivity under the guard rail.

2. Due to the mechanism described in 1., learning leads to stronger mitigation
without any added benefit (as no climate effects are included), therefore, CEA
can lead to a negative value of information and reject learning, creating an
incentive to prevent research. See Schmidt et al. (2011) for an analytical
derivation of the negative value of information. That a formulation with CCP
can lead to negative value of information was already known before and is
discussed in Blau (1974), Jagannathan (1985) and Lavalle (1986).

3. Learning that climate sensitivity is very high and that the target cannot be
met leaves the decision maker without any solution, i.e. the simulation becomes
infeasible. Part of the literature “bypasses” this conceptual difficulty imposed
on CEA by artificially truncating the upper tail of the distribution of climate
sensitivity. While this generates a lot of academically relevant insight, a key
property of the climate problem has been chopped off. It implies that the
crucial feature Weitzman (2009) pointed to as a weak point of CBA, has been
ignored for CEA as well to save its functionality – hence, not providing a
conceptually satisfying solution.

Of course the above problems are based on the same underlying reason: CEA with
CCP violates the axioms of rational decision making. We argue, that a decision tool
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that features a negative value of information is inadequate for policy advice and
favor an expected utility maximization approach. However, the necessary tools are
not yet available to do a full fledged CBA of the climate problem and until such
time an interim method is needed. This method should be based on the expected
utility maximization framework but incorporate the concept of a climate target. A
new decision tool is needed!

1.3. Cost-Risk Analysis in Short

Circumventing these conceptual and axiomatic issues, Schmidt et al. (2011) pro-
posed Cost-Risk Analysis (CRA) in which a trade-off is made between the risk of
overshooting climate targets and the economic utility from fossil-fuel based con-
sumption, thereby providing a normative decision criterion that does not explicitly
require a climate damage function, but builds on a consensus-based climate target
transformed into a penalty function operating additively on the utility level, thus
preserving the equivalence to the expected utility framework.

This method is one step away from purely quantitative CBAs towards a more quali-
tative assessment. CRA can be interpreted as a consequence of Morgan et al. (1992),
who suggest to model a complex system the simpler, the sparser the level of the mod-
eler’s understanding of the system under consideration. Accordingly, CRA models
the preference order of the community supporting a temperature target in view of
poorly understood damage functions in the simplest way.

In contrast to CBA, CRA does not rely on a formal aggregation of possible impacts of
climate change into a damage function but rather divides the problem into two parts.
The first is to find a climate target which is in itself an assessment of the impacts
on a meta level and is easy to understand. The second part is to find a risk metric
and implementation which reflects the preferences intrinsic to the formulation of the
target. This difference is visualized in a flow chart to clarify the process involved in
the evaluation of the effects of climate change (Figure 1.1).

The idea to incorporate a target as a trade-off instead of a hard constraint originated
in other fields which have similar problems with negative value of information. Bor-
dley & Pollock (2009) suggest to incorporate given cost targets in engineering design
problems into the model formulation as a trade-off. Also Jagannathan (1985) uses
the probability of violating a target in a trade-off rather than a chance constraint.
A related approach is positive mathematical programming (Howitt, 1995), in which
the utility function is extended by a calibrated term to force the model to reflect a
pre-defined condition. This condition could be, for example, a probabilistic target.
CRA is put into context with respect to other decision frameworks more thoroughly
in Section 2.3.4, after a detailed explanation.

Addressing the part within the climate economics community that currently prefers
CEA to CBA, this study builds upon the literature described above and presents
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Chapter 1 Introduction
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Figure 1.1. – Comparison of the process that leads to the representation of the
effects of climate change in CBA and CRA. The impact modelling influences the
negotiation and valuation which leads to climate targets. The negotiation process
encompasses all conveyed uncertainties.

the first application of CRA to the mitigation of climate change as a generalization
of CEA to include uncertainty and anticipated learning. To implement CRA it is
necessary to define a risk metric and tune it. The risk metric defines the preference
order of temperature paths, i.e. which temperature paths are preferred over others.
The risk metric is then tuned by a calibration process to internalize a given target.
This process is thoroughly described in this thesis.

In summary, the main innovations of the approach described in this thesis consist
of (i) the choice of risk metric, (ii) the reasoning for it and, (iii) the calibration
against existing discussions and targets. To the authors knowledge, there is no
study that uses an expected utility maximization framework and internalizes the
preferences implied by supporting a climate target. Such an approach enables the
climate target community to analyze aspects such as the value of information.

1.4. Outline of the Thesis

Most of the analysis is based on the IAM MIND-L (Model of Investment and Tech-
nological Development including Learning) (Edenhofer et al., 2005; Held et al., 2009;
Lorenz et al., 2012b) described in more detail in Chapter 2. The model is made up
of a simple one-box climate model, a representation of the renewable energy sector,
the fossil fuel extraction sector together with the fossil energy production. Further-
more, the model includes endogenous learning for energy efficiency, labor efficiency,
fossil energy production and renewable energy production. The underlying economic
model is a Ramsey type growth model.

The overall question this thesis set out to answer is: How can the value of information
be calculated if climate targets are included in the analysis? The following chapters
go into different aspects of the answer revolving around CRA.

Chapter 2 develops the framework of a CRA and motivates our choice of risk metric:
expected discounted degree years. This resonates well with Schneider & Mastrandrea
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(2005) who also proposed degree years as a sensible way to measure climate risk.
Degree years are calculated by finding the area between a temperature path and
the guard rail. We show why the original formulation of the risk metric as the
probability of violating the target is unacceptable as a proper representation of
environmentalists’ preference order. A calibration of the risk metric is proposed by
referring to the preference implicit in the Cancun accord (UNFCCC, 2010) of staying
below 2°C with a (likely) 66% probability. The last part of the chapter applies CRA
to an IAM for the first time and calculates the value of information. We also discuss
similarities to other approaches and compare our results with a traditional CEA.

Chapter 3 investigates the origin of the value of information by making use of the
additive structure of CRA. We find it is possible to divide any welfare change into
parts not only according to their origin in time and state of the world but also with
respect to their type: economic and risk-related. To the authors knowledge, such a
division has not been presented before. The effect of changing the target is analyzed
and it is clarified that adjusting the guard rail has a different effect than adjusting
the target probability if learning is considered. The risk metric is also varied and
its effect on the calibration and the value of information is determined. Lastly, the
underlying assumption of an anticipated learning event is analyzed by finding the
welfare gain of anticipation.

Normative parameters in MIND-L define the risk aversion of the decision maker as
well as the time preference. The climate target itself is also a normative decision of
sorts and it is shown that it reduces the effect of risk aversion and time preference
on optimal decisions. In Chapter 4 we combine risk aversion and time preference
into a social discount rate using the Ramsey equation to facilitate an analysis of the
effect of discounting on the value of information. We show that discounting only
affects optimal decisions marginally but produces very different valuations of the
same situation. The chapter concludes with an analysis of the loss of welfare that
is to be expected if optimal decisions are made based on a discount rate that does
not reflect the preferences of society.

Chapter 5 develops the basis of a simplified model of CRA and IAM with the goal
of facilitating the implementation in areas where a less computationally intensive
model is needed or a simpler model is necessary to improve understanding. A full-
fledged IAM is difficult to use for highlighting the driving mechanisms. We derive a
static model of CRA and calculate the optimal emissions depending on the climate
sensitivity that is learned. In a second part, the optimum of MIND-L for a case
without learning is analyzed with respect to the control parameters. A regression
is done to fit a second order function to the welfare equation thereby finding the
important control parameters. This analysis also allows us to find the welfare for
small deviations from the optimum as well as the amount of variation in decision
variables that produces an acceptable loss of welfare.

The thesis closes with a summary of the findings and an outlook on the future of
CRA and potential future research topics.

7





2. Cost-Risk Framework applied to
MIND-L

2.1. Introduction

The Cost-Risk Analysis (CRA) is a trade-off analysis, in principle like a standard
Cost-Benefit Analysis (CBA), with the key difference in determination, application
and interpretation of the “benefits”. The benefits in CRA come from a relative
reduction of potential for danger due to a reduction in temperatures. The starting
point is a climate target. The analysis only makes sense for a community that
supports the notion of climate targets. A conclusive motivation for climate targets
can be found elsewhere (WBGU, 1997; Ott et al., 2004; Oppenheimer & Petsonk,
2005), we only point out that it is a way to express a preference about the future as
long as full-blown impact models are unavailable. A discussion of modifications and
re-interpretations to the 2°C target can be found in Geden (2013).

Once a climate target is established, the most cost efficient solution can be found
that reaches this target with Cost-Effectiveness Analysis (CEA). One method to
implement CEA including uncertainty is chance constrained programming (CCP)
which we imply when referring to CEA. Chapter 1 stressed that this produces prob-
lems when considering learning. Therefore, a utility penalty function is implemented
that leads the optimal solution to reach the equivalent target. This utility penalty
function will be referred to as the risk metric which is calculated from the temper-
ature profile by a penalty function. In essence the risk metric defines a preference
order on temperature paths.

It is theoretically possible to base the risk metric on a different variable like emissions
or atmospheric CO2 concentrations but as targets are often formulated in terms of
temperature we also formulate the risk metric in terms of temperature. We call
this process of finding the equivalent penalty function “calibration”. This process
is similar to what is used in positive mathematical programming (Howitt, 1995)
and also has the same drawbacks of non-uniqueness. Mathematically speaking, a
potential is added to the optimization that forces the optimum to the desired result.
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After the calibration of the risk metric to a specific climate target, parameters can
be varied and effects calculated, always on the basis of the preferences of a climate
target community. Resolving the uncertainty in the model allows the calculation of
the value of research into the uncertain parameter. In our analysis the uncertain
parameter is a combination of climate sensitivity and the transient climate response,
as we assume perfect correlation (Lorenz et al., 2012b).

This chapter recaps the propositions for CRA by Schmidt et al. (2011) and demon-
strate drawbacks for the first time. As a solution, we introduce expected discounted
degree years as a viable risk metric and talk about the implications of this choice.
We calibrate against a climate target taken from discussions of the UNFCCC and
then apply the framework to an integrated assessment model (IAM) for the first
time. We compare the results to CEA and discuss their implications. The calcula-
tion of the value of information about the climate response exemplifies the use of
CRA and we close with a discussion of the results.

2.2. Static Model as Guide

At the heart of CRA lies a trade-off between the cost of mitigation and the perceived
risk of high temperatures. Note that the term “risk” is used in layman terms and not
in the strict sense (not as product of loss and probability). This section introduces
the formalism needed for the discussion. First a static model is introduced to guide
intuition followed by the addition of uncertainty. The next section expands the
problem into the time dimension.

We start with the formulation of the minimization problem for a CRA with mitiga-
tion costs C(E) and a penalty function R(E) (representing the risk) both depending
on cumulative emissions E that are chosen by the decision maker. In order to moti-
vate why further development of CRA compared to the suggested scheme of Schmidt
et al. (2011) is regarded as necessary and for the sake of conceptual clarity in this
sub-section we restrict the discussion to a static picture, using cumulative emis-
sions as the crucial control variable (Lorenz et al., 2012a). Using β as the trade-off
parameter between costs and risk the deterministic minimization problem reads:

min
E
{C(E) + βR(E)} . (2.1)

This is the simplest way to formulate CRA and it also reveals that CRA is just a
CBA with a different interpretation of damages. The difference to CBA is further
discussed in Section 2.3.4. There is no uncertainty, no time and no guard rail or
target (yet). If society agrees on a certain emissions budget Eg that complies with
its normative preferences by fulfilling the climate target, we can tune β to make Eg
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the optimal strategy by setting β to:

βcal = −C
′(Eg)

R′(Eg)
. (2.2)

We call this process “calibration” because the trade-off is made in such a way that
a specific target is met (in the case above, an emission target). In practice, policy
makers usually talk about temperature targets, therefore, we introduce a simple re-
lationship between temperature and emissions using the sensitivity γ. This assumes
an approximately linear relation between maximum temperature and cumulative
emissions which was shown in Allen et al. (2009). We further assume that γ is
uncertain and is distributed by f(γ). The penalty function R(E) from above is
now replaced with R(γE) implying that the penalty is applied to the temperature
T = γE. The optimization functional then reads:

min
E
{C(E) + βE [R(γE)]} . (2.3)

Here E[..] indicates the expected value operator. The goal is to calibrate this model
to a policy target of staying below a guard rail Tg = γgEg with a probability of pg.
Due to the simple structure, we can invert the cumulative distribution function F
of γ to find the sensitivity γg for which the probability to lie below is pg:

γg = F−1(pg), (2.4)

Eg =
Tg

F−1(pg)
. (2.5)

Again we can calculate the calibrated trade-off parameter, including the expected
utility operator:

βcal = − C ′(Eg)
d
dE

E [R(γEg)]
. (2.6)

After a successful calibration, the risk metric R reflects the preferences implied by
supporting the climate target. In a next step, parameters can be changed and the
reactions of the decision makers can be investigated. The change we consider here,
is a change in the available information, and to simplify the discussion we consider
perfect learning in the following. As there is no time dimension yet, information is
available immediately. Before the optimization the policy maker receives a message
providing the correct value of γ. The probability of receiving a certain message is
taken from the prior distribution f(γ) which ensures that the overall expected value
of the stochastic parameter is unchanged by the learning event. The calibration of
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the trade-off is not changed and remains at βcal because we regard the case without
learning as the baseline calibration case. In the case of perfect information the
problem reads:

E
[
min
E(γ)
{C(E(γ)) + βcalR(γE(γ))}

]
. (2.7)

Now an emission budget can be chosen for each value of γ because its value is
known perfectly. The goal variable of the optimization is calculated by taking the
expected value across the distribution f(γ). The outcome of such a simulation can be
compared to the outcome of the case without learning to find the effect of resolving
uncertainty.

2.2.1. Probability of Violation as Risk Metric

To gain more insight into CRA we now look at explicit risk metrics. A risk metric
converts temperature into a penalty to the optimization which we call “risk”. First,
we define a term to simplify the discussion:

Safety is given by the probability, in percent, that the temperature increase will
remain below a defined guard rail. It is the complement to the probability of
violation.

For the static case a utility penalty function it is analogue to the formulation of
climate damages and a damage function. If we use a risk metric that equals the
probability of passing some defined guard rail (i.e. the complement to the safety:
Risk = 100% - Safety) a problem can arise after learning that we want to elaborate
on in this section. Such a risk metric was one of the proposed methods by Schmidt
et al. (2011). Such a risk metric for a scenario without learning can be represented
by the expected value of a Heaviside function Θ:

E [R(γE)] = (1− Safety) (2.8)

= E [Θ (γE − Tg)] (2.9)

=

ˆ ∞
0

Θ (γE − Tg) f (γ) dγ (2.10)

= 1− F
(
Tg
E

)
. (2.11)

After the perfect learning event however, we have Equation 2.7 as the functional.
The minimization is inside the expected value operator, meaning that we are look-
ing at an ensemble of minimizations that have no interaction. We can therefore
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investigate the optimizations separate from each other:

min
E(γ)
{C(E(γ)) + βcalR(γE(γ))} . (2.12)

The safety is either 0% or 100% depending on if the guard rail is passed or not. If
the risk metric is based on safety, the risk is either 1 or 0 respectively. After perfect
learning f(γ) becomes a Dirac delta function at the value that was learned and so
the risk function is simplified to:

R (γE) = Θ (γE − Tg) . (2.13)

If an emissions budget Ecrit that would lead to the reduction in risk from 1 to 0
is extremely costly (as would happen if we learn climate sensitivity is high) then
it would be optimal to do no mitigation. This situation is shown in Figure 2.1.
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Figure 2.1. – Cost and risk curves for a case where the risk measure is defined by
the probability of violation. The abscissa is defined as mitigation effort, i.e. the dif-
ference between maximum and chosen emission budget. (a) features a risk function
calculated as the expected risk over a distribution of sensitivities, as in equation
2.8. (b) demonstrates the situation with a risk function based on the same equation
but with a certain value for γ representing a specific state of the world after perfect
learning.

It illustrates two different situations with the same cost function but different risk
functions due to different uncertainties while using the same risk metric. If the vari-
ance of f(γ) is sufficiently large, the optimum is clearly visible but if the probability
of violation drops suddenly (as would happen if f(γ) were a Dirac delta function,
i.e. after learning a specific value for γ) at high mitigation effort, a local optimum
is created that might or might not lie below the optima for no mitigation. This
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situation would mean that if policy makers learn that climate sensitivity is high,
they would abandon mitigation.

2.2.2. Linear Risk Metric

We develop an axiom to exclude the behavior described in the case above, as we
do not believe it to be a behavior that is in line with preferences of the community
supporting climate targets.

Axiom of Sacrifice Inhibition Imagine society, in a static setting, regards a budget
of emissions E∗ for the world as welfare optimal. If, for some reason, new
information arrives that this budget cannot be met because an amount of dE
emissions has, or will be, emitted too much, then the optimal budget goal
should be E∗∗ = E∗ + dE and not any larger value.

As we can see from Figure 2.1, the problem of climate sacrifice originates from mul-
tiple optima in the optimization. A little change in emissions (or cost of mitigation)
causes the solution to jump to a different regime. If multiple optima are to be
avoided, the sum of cost and risk has to be convex to have a single minimum. As-
suming that the cost function can be any convex function, implies that the function
R(γE) has to be at least linear to guarantee that the sum is again a convex function
in E.

We chose to use a linear function because it is the simplest solution (in accordance
with Occam’s razor) and the limiting case of a convex function. A risk metric based
on a linear dependency on mitigation is considered from this point onwards.

To preserve the key ingredient of CEA we assume that there is no risk for tempera-
tures below the guard rail. Therefore, the resulting risk metric is a function which
penalizes transgressions of temperature beyond the guard rail in a linear way:

R(T ) = Θ(T − Tg) ∗ (T − Tg). (2.14)

We express the metric only in terms of temperature as that is the relevant variable
in the upcoming analysis. Using this metric, the problem of sacrificing cannot occur
because it will always be optimal to mitigate as much as possible until the marginal
benefit is equal to the marginal reduction in “risk”. Due to the Heaviside function
Θ, the risk function includes a kink at the guard rail making it convex which means
we can still guarantee a convex optimization. In the following we explain how this
concept can be applied to the dynamic setting.
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2.3. Dynamic Framework

To apply this framework to a dynamic optimization the following choices have to be
made:

1. is the penalty calculated for each time slice and then aggregated or is it calcu-
lated for the maximum temperature so that a decrease in temperature is never
rewarded?

2. if the penalty is calculated per time slice, is it discounted?

This is a normative decision and there is little guidance to help. Out of many
possible interpretations, we regard the climate problem in its basic structure as
reversible and decide that a decrease in temperature should be rewarded as well
as an earlier decrease. Even if irreversible tipping points exist, they will have a
certain inertia which may allow for a degree of reversibility. Therefore, we calculate
the penalty in each time slice and then aggregate. We transform the optimization
problem into a maximization of welfare and include a utility function U that depends
on decisions X and time t. To ensure time consistent solutions we choose to apply
the same exponential discounting with a discount rate δ to both the economic and
the risk part of the trade-off.

To test this framework with a dynamic IAM we use MIND-L which is a climate-
economy-energy model. This model is used throughout the thesis and is introduced
more thoroughly in the next section. MIND-L includes an uncertainty in the climate
response, i.e. for a deterministic emission path there are many possible temperature
paths. This uncertainty is represented in equation 2.15 by summing over the states
of the world (SOW) s and multiplying with the probability ps of each SOW.

Formulated as a maximization problem we arrive at the discounted utility welfare
equation for a CRA in a probabilistic setting without learning as follows:

W = max
X

tend∑
t=0

S∑
s=1

ps

U(X, t)︸ ︷︷ ︸
economic

− βR(T (X, t, s))︸ ︷︷ ︸
risk-related

 e−δt (2.15)

To include learning we have to divide up the decisions into before and after learning.
Let X0 consist of all decision variables for all time steps before learning and X1,s is
made up of all decisions variables for all time steps after learning that s is the true
SOW. The optimal welfare is then calculated by the following equation:

W = max
X0,X1

S∑
s=1

ps

{
tlearn∑
t=0

{U(X0, t)− βR(T (X0, t, s))} e−δt

+

tend∑
t=tlearn+1

{U(X0, X1,s, t)− βR(T (X0, X1,s, t, s))} e−δt
}
. (2.16)
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2.3.1. “Giving up”

Before implementing the linear risk function we show, by example, that the effect
of giving up on mitigation, i.e. sacrificing, can also occur in the dynamic model.
We use a value for β that would reach a safety of 66%1 for a 2°C target without
considering future learning (the choice of target is discussed in Section 2.3.2). The
risk metric is just the complementary value to safety and is calculated per time slice
analogue to equation 2.10:

R(t) =
S∑
s=1

psΘ(T (t, s)− Tg) (2.17)

Figure 2.2a shows the situation without learning. The optimal strategy is to mitigate
just enough to keep 66% of the possible futures below the guard rail. In 2.2b
a learning scenario is shown with exactly the same parameters but this time the
decision maker has perfect information about the climate response and can adjust
the decisions accordingly from 2015 onwards. The colored paths represent the SOWs
with low (blue, lower curves) to high (red, upper curves) climate sensitivity.
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Figure 2.2. – Demonstration of “giving up” in MIND-L. The model is based on
uncertainty in the climate response producing different temperature paths. The
calibration was done to ensure that 66% of the paths stay below 2°C temperature
anomaly (by interpolation). Panel (b) shows clearly that mitigation is abandoned
if a strong temperature response (red, upper lines) is learned to be true.

The decision maker decides to drive up the temperature drastically if the climate
sensitivity is found to be in the upper 10% quantile. As shown in the previous

1As the sampling used in the numerical simulation results in 5% steps of probability, an interpo-
lation is necessary in the calibration to be able to tune the trade-off to 66%.
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section, this is because the cost of reducing it below the guard rail is higher than
the constant risk that a trespassing of the guard rail incurs. In other words, once
above the guard rail, increasing the temperature further does not come with added
risk.

In the static model we found that using a linear risk metric eliminates the sacrific-
ing behavior and therefore we translate the risk metric into the dynamic form by
applying a penalty function in each time slice and each SOW.

2.3.2. Degree Years as a Risk Metric

Applying a linear risk metric together with a threshold temperature in a dynamic
setting has an alternative interpretation: degree years. Mastrandrea & Schneider
(2004) use the concept of degree years (DY) in their article to assess the climate
by calculating time integral of the temperature path above a specified threshold.
Using this terminology we can redefine our risk measure as measuring “expected
discounted degree years”. To clarify this choice in definition, we compose the total
aggregated welfare from risk:

WR(X) = −β
tend∑
t=0

S∑
s=1

psΘ (T (X, t, s)− Tg) (T (X, t, s)− Tg) e−δt. (2.18)

The equation calculates the temperature above the guard rail Tg for each SOW and
time instant (the penalty function). Then the expected value is calculated, which
is discounted and summed over time. Therefore, the risk is composed of the trade-
off parameter β and the calculated discounted expected degree years. Because of
discounting, a transgression of the guard rail has less negative effect if it happens
further in the future.

Mastrandrea & Schneider (2004) further give a reasoning for such a form of risk
metric by identifying five reasons for concern with equal weight. As temperature
increases, gradually more and more of the reasons for concern become important.
This leads to a linear risk increase and supports using degree years as a risk metric.
They also suggest additionally using the maximum exceedance amplitude as a further
risk metric but we found them to correlate greatly in our simulation due to inertia
in the energy and climate system and therefore only consider degree years. It should
be noted that Schmidt et al. (2011) also mentioned the possibility of using a function
of degree years and maximum exceedance amplitude for the risk but did not further
elaborate.

2.3.3. Calibration

Now that the risk metric is defined, the choice of the trade-off parameter β is still
open. We discussed in previous sections that it can be calibrated against a specific
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desired solution. The target of constraining global mean temperature increase to
2°C above pre-industrial conditions has been discussed prominently in the climate
policy debate. The 17th Conference of the Parties (COP) to the UNFCCC refer
in their decisions to “aggregate emissions pathways consistent with having a likely
chance of holding the increase in global average temperature below 2°C or 1.5°C
above pre-industrial levels” (UNFCCC, 2011). We use the interpretation of “likely”
as implying a probability of observing the target of at least 66%, as recommended
in Mastrandrea et al. (2010). Assessment of these targets with respect to emission
budgets can be found in Rogelj et al. (2011, 2012). Building on this assumption
and the statement from COP17, we formulate the climate target in our analysis as
follows:

Calibration target: a chance of at least 66% (safety) to restrict temperature anoma-
lies to a maximum of 2°C without considering future reduction of uncertainty.

By tuning β in Equation 2.15 until the solution satisfies the target above, we derive
the perceived risk that policy makers and scientists, that support a 2°C target, imply.
The information structure chosen to calibrate the trade-off parameter should be the
one that is subjectively present in the minds of the political actors that are discussing
this target. Furthermore, such a target becomes ill-posed after perfect learning so
the calibration necessarily has to be done in the scenario without learning.

The method used to calculate the safety in the calibration process uses the maximum
temperature of each temperature path to interpolate the probability to stay below
the guard rail. See Appendix A.1 for the equation and a discussion.

After a short review of similarities to other approaches, the rest of the chapter deals
with the application of this framework to MIND-L. The method is compared to
CEA by looking at key variables of the simulation and the value of information is
calculated.

2.3.4. CRA in Context

For the static setting, it is clear that CRA and CBA are indistinguishable from each
other, if the risk function is interpreted as a damage function. In a dynamic setting
one can differentiate between economic, non-economic or hybrid impacts of climate
change. Purely economic impacts on the production (Gross World Product, GWP)
are most common due to the plausibility of a damage function (the more production
there is, the more can be damaged) and the popularity of DICE (Nordhaus, 2008).
The non-economic impacts can be either applied to the consumption or utility di-
rectly (i.e. in- or outside of the utility function). In models such as MERGE (Manne,
2005), PAGE09 (Hope, 2011) and in Acemoglu et al. (2012) the non-economic dam-
ages are applied to the consumption multiplicatively. The model FUND (Tol, 1997)
and theoretical discussions by Weitzman (2009) consider additive damages to the
utility. Many of these models become increasingly complex by including regions and
many different damage sources making it difficult to understand what is happening.
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We apply CRA to an IAM in the simplest way possible and work towards qualitative
understanding of such a framework.

A discussion about the effect of varying the distribution of damages between addi-
tive utility damages and production damages can be found in Barrage (2012). She
shows that if all damages are applied to production then the optimal carbon tax
is overestimated by 5%, whereas if all damages are applied to utility then there is
an underestimation of 20%. The CRA presented in this thesis uses only additive
utility “damages” formally but argues the functional form of the impact differently.
Where past studies always considered studies about loss of life, migration or willing-
ness to pay for species conservation to find damage functions on utility, our analysis
presumes that the climate debates have already aggregated this information in the
form of climate targets. We are not aware of any literature that uses additive utility
damages in an inter-temporal IAM to absorb preferences of decision makers. Note
that we acknowledge that a climate target is in itself subject to normative prefer-
ences of the supporting community. If policy makers do not find climate targets a
useful tool, then CRA is not applicable in the form presented here.

Positive mathematical programming (Howitt, 1995) is also related to this topic. It is
the process of adding a function to the objective function and tuning it in a way that
a predetermined goal is forced to be optimal without implying explicit constraints. In
other fields, especially in engineering (Bordley & Pollock, 2009), similar techniques
have been proposed to include a desirable target in an optimization without chance
constraints or leaving the expected utility framework.

2.4. Application to MIND-L

For the numerical analysis, we use the Model of Investment and Technological De-
velopment (MIND-L) in the form presented by Lorenz et al. (2012b). MIND-L is
an extension, through the addition of learning, to the stochastic model MIND-H
(“H” for “hedging”) by Held et al. (2009), which itself was developed from the deter-
ministic model presented by Edenhofer et al. (2005). MIND-L is an IAM consisting
of three parts: economy, energy, and climate. Other models falling into this cate-
gory are: MERGE (Manne, 2005), DICE (Nordhaus, 2008), PAGE09 (Hope, 2011),
WITCH (Bosetti et al., 2006) and FUND (Tol, 1997). MIND-L is a forward-looking
Ramsey-type macro-economic growth model2 that comprises induced technological
change in the energy sector, the latter consisting of a renewable and a fossil sec-
tor. For a summary of other models with endogenous technical change see Baker &
Shittu (2008).

An energy balance model (Kriegler & Bruckner, 2004) represents the climate module
within MIND-L that links emissions to global mean temperature change. That

2We would like to mention literature that points to problems with this type of growth: Cooke
(2013)
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energy balance models can reproduce the average temperature trend of more complex
climate models adequately is shown in van Vuuren et al. (2011).

MIND-L is implemented in the modeling language GAMS with the numerical solver
CONOPT and all evaluation and post-processing is conducted in MATLAB.

2.4.1. Setup

MIND-L is based on a Ramsey type growth model with a constant elasticity of
substitution production function and a utility function with constant relative risk
aversion:

U (C (t,X)) = L(t)
1

1− η

(
C (t,X)

L(t)

)1−η

. (2.19)

The consumption C depending on time t and controls X are inputs to a utility
function with decreasing marginal utility to catch the risk aversion of society. The
population development is given exogenously by L(t). The constant relative risk
aversion is set to η = 2 in this chapter. In Chapter 4 this assumption is analyzed.
The controls X are made up of investments into fossil fuel extraction, fossil energy
production, renewable energy production, energy efficiency, labor efficiency and ag-
gregated capital representing the rest of the economy.

Another aspect of the economic model is that the future is discounted by the pure
rate of time preference δ. There is plenty of discussion in literature what exactly this
parameter does and how it should be chosen. We set it to 1%/yr and use exponential
discounting which has the advantage of producing time consistent decisions. See
Chapter 4 for more details.

The usage of energy from fossil fuels in the production function creates emissions
of carbon dioxide into the atmosphere. Through a calibrated energy balance model
a temperature increase is calculated on the basis of climate sensitivity (see An-
dronova et al. (2007) for a good introduction to the concept of climate sensitivity)
and transient climate response. We assume them to be perfectly correlated, an ap-
proximation as in Lorenz et al. (2012b) on the basis of analysis of the temperature
record of the last two centuries by Frame (2005) and further aggregated in Held et al.
(2009). Otto et al. (2013) argues that it is more beneficial to learn about transient
climate response than climate sensitivity, but we consider them to be correlated
which implies that the learning studied in this thesis can be considered as learning
of both parameters. The uncertainty on climate sensitivity is set to the log-normal
distribution: LN (0.973, 0.4748) (Wigley & Raper, 2001). We take 20 samples by
dividing the distribution into 5% quantiles and taking the expected value of each
quantile. The formula for this and the resulting values for climate sensitivity can be
found in Appendix A.2.

In the following analysis we use three different types of simulations:
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2.4 Application to MIND-L

� BAU (business as usual) is a scenario in which climate change is completely
ignored and there is no loss of utility from it. This counter-factual reference
case is associated with the highest welfare, as the existence of climate change
represents a net loss in all other scenarios.

� NOLEARN is a scenario that assumes that science is unable to find better
information about the climate system in time and our decisions on how strongly
to invest in mitigation have to be made with the information we have today.
There is a climate problem and the decision maker performs a trade-off between
cost and risk but one decision has to be made for all SOWs. The trade-
off parameter β is calibrated so that this scenario exactly matches the given
target.

� LEARN(2010...2075) assumes that at a specific learning point the decision
maker learns the true SOW and can act accordingly. This stands for the case
that research has a breakthrough in climate science and/or new information
is gained from observations.

In order to compare the results from different scenarios and calculate the expected
value of information, the concept of Certainty and Balanced Growth Equivalents
(CBGE) is employed. This idea was originally proposed by Mirrlees & Stern (1972)
and later employed by Anthoff & Tol (2009) who give a clear derivation of its appli-
cation to the probabilistic case.

In general, welfare is only defined up to an affine transformation. To asses a differ-
ence in welfare a method is necessary that is invariant under an affine transformation.
The CBGE method converts the values back from welfare W to consumption and
thereby circumvents this problem. To compare two scenarios in which the welfare
has been calculated by a CRRA utility function, Anthoff & Tol (2009) derive the
following formula:

∆CBGE(W,Wref) =

(
W

Wref

) 1
1−η

− 1 for η 6= 1. (2.20)

This is calculated in the stochastic regime, i.e. W is seen as the expected welfare. In
summary, ∆CBGE gives the change in initial consumption that is necessary to reach
the difference in welfare assuming equal consumption growth in both scenarios.

Let LP represent the time at which information arrives (which could also be “never”,
i.e. NOLEARN). Then we can define two ∆CBGE quantities:

� Expected Cost of Climate Policy ECCP(LP): the cost created by includ-
ing the calibrated penalty function and assuming perfect information in year
LP. This cost includes the cost of mitigation as well as the utility loss from
the risk function, i.e. the losses due to the mere existence of the climate prob-
lem. It is calculated by the percentage change of CBGE between LEARN(LP)
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scenario and the BAU scenario. Note that if the reference is the BAU case,
the resulting value is be negative. Therefore, ECCP is defined as the negative
change in CBGE:

ECCP(LP ) = −

[(
WLP

WBAU

) 1
1−η

− 1

]
for η 6= 1. (2.21)

� Expected Value of Perfect Information EVPI(LP1,LP2): calculated by
the percentage change of CBGE between LEARN(LP1) and LEARN(LP2)
scenarios. Gives the value created by receiving the information in year LP1

instead of year LP2. The learn scenario with the latest learning point is chosen
as the reference.

We point out that the equality ECCP(LP1) = ECCP(LP2) - EVPI(LP1,LP2), i.e.
the cost when learning at LP1 is equal to the cost when learning at LP2 dimin-
ished by the value of information that is created by learning earlier, only holds in
approximation due to the curvature of the utility function.

2.4.2. Comparison to CEA

CEA is the standard tool that the climate target community uses to date. We offer
a comparison between the CEA and CRA to clarify similarities and differences. This
comparison can only be done for the NOLEARN case as learning is ill-defined in
CEA.

Figure 2.3a shows temperature paths for each SOW (the CRA part repeats Figure
2.2a). We can see that CEA deviates from the path only after 2060 and in a way
that would pose a considerable threat to society: in 2150 there is a 10% chance
of temperatures above 3°C. CRA only shows a 5% chance with decreasing trends.
Figures 2.3b-f show the important intermediate system or control variables and
their effect on the carbon budget. The agreement up to 2050 is considerable which
supports the usefulness of CEA simulation for near term decisions.

Figure 2.3c shows a clear difference in the emissions after 2050 although the invest-
ment into renewable energy looks to be similar in (f). The total energy produced in
both simulations is the same but the balance is shifted towards fossil fuels in CEA
slightly.

Figure 2.4 shows the expected discounted degree years explicitly. It becomes clear
that CEA suggests a greater risk to society than CRA although they both exactly
reach the calibration target. This raises the question how much worse the CEA
solution is if it were evaluated in a CRA setting and conversely. This can be done
in post processing and is shown in Table 2.1.
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Figure 2.3. – A comparison of CEA and CRA with an equal safety (probability
of staying below the target) of 66% w.r.t. a target of 2°C. The plot shows (a)
the temperature paths (color indicates the climate sensitivity: low (blue) to high
(red)), (b) CO2 concentration in the atmosphere, (c) carbon emissions per year, (d)
cumulative carbon emissions, (e) investment share of output into fossil fuel energy
production and, (f) investment share of output into renewable energy production.
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Figure 2.4. – Expected discounted degree years for CEA and CRA. We see that the
risk only deviates towards the end of the simulation. Note that in both cases, the
calibration target is not violated (not shown).
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Scenario Reference CBGE change Description

XCEA in CEA XBAU in BAU 1.3 % Mitigation cost for CEA

XCRA in CRA XBAU in BAU 3.36 % Total ECCP for CRA

XCRA in CEA XBAU in BAU 1.52 % Mitigation cost for CRA

XCRA in CEA XCEA in CEA -0.22 %
CRA decisions as

sub-optimal decisions in
CEA

XCEA in CRA XCEA in CEA -1.24 %
CEA decisions as

sub-optimal decisions in
CRA

Table 2.1. – Comparing CEA and CRA by costs and non-optimality of decisions.
The pure mitigation costs (bold face) are similar for CEA and CRA. The solution
found with CRA creates a 0.22% loss in CBGE if it were to be evaluated in a CEA
framework compared to the CEA optimal solution. However, if CRA is taken as the
reference then the CEA solution comes with a loss of 1.24% due to non-optimality
with respect to the optimal CRA solution.

Assuming three different sets of optimal solutions XBAU, XCEA and XCRA originating
from the three frameworks BAU, CEA and CRA. Welfare can be calculated from
any combination of solution and framework. The welfare that is calculated can be
compared to any other welfare to give a CBGE percentage change. Theoretically
there are 9 welfare values and therefore 36 possible CBGE changes. In Table 2.1
only the five most interesting ones are shown. It seems that the decisions found
with CRA, if evaluated in a CEA framework, produce a moderate loss of -0.22%
CBGE. However, if the CEA optimal solution is evaluated in a CRA framework it
performs poorly in contrast to the optimal CRA solution (-1.24% CBGE). If it is
unclear which framework to use to find decisions, this shows that it is better to use
CRA optimal decisions as they also perform well in a CEA framework.

We calculate ECCP(never) for CEA and CRA but note that it has slightly different
interpretations in each case. In a CEA it is equal to the cost of mitigation, whereas
in CRA it is the cost of mitigation combined with the utility loss from risk. It is
possible to estimate the pure cost of mitigation for CRA by evaluating the solution
in a CEA framework (XCRA in CEA compared to XBAU in BAU). This results in a
cost of mitigation of 1.52% CBGE. Again it is evident that CRA mitigates slightly
more than CEA, but both lie in the mid range of literature mitigation costs for a
2°C target (Edenhofer et al., 2010).

Recalling that the overall goal of IAMs is to advise policy makers we investigate
to what extent CRA and CEA reflect the preferences of the community that sup-
ports climate targets. Most argue with a precautionary approach (Athanassoglou &
Xepapadeas, 2012) or catastrophic damages approach and we infer that a resulting
preference would decrease temperature in the future if possible and not too costly. If
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the target is reached it seems unlikely that increasing emissions around 2050, which
happens in CEA, would be a supported preference. This is one of the reasons why
we argue that the CRA is more adequate to represent the preferences of a climate
target community.

The origin of the discrepancy between CEA and the preferences of the 2°C commu-
nity probably lies in the fact that the target community usually does not mean to
imply that above 2°C the world suddenly becomes unlivable but rather that the gut-
feeling is that it would be beneficial to keep temperatures below this level, i.e. the
feeling that if better impact models were available, 2°C maximum temperature rise
could be optimal.

2.4.3. Value of Information

We originally set out to find the value of information about the climate response.
Put differently: how much would we pay to resolve the uncertainty on climate
sensitivity? First, a reference case has to be established and it is reasonable to
assume that learning about climate sensitivity from temperature observations is
always an option. It is a gradual process and Kelly & Kolstad (1999) have estimated
it to take at least 90 years and Webster et al. (2008) find that it will take two to
five decades to reduce uncertainty by 20-40%.

The necessary investment to benefit from climate observations is comparably small
as measurement infrastructure is already widely spread. In a first approximation it
can be seen as free information. To calculate the value of even better information
about climate sensitivity we compare learning at an early stage with learning at a
late stage (the reference case), where the late stage represents the learning scenario
where information only originates from new observations. To test the sensitivity of
the late learning assumption we conduct simulations with two reference years for late
learning, 2050 and 2075, as approximations to the gradual learning over 90 years.

It appears plausible, that an un-accelerated scientific progress will reduce climate
response uncertainty in a couple of decades. Hence, we assume a much smaller
uncertainty in 2050 or 2075 compared to today. If the reader finds this overly opti-
mistic, he or she may interpret the so derived EVPI as lower bounds. Furthermore,
for continuous learning from observation of the temperature time series, learning in
2050 to 2075 might also be regarded to be a good approximation as an intermediate
value. Because of the correlation between climate sensitivity and transient response,
low values will be learned in a couple of decades due to the faster response times of
the climate system, whereas, a high climate sensitivity will require at least centen-
nial scale due to slower response times. In total, perfect learning in 2050 or 2075
seems a good reference point.

To calculate EVPI we do 13 simulations by varying LP from 2015 to 2075 and then
compare it to LEARN(2050) and LEARN(2075). The results are shown in Figure
2.5. The EVPI, and hence the willingness to pay to resolve the uncertainty in 2015
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Figure 2.5. – Expected Value of Perfect Information (EVPI) given in percentage
change of CBGE for different timings of the arrival of information (LP) in relation
to two different reference scenarios: LEARN(2075) and LEARN(2050). The EVPI
drops steeply in the first decades. Setup: guard rail 2°C, safety 66%, risk aversion
2, time preference 1%/yr.

compared to 2075, is around 0.66% CBGE. If 2050 is chosen as the reference, EVPI
is around 0.60% CBGE. The figure also shows that the value of information will
halve before 2030.

2.4.4. Effect of Learning

The calibration was conducted with the goal of reaching 2°C with 66% safety. This
does, however, not constrain the safety in the LEARN case. By finding the number
of SOWs that cross the guard rail we can imply an overall safety for the LEARN
cases which lie around 70%. Due to the sampling constraint to steps of 5%, this can
be seen as virtually equal to the 66% of the calibration. The equality is pleasing
as it means that the result is independent of the assumption about learning for
calibration, making the approach more robust. A calibration using the LEARN case
instead of NOLEARN poses numerical challenges and is therefore impractical.

A plot of the cumulative distribution function for the maximum temperature in
NOLEARN and LEARN(2015) cases can be found in Figure 2.6. Most of the SOWs
cluster around 2°C and only one SOW does not reach 2°C. Maximum tempera-
ture above the guard rail is only reduced slightly. This hints at the fact that the
NOLEARN case is already close to the maximum possible mitigation.

In Figure 2.7 the effect of a learning event on temperature, emissions and the in-
vestment into renewable energy is shown by example of LEARN(2015). Figure 2.7b
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shows the yearly carbon emissions and the sharp increase that is associated with
learning that climate sensitivity is very low. For high climate sensitivities the emis-
sions drop to zero in 2040 just as in the NOLEARN case shown in Figure 2.3. The
investment into renewables is delayed if information arrives that climate sensitivity
is low but peaks strongly at 8% if a high climate sensitivity is learned.
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Figure 2.6. – The cumulative density function (or safety) for NOLEARN and
LEARN(2015) scenarios. After learning, most SOWs cluster around 2°C which
is the target that was used for calibration.
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Figure 2.7. – (a) Temperature, (b) emissions and (c) investment into renewables
for LEARN(2015). The colors indicate climate sensitivity going from low (blue) to
high (red). Each line has a probability of 5%.
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2.5. Discussion

It is unlikely that impact models will improve sufficiently within the next decade
(even more so considering the ethical problems) to allow the climate target commu-
nity to accept CBA as the tool for policy analysis. However, the alternative tool,
CEA, has serious drawbacks as it does not represent the true preferences of a pro-
ponent of climate targets under anticipated learning. In CEA there are incentives
to prevent research as the value of information about the climate response can be
negative. Furthermore, there are incentives to fire up the fossil fuel industry once
the target is reached (around 2050), also not inline with preferences.

As a remedy we apply a cost-benefit trade-off but instead of the classic production
damages we include a penalty that affects the utility directly and depends on the
expected transgression of the guard rail, an idea that has been proposed by Schmidt
et al. (2011) and in other contexts as positive mathematical programming (Howitt,
1995) or internalization of cost targets (Bordley & Pollock, 2009). We construct the
trade-off in a way that the preferences of the climate target community is reflected
without imposing a constraint but by internalizing them. The resulting solution
diverges w.r.t. CEA only after 2050 allowing CRA to substitute CEA without inval-
idating previous research with CEA.

By applying CRA we return to the expected utility framework and are able to
calculate the value of information about the climate response. We found the value
of information to be around 0.66% of consumption per year if learning in 2015 is
compared to learning in 2075. This value makes up around 1/5 of the total expected
costs of climate protection. This is a substantial value that can potentially be reaped
with adequate investments into climate response research.

To convey the size of 0.66% CBGE we recall that it represents a change in con-
sumption per year. In 2012 the world had a GWP of around 70 trillion USD and
a consumption share of 75% (this coincides roughly with the consumption share
in MIND for the reference case as well as for the world wide consumption share
estimated by The World Bank (2013)). This leads to an absolute value of informa-
tion of 347 billion USD. Even a reduction by an order of magnitude still leaves a
considerable value that is by far larger than any climate science research budget.

Previous publications have calculated the value of information about the climate
in different ways and with different metrics, e.g. using net present value. Using a
CBA with a damage function, Nordhaus & Popp (1997) find the value of learning in
2015 instead of 2045 about the climate feedback to be 7.81 billion 1990 U.S. dollars.
The optimal strategy found by Nordhaus & Popp (1997) yields a temperature rise
of about 3°C with a probability of 66% and using a similar target for calibration
we find around 0.086% CBGE for the EVPI(2015,2045) (not shown in the analysis
above).

To convert a change in CBGE into a change in net present value we use a finding from
Held et al. (2009) and divide the value by 1.5. In 1995, which is the reference year in
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both studies, the GWP was 33.6 trillion 1990 USD. This yields a net present value
of 19.4 billion 1990 USD for the CRA, which is on the same order of magnitude as
the value from Nordhaus & Popp (1997). This underlines the fact than an inclusion
of the climate effects as an additive part to utility results in a similar valuation of
information. Keller et al. (2007) come to the conclusion that the value Nordhaus &
Popp (1997) found is increased by more than an order of magnitude if an uncertainty
about the existence of a temperature threshold of 2.5°C is assumed. Along similar
lines, Lempert et al. (2000) find that it is worth 15-22 billion USD a year to know
if society has to mitigate a lot or a little.

In the context of global observation systems, Cooke et al. (2013) calculates the
avoided damages if a better observation system is put in place, allowing to reduce
the uncertainty on climate sensitivity. The authors find an extreme value of ca. 3
trillion USD which stems from the fact that they assume a business as usual case
until uncertainty has reduced substantially. Another study that calculates the value
of information about climate sensitivity gives a net present value of 23.9 billion 2005
USD for learning in 2020 compared to never (Webster et al., 2008). This is about
an order of magnitude less than the value calculated in this thesis due to the fact
that the CBA used in their work, produces higher temperatures than CRA with a
2°C and 66% target.

The next chapter delves deeper into the workings of CRA with some sensitivity
studies and a closer look at the origin of EVPI. Questions about the shape of the
risk metric, the effect of anticipation or different calibration targets are analyzed.
The main focus is on the origin of the value of information.
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3. Disentangling Contributions to
the Value of Information

3.1. Introduction

Cost-Risk Analysis (CRA), as presented in this thesis, has not been explored thor-
oughly in literature yet. As it is the first time it is applied to an integrated assessment
model (IAM), it is of special benefit to do a thorough sensitivity analysis and in-
vestigative simulations to understand the dynamics behind such a trade-off. The
crucial difference to Cost-Benefit Analysis (CBA) is that – due to the calibration to
a desired temperature target – the objective function is adjusted anytime a parame-
ter that influences the optimal solution in the NOLEARN scenario is changed. How
and why will be explored in this chapter.

The welfare equation in CRA consists of two terms that are added, one for the
economy and one for climate effects. The fact that this is done in an additive way,
creates a separability of utility changes into economy or risk-related utility changes.
This in turn allows for an attribution of effects to one of the two mechanisms.
However, the situation is complicated by the non-linear utility function making the
influence of a consumption change depend on the level of consumption. Because the
unit of measurement is given in certainty and balanced growth equivalents (CBGE,
see Section 2.4.1), which is a unit of consumption change, one has to be careful when
splitting CBGE quantities. This division is explored in this chapter and used as a
tool to analyze the results of CRA.

The goal of this chapter is to gain insight into CRA with MIND-L by changing a
variety of parameters:

� Calibration – previously we chose 2°C with a safety of 66% as a calibration
reference. The effect of this assumption is tested by varying guard rail and
safety. These two variations produce similar results but have a key difference
when learning is considered.
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� Risk metric – in the previous chapter we found that a threshold-linear risk
metric is identical to the concept of degree years and represents the boundary
case at which a sacrificing of the climate is prevented. We test the effect of
this choice by comparing the results with simulations that use different risk
metrics. We represent risk metrics by a penalty function per time slice on
temperature and vary the functional form from logarithmic to fourth order
functions.

The last analysis considers the assumption that the decision maker knows the point
of learning (anticipated learning). In literature the anticipation effect is calculated
to be small (Lorenz et al., 2012b) and we find this to be true for CRA and MIND-L
as well.

There are of course many more parameters that could be changed, for example: the
class of utility functions, productivity factors, exogenous population, other green-
house gases, learning rates for renewables, resource base for fossils, learning rates
for efficiency and many more. The focus of this thesis is on CRA and so aspects are
analyzed that are of interest with respect to the decision framework.

To be able to assess the differences that occur by the variations of the above points
we use the fact that the utility is separable in time, states of the world (SOWs)
and also in risk and cost (referred to by “type”). The first part of the chapter
assesses the origin of expected value of perfect information (EVPI) by looking at
the reference case: EVPI(2015,2075). In Section 3.3.1 the calibration is varied and
the effects are studied. In Section 3.3.2 we move on to explore the effect of using
other penalty functions for the risk metric. The last analysis concentrates on the
effect of anticipating the learning event. We close with a summary and discussion
of the results.

One important aspect that has been left out in this chapter is the effect of other
normative choices apart from calibration, such as risk aversion and discounting. The
next chapter is devoted entirely to these choices on which there is a lot of controversy
and discussion in the literature.

3.2. The Reference Case

Our starting point for this chapter is the model setup that was described in Chapter
2. The key parameters of the setup are summarized in Table 3.1. The goal of this
section is to dissect the expected cost of climate protection (ECCP) and the EVPI
that was calculated in the previous chapter and find the origin and reasons for their
values.

A first step into a deeper analysis of this reference case can be made by plotting
the risk and the cumulative emissions over time. We represent the risk by plot-
ting expected discounted penalties (which, aggregated over time, form the expected
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Parameter Value

Constant relative risk aversion η 2
Pure rate of time preference δ 1%/yr

Penalty function Θ (T (t)− Tg) (T (t)− Tg)
Calibration safety 66%

Calibration guard rail 2°C
Calibration information structure no information

EVPI reference year 2075
Learning type anticipated

Table 3.1. – Setup of the reference model that serves as a basis for comparison to
the sensitivity analysis in this chapter.

discounted degree year measure). Figure 3.1 shows a plot of these variables and
illustrates that there is a benefit on the risk side as well as on the economic side
from learning earlier. The risk is only slightly reduced by learning and most of the
reduction is after 2050. Cumulative emissions start to differ earlier, this is of course
due to the effect of the inertia of the climate system.

Figure 3.1b can be seen as a proxy for mitigation costs. If more emissions are
allowed it will cost less for the economy because fossil fuels are cheaper. Therefore,
the source of part of the value of information is the possibility of emitting more
for SOWs with low climate sensitivity if information arrives early. SOWs with high
climate sensitivity will stick to the lower bound of cumulative emissions, bringing
almost no economic value of information but instead reducing the risk slightly as
shown in Figure 3.1a. It is not clear how much of the EVPI can be attributed to
the risk reduction and how much to reduction in mitigation costs. Furthermore, it
is not easy to see which of the SOWs contribute how much.

To gain more insight into the reasons for EVPI and the workings of the model, the
aim is to disentangle the contributions to the EVPI in three dimensions: type (risk
or economic), SOW and time.

3.2.1. Dividing Welfare Changes

The biggest challenge when dividing welfare a change into its components is that
any calculation of ratios is not sensible due to welfare being only defined up to
affine transformations. If the welfare measure is converted back into an equivalent
consumption this problem is avoided. The EVPI (as well as the ECCP, or any CBGE
changes) is calculated by comparing welfare, or more specifically, their equivalent
initial consumptions. To find a meaningful disentangling of the components that
make up the calculated CBGE change, we first argue that the calculation of CBGE
for CRA is at all sensible.
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Figure 3.1. – (a) Expected discounted penalty and (b) cumulative emissions for
relevant scenarios of the reference CRA setup. Expected discounted degree years
are calculated by the area underneath the curves in (a). Panel (b) also shows
cumulative emissions for each state of the world: red to blue thin lines represent
decreasing climate sensitivity. If perfect information arrives in 2015 instead of 2075
the risk is decreased as shown in (a) and the emission can be increased on average
(see b). If very low values of climate sensitivity are learned then emissions can
roughly follow the BAU case if learning is in 2015 which produces a large economic
benefit.

Calculating the CBGE for a CRA simulation assumes that the utility loss created
by the risk-related part can be expressed as a consumption reduction. Therefore,
the calculation of a balanced growth equivalent does not just balance ragged growth
rates but also includes a monetary loss from the climate risk. The CBGE consump-
tion level for a simulation (calculated from its welfare) will be smaller than the
initial consumption level calculated from balancing the consumption path in CRA.
This process therefore incorporates the risk as an equivalent reduction in initial
consumption.

Once a CBGE value for CRA is accepted as a sensible measure, the next step is
to compare CBGE values. In this analysis we only compare scenarios which are
very similar. The CBGE change is usually below 5% and the absolute value for the
consumption streams are very similar across scenarios. This allows a linearization
of the CBGE formula.

The CBGE change between two scenarios a and b with a separable welfare Wa =∑
jWa,j can be calculated by the CBGE formula for CRRA utility functions:

∆ =

(
Wa

Wb

) 1
1−η

− 1 =

(∑
jWa,j∑
jWb,j

) 1
1−η

− 1. (3.1)

Here the index j stands for any division in welfare parts that makes sense, for exam-
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3.2 The Reference Case

ple: time slices, SOWs or economic and risk related parts. To find the contribution
of each summand j to ∆, the equation is linearized at Wa/Wb = 1. The linearization
reads:

(x)
1

1−η − 1 ≈ 1

1− η
(x− 1) . (3.2)

The CBGE change calculated by the linearized equation is denoted by ∆̃:

∆̃ =
1

1− η

(
Wa −Wb

Wb

)
(3.3)

This can be split into the components denoted by the index j:

∆̃ =
1

1− η

(∑
jWa,j −Wb,j

Wb

)
, (3.4)

and for each component we have:

∆̃j =
1

1− η

(
Wa,j −Wb,j

Wb

)
. (3.5)

When comparing two scenarios there is a difference between ∆̃ and ∆. To ensure
that the overall CBGE change continues to be ∆, a re-scaling is done:

∆j = ∆
∆̃j

∆̃
(3.6)

Inserting equation 3.3 and 3.5 into the above equation leads to the split of the CBGE
change in proportion to the differences of the welfare summands:

∆j = ∆
Wa,j −Wb,j

Wa −Wb

. (3.7)

This can be applied to any sensible division of welfare as long as Wa and Wb are
similar. To assess the error we make by the linearization we look at the difference
between ∆̃ and ∆. This difference points to the order of magnitude of the error. Over
all learning scenario comparisons and applied normative parameters (see Chapter 4)
the maximum error is 1%, i.e. 0.0066 percentage points for a 0.66% CBGE change.

The error is always negative due to the curvature of the utility function but is
compensated by the rescaling. See the Figure A.3 in the Appendix for a plot of the
error. In summary, it is safe to use this approximation for the cases analyzed in this
thesis.
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Chapter 3 Disentangling Contributions to the Value of Information

3.2.2. Origin of EVPI and ECCP

With this tool of decomposition it becomes possible to assess if the EVPI originates
mostly from increased consumption or from decreased risk. To do this we divide
the welfare calculation into two terms, one is calculated by the utility function from
the consumption stream (WU) and the other is calculated by the risk metric and
multiplied with the trade-off parameter (WR)1:

W = WU +WR (3.8)

Once this separation is established, equation 3.7 can be applied to divide the EVPI
into economic and risk-related terms. Figure 3.2 shows the division of EVPI(LP,2075)
for different LP. The suspicion that the economic part is more important is confirmed
as it contributes most to total EVPI. After 2040, the risk-related contribution can
even be negative, implying that temperatures were increased after learning which
then allowed for less mitigation and a higher contribution from the economic part.
Note that if information arrives in 2020 the risk-related value drops considerably
and is less than a fourth of the economic value. This points towards the fact that
temperatures can only be influenced effectively now.
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Figure 3.2. – EVPI(LP,2075) split into economic (red) and risk-related (black) parts
for different learning points LP.

In addition to the division into economic and risk-related values, we further divide
the EVPI along time (Figure 3.3 a, b, c) and SOW (Figure 3.3 d, e, f). The
color coding indicates the learning time point, where darker colors stand for earlier
learning. We make the following observations in Figure 3.3:

1The equations for the parts can be found by referring to equations 2.15, 2.18 and 2.19.
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� As learning occurs later, the time at which EVPI originates also occurs later
(see (a)).

� Generally, the risk related EVPI originates towards the end of the simula-
tion whereas the economic EVPI is mostly created in the beginning of the
simulation. (compare (b) and (c)).

� SOW 14 to 16 (of a total of 20) do not contribute to the EVPI. If we learn that
we are in these SOWs, we would not adjust our emission strategy compared
to the NOLEARN case (see (d)).

� For low climate sensitivities (SOW smaller than 14) EVPI results only from
the economy. For high climate sensitivities, the trade-off is made between cost
and risk: any increase in emissions would reduce the loss in (e) but would be
overcompensated by a reduction of the gain in (f).
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Figure 3.3. – EVPI(LP,2075) where LP is indicated by the color (yellow: 2070,
black: 2015) and split up in type, time and states of the world (SOW). (a) shows a
split along time, (b) split along time for the economic part, (c) split along time for
the risk-related part. (d) shows the split across SOW in total and (e,f) show the
economic and risk-related parts. As learning happens earlier the effects are larger.
See Appendix A.2 for climate sensitivity values of each SOW.
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Chapter 3 Disentangling Contributions to the Value of Information

Because EVPI reduces the ECCP (i.e. learning reduces the cost and risk), it is
interesting to look at ECCP to see what the underlying costs and risks are and how
they are reduced by learning. If costs or risks are high, then there is high potential
for reduction, therefore we would assume that the patterns of ECCP are similar to
EVPI.

Figure 3.4 shows the economic and risk-related ECCP split along time and SOW.
A similar pattern as the EVPI can be seen. The time shift between the two types
of contribution is clearly evident. The figure is constructed from the LEARN(2075)
and shows that the economic mitigation costs (yellow) originate from all SOWs
equally as mitigation has to be done before learning. The risk originates only from
the upper seven SOWs which violate the guard rail2.
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Figure 3.4. – ECCP(2075) divided across (a) time and (b) SOW. The time shift
between risk-related and economic costs can be seen in (a) and the fact that all
SOWs contribute to the economic mitigation costs although only the upper five
SOWs create the risk is shown in (b).

3.2.3. Classifying States of the World

Another tool that can help to assess a CRA simulation is classifying the SOWs
into different cases with different binding optimal emission constraints. This classi-
fication only makes sense in the deterministic case in which the optimal emissions
depend on the true value of the climate sensitivity, i.e. after the learning event. A
full derivation of these regimes for the static problem can be found in Chapter 5.
We consider two constraints: a maximum and a minimum possible emission strat-

2Its worth mentioning here that even though the risk seems to diverge for high climate sensitivities,
the area under the curve converges. In other words, the expected risk is finite even if infinite
climate sensitivity is considered. Therefore, the dismal proposition discussed in Weitzman
(2009) does not apply here. Appendix A.1 argues this is more detail.
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3.3 Varying Key Parameters

egy, representing emissions all available fossil fuels are burnt and maximum viable
mitigation respectively. Four regimes can be identified:

1. Optimal emissions would lie above Emax so the optimal course of action is the
same as in BAU.

2. It is cheap enough to stay below the guard rail so that trespassing is not viable.
Emissions are chosen such that the maximum temperature lies exactly on the
guard rail.

3. Optimal emissions are such that temperatures pass the guard rail and a trade-
off between cost and risk is made.

4. Optimal emissions would lie below Emin so the optimal course of action is
maximum possible mitigation.

These regimes, or cases, can be found in MIND-L by analyzing temperature and
emission paths. For LEARN(2015) in the reference case the division of probability
of each of the four cases is as follows, in the same order as above: 5% – 65% – 16%
– 14%. The biggest share represents Case 2 in which the temperature rises to the
guard rail but does not cross, as can also be seen in Figure 2.6. An implication
of this analysis is that Cases 1 and 2 allow for economic value of learning whereas
Cases 3 and 4 allow for risk-related value.

3.3. Varying Key Parameters

3.3.1. Varying the Calibration

A decision with far reaching implications is the choice of target to calibrate to. Pre-
viously we calibrated to a widely discussed target: keeping the probability of staying
below 2°C temperature anomaly at 66% (safety). There are of course approximately
equivalent targets that reach the same goal by adjusting guard rail and safety along
the black line in Figure 2.6 of the previous chapter. In this section we do not inves-
tigate these changes but rather show how changing the stringency of a target affects
the solution as well as the EVPI. We distinguish increasing and decreasing strin-
gency for the guard rail and safety, where increasing stringency implies decreasing
guard rails and increasing safeties.

For the NOLEARN case there is a duality between these possibilities of variation
shown graphically in Figure 3.5. For every increase in guard rail there is an equivalent
decrease in safety target that produces the same emission strategy and temperature
paths. For the learning case this does not hold, therefore we perform both variations
with dual values for comparison. The safety is varied between 40% and 70% where
the upper bound is given by feasibility limits of the model. In a second simulation
the guard rail is varied between the equivalent temperatures 2.58°C and 1.93°C. To
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Figure 3.5. – The equality between changing the guard rail and keeping the safety
at 66% or changing the safety and keeping the guard rail at 2°C for the NOLEARN
case. The test points analyzed are marked by circles.

assess the difference of these variations and the corresponding effect we plot the
EVPI for different learning points in Figure 3.6.

For very early learning (e.g. LEARN(2015)) the EVPI decreases as the target be-
comes less stringent. It decreases more strongly when adjusting the safety instead
of the guard rail. For learning after 2030, the EVPI increases in Figure 3.6a and
decreases in 3.6b as the target becomes less stringent. In general it is expected that
as climate change becomes more of an issue, i.e. targets become stricter, the value
of information increases, however, in the case of guard rails and learning in 2040,
the opposite is the case.

If given enough time, temperatures gravitate towards the guard rail after a perfect
learning event. This makes it very clear that adjusting the guard rail reflects different
preferences than adjusting the safety target, even though there is an equivalence in
the NOLEARN case .

The question as to how targets should be formulated might arise at this point. Is it
better to adjust targets by changing the guard rail or by adjusting the safety target?
This question only becomes important if learning is considered and then leads to
the conclusion that decreasing safety would decrease the incentive for research into
the climate response whereas increasing the guard rail would increase the incentive
(for learning after 2030). This increase comes at the cost of higher temperatures in
general after learning as can be seen in Figure 3.7. Policy makers have to be aware
of the implications when adjusting targets.

The origin of the opposing EVPI(2040,2075) trend for adjustments of guard rail
and safety can be found by examining the probability shares of the four regimes
described in Section 3.2.3 as well as the origin of the EVPI. In Figure 3.8 we show
the division into the four regimes as well as the divisions by type of EVPI for both
variations.
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Figure 3.6. – EVPI for different years of perfect learning and different calibration
points. Panel (a) keeps the safety at 66% and varies the guard rail whereas panel
(b) keeps the guard rail constant at 2°C and varies the safety. A difference can be
seen especially for mid-range learning where the EVPI decreases with increasing
stringency of the guard rail.
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Figure 3.7. – Expected temperature for LEARN(2015) over time for varying (a)
guard rail and (b) safety target. Relaxing the guard rail results in slightly higher
temperatures than relaxing the safety target.

We make the following observations:

� Increasing the guard rail only changes the shares of the cases slightly. The
biggest change is that Case 1 gains in share which means that in more and
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more SOWs it is possible not to mitigate, without crossing the target. (see
Figure 3.8a)

� Increasing the guard rail hardly affects the economic contribution to EVPI,
clearly evident from the red solid line in (c) but also implied by the relatively
constant sum of the shares of Case 1 and 2 (which are responsible for positive
economic value).

� Decreasing the safety in (b) changes the shares of the cases considerably,
mainly by reducing the share of Case 2 and increasing shares of Case 3 and
4. The more SOWs enter the regime of a trade-off and pass the guard rail,
the more the economic value is reduced. Note that the probability of passing
the guard rail in the LEARN case does not have to be the same as the Safety,
i.e. the boundary between Case 2 and 3 is not equal to the dotted line in (a)
and (b) (see analytical derivation in Chapter 5).

� In (c) the switch in trend for the total EVPI arises from the fact that the
economic EVPI for a safety change decreases and for a guard rail change stays
relatively stable. This is mainly because increasing the guard rail allows more
SOWs to do no mitigation (Case 1 (a)).

One would assume that as the target for calibration is relaxed, the cost of climate
protection (ECCP) would decrease and with it also the value of information. But
the analysis shows, this is only true for a relaxation of the safety target.
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Figure 3.8. – The probability share of the four cases for SOW described in section
3.2.3 for LEARN(2040) and different calibration targets: (a) varying the guard rail
and (b) varying the safety. (c) shows the EVPI(2040,2075) split into economic and
risk-related value for variations of guard rail and safety plotted on the same axis.
Equal at 66% and 2°C. A systematic difference is visible between the two methods
to adjust targets, especially considering “Case 2”. The dotted line in (a) and (b)
show the safeties for the NOLEARN case.
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3.3.2. Varying the Risk Metric

A seemingly important choice in setting up the CRA is the risk metric that converts
temperatures into risk. The specific function that is implemented per time slice is
called the “penalty function”. However, we show here that the risk metric plays only
a minor role, at least for the value of information. The underlying goal is to stay
close to the concept of CEA, having no penalty for temperatures below the guard
rail. Only the functional form of the penalty function above the guard rail is varied.
In previous sections, we use a linear function, foremost because it resonates well with
publications on the concept of degree years by Schneider & Mastrandrea (2005) and
because it is the limiting case of a convex penalty function.

To assess the effect of varying curvatures of the penalty function, we use four ad-
ditional forms, ranging from a logarithmic form to a fourth order polynomial are
shown in Table 3.2. Note that we do not investigate more concave functions than
the logarithmic form as they produce the sacrificing phenomenon described in Sec-
tion 2.3. The logarithmic function is analyzed to show that for strongly convex cost
functions, as in MIND-L, even partly concave functions can prevent sacrificing. Due
to the kink at the threshold at 2°C the function is partly convex and partly concave.

Shorthand Penalty Function

1. log Θ (T − Tg) log (T/Tg)
2. lin Θ (T − Tg) (T − Tg)
3. T 2 Θ (T − Tg)

(
T 2 − T 2

g

)
4. T 3 Θ (T − Tg)

(
T 3 − T 3

g

)
5. T 4 Θ (T − Tg)

(
T 4 − T 4

g

)
Table 3.2. – The five different functional forms of the penalty function to find the

effect of the risk metric on EVPI. Θ (x) denotes the Heaviside function of x, T is
the temperature of the time slice and SOW and Tg is the specified guard rail.

After every change to the risk metric, a recalibration is necessary to ensure that
the target is met in the NOLEARN case, as discussed in Section 2.3. The process
of recalibration can be formulated in terms of the static model by equation 2.6,
reprinted here for convenience:

βcal = − C ′(Eg)
d
dE

E [R(γEg)]
. (3.9)

Considering a different penalty function R2 a recalibration is necessary, if the same
Eg is to be optimal:

β2,cal = βcal

d
dE

E [R(γEg)]
d
dE

E [R2(γEg)]
. (3.10)
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In summary, it is an adjustment of the marginal benefit from climate protection so
that the marginal benefit at the target optimal strategy is identical for both penalty
functions. This also implies that adding a constant to the penalty function does not
change the calibration.

In the dynamic setting the situation is more complicated. The recalibrated penalty
functions are shown in Figure 3.9b. Note that they all have similar derivatives
around a temperature of 2.5°C as shown in Figure 3.9c.
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Figure 3.9. – Pane (a) shows the EVPI split into economic and risk-related values
for different functional forms of the penalty function. Pane (b) shows the different
penalty functions after being recalibrated and (c) show the marginal penalties. The
dashed lines indicate the analytical solution without the Heaviside function and the
solid lines are created by finite differences from the simulation data. Any deviations
come from necessary smoothing of the discontinuity at 2°C. The calibration has the
effect that the marginal penalty between 2.5°C and 2.6°C is roughly the same for
all functional forms.

The effect of changing risk metrics is plotted in the bar chart in Figure 3.9a. The
EVPI is only changed marginally, which is at first surprising as one would expect the
EVPI to increase if the power of the penalty function is increased as temperature
increases become more dangerous (i.e. catastrophic). The reason for the rather
stable EVPI is the compensation of economic and risk-related EVPI changes. The
economic part of the EVPI increases whereas the risk-related part decreases.

The origin of this compensating behavior can be found by looking at the ECCP
and EVPI split across SOW shown in Figure 3.10. The economic ECCP is constant
across SOW and the same for all risk metrics as shown in (a). This is expected
because re-calibration ensures that the same amount of mitigation is optimal so
that the same target can be reached across all risk metrics. In Figure 3.10b the risk-
related ECCP is plotted showing that the risk is generally lower for higher convexity.
The reason for this is that the absolute risk is lower for higher convexity between
2°C and 3°C as shown in Figure 3.9b.
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Dividing the EVPI(2015,2075) across SOW reveals that risk-related EVPI follows
the behavior of ECCP and decreases with increasing convexity, shown in 3.10d.
However, this is compensated by an increase in economic EVPI especially for SOW
15 (see Figure 3.10c). Because of the decreasing marginal penalty below 2.5°C (as
convexity increases, see Figure 3.9c), temperatures are allowed to grow a little larger
if the convexity is higher (counter-intuitively), especially for SOWs falling into Case
3, i.e. in the regime where the temperature just crosses the guard rail and the optimal
trade-off between cost and risk is made. This slight increase in temperatures allows
for more economic activity and therefore more economic EVPI (see Figure 3.10c).
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Figure 3.10. – The ECCP(2075) and EVPI(2015,2075) split along type and SOW
dimensions for different types of penalty function. Lighter color indicates higher
convexity.

3.3.3. Effect of Anticipation

By optimizing a dynamic model the optimal setting for all control variables in all
time steps is found simultaneously. This is called a “one shot” optimization and
implies that the decision maker knows how the information structure changes in
the future, i.e. the decision maker anticipates that learning will happen. It is clear
that, under certain conditions, anticipation can change the decisions in“preparation”
before the learning event, increasing welfare. This increase, brought on by knowing
when learning will happen, is called the value of anticipation.
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In a previous publication on MIND-L (Lorenz et al., 2012b) anticipation was in-
vestigated with respect to threshold damages and a window of only a few years is
found where learning comes with a significant value of anticipation. As CRA has
a different structure and no threshold damages but rather a penalty to utility, a
discussion of the effect of assuming anticipation in this setting is necessary.

The value of anticipation is calculated by constraining the model to the optimal
solution from the NOLEARN scenario up to the learning point. After the learning
point, the decision maker is free to maximize welfare. The CBGE change between
the constrained simulation and the standard LEARN scenario represents the value
of anticipation. This value is always positive, because, by issuing the constraint, the
solution is forced to be sub-optimal and therefore the non-anticipated welfare will
necessarily be smaller than the welfare from the standard approach with anticipation.

In the analysis presented in this thesis, the effect of anticipation is an order of
magnitude smaller than the EVPI as shown in Figure 3.11 by the green lines. For a
target of 66% and 2°C the value of anticipation gradually drops from 0.02% to zero.
This is very small compared to 0.66% EVPI. For a relaxed target of 50% and 2°C
the value of anticipation is below 0.01% (Figure 3.11b).
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Figure 3.11. – The value of anticipation for two different targets (66% and 50%
safety at 2°C) split into economic and risk-related value and plotted for different
learning points.

Again there is a strong compensating behavior of economic and risk-related antic-
ipation value which oscillates. The risk-related value in (a) has a strong peak for
learning around 2025 which is is inverted in (b). Plotting the value of anticipation
across the time and type dimension as shown in Figure 3.12 allows deeper insight.

The upper peaks in Figure 3.12a are at the time points which represent the last time
step in which full information is not available (marked by squares). In the case of
anticipation, more is consumed just before learning to balance heavy investments as
soon as learning happens. Without anticipation, the decision maker is oblivious to
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the learning event and is “surprised” by it and so cannot cut back in consumption
as much. It is interesting to see that after the learning point anticipation reduces
welfare, this is balanced by increase in consumption before the learning point.

In Figure 3.12b the risk-related value does not follow a clear pattern. For early learn-
ing (dark colors) both a positive and a negative value is possible. The anticipation
effect can be summarized as follows:

� For very early learning, anticipation leads to an overall increase in temperature
(deduced from the negative risk-related value), hence allowing for an increase
in consumption.

� Anticipating learning in 2025 up to 2040 leads to a loss of consumption to
allow for a considerable reduction in temperature and risk.

Only an anticipation of learning between 2025 and 2040 leads to a reduction in risk.
This seems to be similar to the “anticipation window” that was found by Lorenz
et al. (2012b).
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Figure 3.12. – Expected value of anticipation plotted for different learning points
(indicated by the color) and divided across time and type. Values for a target of
2°C and 66% safety. Squares indicate the last time point without information.

3.4. Conclusion

This chapter is a collection of methods for analysis of CRA and applications of the
same. We investigate the source of EVPI and how it changes if the target or risk
metric is changed. We also look at the effect of the implicit assumption made in
this thesis that the learning event is anticipated.
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Due to the additive structure of CRA it is possible to approximately divide a specific
CBGE change, representing the difference between any two simulations, into its
constituting components. For the first time, it is possible to disentangle CBGE
results in three dimensions: type (economic and risk-related), time and SOW. The
division into economic and risk-related value is especially useful because the two
parts have very different mechanisms and consequences. It allows us to determine if
a value is mainly created by increasing economic activity and less mitigation or by
reducing risk and increasing mitigation.

We find that most of the EVPI (around 2/3) is of economic origin especially if
learning happens after 2020. If the target is relaxed this no longer is true. EVPI
is mostly economic for strict targets because the optimal solution is close to the
feasibility limit, which implies that any information received will allow the mitigation
effort to be reduced in SOWs with low climate sensitivity. In SOWs with high climate
sensitivity more mitigation is not possible and so the risk stays roughly the same.

We also find that adjusting guard rails is not equivalent to adjusting probabilities
if learning is considered. Relaxing the guard rail generally leads to higher tempera-
tures after learning than relaxing the safety target. Increasing the stringency of the
target increases the EVPI for early learning, no matter if the change in the target is
produced by a change in safety or a change of the guard rail. For learning in 2040
an increase in stringency, through a decrease of the guard rail, actually decreases
the EVPI.

The investigation of the choice of risk metric shows that it plays only a minor role for
the EVPI because this degree of freedom is mostly swallowed by the recalibration.
This is a reassuring discovery and somewhat strengthens the reasoning behind the
use of CRA, as it is robust w.r.t. such choices. The recalibration ensures that on
average the marginal utility from reducing temperatures is equal no matter which
risk metric is used. The EVPI only varies by a few percent because there is a
compensating effect of an increase in economic value and a decrease in risk-related
value.

Anticipation of the learning event leads to a slightly higher (1-5% change) EVPI.
This is so small that the differentiation between anticipation and no anticipation is
negligible. The interesting discovery was made that the decision maker, in antici-
pation of the learning event, consumes more than if oblivious of the learning event.
This effect is similar to the effect of doing less mitigation in anticipation of learning
which Lange & Treich (2008) have discussed. They argue that the change in emis-
sions is not general and may or may not be positive, assuming reversible climate
impacts.
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4. Discounting and Risk Aversion

4.1. Introduction

Choosing the discount rate and level of risk aversion for a simulation can have a large
impact on the outcome and is frequently the subject of intense debate. In MIND-L,
in the previous chapters, we use a Constant Relative Risk Aversion (CRRA) of 2
and a Pure Rate of Time Preference (PRTP) of 1%/yr. By the Ramsey equation
and an assumed growth rate of around 2%/yr this results in a social discount rate
(SDR), or interest rate, of around 5%/yr.

A CRRA greater than zero implies decreasing marginal utility from consumption.
This in general means, that if two distributions of consumption have the same mean,
the one with the smaller variance is preferred. In the NOLEARN case the con-
sumption path is deterministic and therefore, risk aversion is ineffective regarding
uncertainty in this scenario.

A second effect of CRRA is an implied discounting. If the economy grows, a con-
sumption change in the future is of less value than a consumption change earlier.
Refer to Dasgupta (2008) and Lontzek & Narita (2011) for more details on risk aver-
sion. For an interesting discussion on the disentangling of the two effects see Traeger
(2014). We acknowledge the need for a discussion about such disentanglement but
do not consider these issues here.

The PRTP captures the effect that receiving something earlier is preferred. The
discount rate is assumed to be constant over time (exponential discounting) in most
models to ensure time consistent decisions. A different method is hyperbolic dis-
counting (decreasing discount rates, discussed in Groom et al. (2005)) which is the
attempt to combine moderate discount rates in the immediate future with low dis-
count rates for the far future, thereby, still attributing some relevance to the long
term effects. However, such discounting methods give rise to the problem of time
inconsistency. Heal & Millner (2013) discuss the aggregation of preferences of agents
with different preferred discounting into an overall single agent with one discount
rate. They show that this produces hyperbolic discounting. This thesis only con-

49



Chapter 4 Discounting and Risk Aversion

siders exponential discounting to reduce complexity and to ensure time consistent
decisions.

This chapter consist of a thorough investigation of the choice of SDR and how it
influences the result of the simulation. Throughout the chapter, we refer to the two
parameters CRRA and PRTP as “normative parameters” because we acknowledge
that the choice of such parameters has a normative component. Discussions be-
tween Stern (2007), Nordhaus (2008) and Weitzman (2007a) highlight the different
approaches to the choice of SDR. While Stern (2007) bases his assessment mostly on
low values and even chooses a PRTP of 0.1%/yr due to the responsibility towards
future generations, Nordhaus and Weitzman argue with descriptive arguments, that
such low values do not reflect the behavior of society.

The effect of a change in SDR on the outcome of a Cost-Benefit Analysis (CBA)
can be drastic, as pointed out by Weitzman (2007a). He further makes the point
that the strong mitigation action that Stern (2007) suggests, is a direct result from
his choice of low SDR. We confirm the result that SDR has a great impact on the
monetary values in a simulation but, in contrast to CBA, has little effect on the
optimal policy in Cost-Risk Analysis (CRA). This is not surprising as the optimal
policy is primarily defined by the climate target and not by the discount rate.

Therefore, it can be argued that the choice of trade-off parameter in CRA is also
normative (or the calibration point that is used). This would not be the case in
CBA with a damage function which is the result of careful impact assessment. This
chapter shows that a great strength of CRA lies in the reduction of the importance
of SDR by attributing the implied value judgment to the choice of a climate target.

Weitzman (2007a) considers the choice of SDR “the biggest uncertainty of all” when
constructing an integrated assessment model of climate change. To incorporate
such uncertainty in the model, Pizer (1999) treats the normative parameters like
any other uncertain parameter and a probability distribution is assumed. We follow
a different approach here and implement a sensitivity study to not mix uncertainties
in physical processes with normative discussions. We further analyze the forgone
welfare, if decisions are made under “wrong” assumptions of SDR.

The chapter is structured as follows. First the normative parameters are introduced
and the process of recalibrating CRA is explained. Section 4.3 shows the impact of
SDR on the expected costs of climate protection (ECCP), on the expected value of
perfect information (EVPI) as well as on the decisions. The final part analyzes the
loss due to a misjudgment of SDR. The results support the choice of low values and
confirm that the choice is not as important in CRA.

4.2. Normative Parameters in MIND

In the model MIND-L a CRRA function is used to calculate utility. This utility
is discounted by the PRTP which is an exponential discount rate. The utility loss
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(“risk”) from climate change is discounted by the same rate. For a deterministic
discrete consumption path, and neglecting population growth, the welfare would be
calculated according to:

W =
1

1− η
∑
t

C(t)1−ηe−tδ − βR(t)e−tδ (4.1)

The parameters η (CRRA) and δ (PRTP) depend on interpretation and ethical con-
siderations and may vary across people, societies and situations. In this analysis we
offer a sensitivity study on these parameters. The interested reader is referred to
Dasgupta (2008) and Arrow et al. (2013) and for further discussion of such param-
eters. In other publications that use CRRA and PRTP parameters (Cline, 1992;
Pizer, 1999; Weitzman, 2007b; Stern, 2007; Nordhaus, 2008; Garnaut, 2008) the
CRRA range from 1.5 to 2 and the PRTP from 0.05% to 3%/yr.

4.2.1. Social Discount Rate

Both normative parameters appear in the exponent of the economic part of the
welfare equation 4.1 and so, for exponential growth, they both have a discounting
effect. Assuming a growth rate α we get:

C1−η
0

1− η
∑
t

eαte−t(αη+δ) (4.2)

The effective discount rate is SDR = αη + δ which is called the social discount
rate, or interest rate. This formula is also known as the Ramsey equation. The
SDR is the rate with which future consumption changes have to be discounted to
calculate the net present value. Intuitively, the reason that CRRA influences the
effective discount rate is the fact that if there are decreasing marginal returns on
consumption, the future is valued less because it is very rich. The growth rate α will
depend on the normative parameters in some small way as well, but these second
order effects are neglected here.

In the simulations carried out in this thesis, we test 24 combinations of CRRA and
PRTP, shown in Table 4.1 together with the SDR. The growth rate is calculated by a
least square fit of an exponential function to the consumption path and shown later
in Figure 4.1c. The range of CRRA (0.75-5) and PRTP (0.5%-4%) is broader than
the choices in the literature, although we lack extremely low values. Stern (2007)
arrives at an implied SDR as low as 1.4%. The lowest we consider is 2.5% and the
reference case has an SDR of around 5.4%. This is a common value, implying a drop
to 1% of value after 90 years.
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PRTP (%/yr)
0.5 1 2 4

CRRA

0.75 2.5 2.8 3.7 5.6
1.5 3.9 4.4 5.3 7.2
2 4.9 5.4 6.3 8.2
3 6.9 7.4 8.3 10.2
4 8.8 9.3 10.2 12.1
5 10.7 11.1 12.2 14.1

Table 4.1. – The 24 combinations of CRRA and PRTP and the equivalent SDR in
%/yr. The value for the reference case from the previous chapter is in bold face.

Before we investigate the effects in MIND-L we briefly formulate the expected effects
as the SDR increases:

1. The future becomes less important, therefore the savings rate is reduced which
in turn reduces the growth rate.

2. The impacts of climate change mostly occur far in the future, so we expect
the risk-related ECCP to be smaller.

3. As the EVPI results from economic adjustments in the future, we would expect
an increasing SDR to decrease the EVPI.

An adjustment of the SDR causes a different strategy to be optimal. However,
calibration dictates that in the NOLEARN case a specific target has to be exactly
fulfilled. Therefore, a recalibration is necessary to ensure this goal. The next section
discusses the effect on the calibration parameter.

4.2.2. Estimating the Calibration Parameter

In CRA, the trade-off parameter is calibrated so that the optimal solution fulfills a
predefined target. If the normative parameters are changed, the balance is shifted
due to changing marginal costs and a recalibration of the trade-off parameter is
needed so that the target is met. In what way the trade-off parameter is affected
by a change in normative parameters is explored in this section. We show that the
recalibration can be internalized by formulating the trade-off parameter in terms of
the normative parameters.

The range for the trade-off parameter β spans many order of magnitudes and de-
pends strongly on CRRA (η) and PRTP (δ) as well as the cost structure of MIND-L.
An empirical analysis of β from equation 2.15 and its changes with η and δ led to
the conclusion that for MIND-L there is an independent and exponential depen-
dency of β on η and δ . The parameter β increases exponentially in δ and decreases
exponentially in η. This can be supported by intuitive arguments:
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� When δ increases it increases the devaluation of the future which leads to the
necessity of increasing the penalty for future temperature rises to reach the
same goal as climate change mainly happens in the future.

� When η increases, the marginal benefit from consumption declines. To adjust
the marginal benefit from risk reduction such that the same decisions are again
optimal, β also has to fall.

The empirical dependence that was found is of exponential form:

β = a e−bη+cδ (4.3)

where a, b and c are greater than zero and for the reference CRA (2°C, 66%) take
on the values a = 0.0209, b = 3.894 and c = 89.98. To find the reason for this
particular form, we simplify the problem starting from the original formulation:

W = max
X

tend∑
t=0

S∑
s=1

ps

U(X, t)︸ ︷︷ ︸
economic

− βR(T (X, t, s))︸ ︷︷ ︸
risk-related

 e−δt. (4.4)

As we only look at the NOLEARN case, the economic part is not probabilistic.
We also make use of the fact that risk happens later than economic welfare and
attribute a representative time step tC and tR accordingly. In this way the problem
is converted to a static problem and can be used to find supporting arguments for
the exponential dependency:

W = max
X

{
U(X)e−δtC − β

S∑
s=1

psR(T (X, s))e−δtR

}
. (4.5)

Using the cumulative emissions E as a condensed control variable and absorbing the
probabilistic parts into R(E) leaves:

max
E

{
U(E)e−δtC − βR(E)e−δtR

}
, (4.6)

where U is the utility function that maps cumulative emissions E to an associated
economic utility incorporating the economic costs of mitigation, and R is the risk
as a convex function in cumulative emissions. The time steps tC and tR are the
representative time steps for the economy and risk. The economic utility is influenced
mostly by decisions during the first decades due to the early investments needed to
transform the energy sector to fulfill the strict climate target. Risk comes into play
later in time as temperatures rise slowly. Therefore the value of tR is larger than tC .
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In the calibration process we find the value for β which ensures that the climate
target is met. This goal is reached with the same emissions, Ecal, independent of the
normative parameters as it depends on physical processes. Put differently, β is tuned
in order to make Ecal the optimal solution. In the optimal point, the derivative of
the functional is zero. Assuming a CRRA utility function U(E) we have:

β =
U ′(Ecal)

R′(Ecal)
eδ(tR−tC).

This equation shows the exponential dependency of β on δ. We chose tR and tC to be
the representative time points and referring back to the empirical finding c = 89.98
gives an estimate for the time lag between costs and risk of about 90 years.

We further show that the empirically found dependency on η can also be approx-
imately found in the static case describe above if we assume a utility function
U(E) = g(E)1−η/(1− η) with an economic equation g(E):

β = g(Ecal)
−η g

′(Ecal)

R′(Ecal)
eδ(tR−tC) (4.7)

β =
g′(Ecal)

R′(Ecal)
exp [−ln(g(Ecal))η + δ(tR − tC)] . (4.8)

A comparison with the empirical equation for β yields: a = g′(Ecal)/R
′(Ecal), b =

ln(g(Ecal)) and c = (tR − tC). This explains the functional form of the calibration
equation. If the exponential form of β is included in the dynamic welfare equation
of CRA we have:

W = max
X

tend∑
t=0

S∑
s=1

ps

U(X, t)︸ ︷︷ ︸
economic

−a e−bη+cδ R(T (X, t, s))︸ ︷︷ ︸
risk-related

 e−δt (4.9)

and reformulated:

W = max
X

tend∑
t=0

S∑
s=1

psU(X, t)e−δt −
tend∑
t=0

S∑
s=1

psR(T (X, t, s)) a e−bηe−δ(t−c). (4.10)

This implies that β effectively compensates for the large time shift in economic and
temperature effects by bringing the risk-related impacts into the same time frame as
the economic impacts by shifting them 90 years. Any change in δ now has equal net
effects on the marginal benefits of risk and economy. The risk aversion parameter η
changes the marginal benefits in the economy. The change is balanced by a similar
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shift in the risk-related part caused by the calibration of β. The coefficients a and
b are tied to consumption levels and model parameters of MIND-L.

The next part of the chapter answers the question what the effect of the change in
normative parameters together with the subsequent recalibration is.

4.3. Varying SDR

In this section we vary both CRRA and PRTP in the manner presented in Table
4.1. Sometimes the results give a smooth result with respect to SDR, which hints
at the fact that the CRRA’s role as risk aversion is negligible. Other times, the
results form a point cloud, i.e. SDR does not explain all effects induced by CRRA
and PRTP. To clarify the situation, lines of equal PRTP are included in most plots.
When interpreting the results it is useful to keep in mind that the reference case
analyzed in previous chapters has a SDR of 5.4%.

4.3.1. Cost of Mitigation

The EVPI is greatly dependent on ECCP (cost of mitigation plus welfare loss from
risk). The smaller ECCP is, the less room for improvement there is, and EVPI is
generally smaller. To assess the effect of SDR, we first look at the ECCP. Figure
4.1a shows the total ECCP and its economic and risk-related components. A visible
effect is that decreasing the discount rate from 5.4%/yr decreases the ECCP strongly,
economic and risk-related equally. Increasing the SDR also decreases the ECCP,
mostly through the economic part.

The economic value (red curve in Figure 4.1a) follows a functional relation to SDR
that resembles a log-normal distribution. The fact that all points lie on one line
indicates that CRRA and PRTP are interchangeable. We use this fact to find the
reason for such a behavior of the economic ECCP.

We make the assumption that the bulk of the economic costs are realized between t1
and t2 (for example 2015 and 2065, estimated from Figure 3.4). We further assume
that the costs do not change w.r.t. variations in SDR as roughly the same mitigation
has to be done to reach the climate target. This time frame is weighted differently as
the discount rate changes. We model this by aggregating two constant consumption
streams which differ between t1 and t2 by a constant a . The constant a represents
the added cost of mitigation. A discounting of δ is applied which represents the
total SDR in this case. To calculate the CBGE between the consumption streams a
linear utility function is assumed for simplicity:

CBGE =

´∞
0
C0e

−δtdt+
´ t2
t1
ae−δtdt´∞

0
C0e−δtdt

− 1. (4.11)
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Figure 4.1. – (a) ECCP divided into risk-related (brown) and economic (red) parts
for different social discount rates (SDR). The lines indicate equal PRTP. There are
four lines, one for each PRTP that was used in the simulation (0.5%, 1%, 2%, 4%).
The further the line is located to the right, the higher the PRTP. Panels (b) and (c)
show indications of endogenous growth which is closely related to the consumption
share of output. Values are plotted for NOLEARN and BAU cases. LEARN cases
would lie indistinguishably between these.

This simplifies to

CBGE =
a

C0

(
e−δt1 − e−δt2

)
, (4.12)

with an extremum at

δmax =
ln (t2/t1)

t2 − t1
. (4.13)

As seen in Figure 3.4, the majority of costs are realized between 2015 and 2065.
Inserting these as years from the starting point of the model (1995) into the equation
above yields a value of δmax = 2.8%. In the limits of δ, i.e. for very strong and no
discounting, the CBGE goes to zero. This is the reason for the log-normal type
form of the economic ECCP. It is a resonance between the time scale of the costs,
i.e. transforming the energy system, and the discounting. We see this behavior again
for the EVPI for the same reasons.

The anticipated effect of readjusting decisions, due to a change in preferences, is
played down as a result of the recalibration. There is, however a change in the
economy which can be seen in Figure 4.1b and c, which shows the consumption
share of output as well as the growth rate of consumption for the NOLEARN and
BAU case. The LEARN cases are not plotted as they are largely indistinguishable
from NOLEARN. As the SDR increases, the consumption share increases and the
growth rate of the economy decreases in-line with general economic wisdom and
equals what we anticipated earlier.
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4.3.2. Value of Information

Figure 4.2a shows the EVPI for different learning points and different SDRs. As
expected, the value is smaller for all choices of SDR if learning arrives later. The
effect of SDR can be described by considering SDR as valuing the future: an increase
in the SDR devalues the future and therefore also decreases the EVPI stronger, the
later information arrives. For low discount rates (which are more relevant for policy
makers) the EVPI is smaller for immediate learning but decreases much slower and
therefore results in higher values for learning in 2040.
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Figure 4.2. – EVPI depending on SDR. (a) EVPI(L,2075) where L is varied from
2015 to 2070. The color gradient indicates the SDR. For lower SDR, the EVPI
drops more slowly as the year of learning is moved into the future. (b) and (c)
shows the EVPI(2015,2075) and ECCP(2075) respectively split into economic (red)
and risk-related (brown) parts. Lines represent constant PRTP (0.5%, 1%, 2%,
4%). If a line ends (or starts) further to the right it has a higher PRTP. From (c) it
is evident that the relative value of information mostly depends on PRTP and not
on CRRA.

In Figure 4.2b a similar concave behavior can be seen for total EVPI as for economic
ECCP in the previous section. The lines in Figure 4.2b and c represent lines of
constant PRTP. If a line ends (or starts) further to the right it has a higher PRTP.
If the lines lie on a shared path, PRTP and CRRA have the same effect on the
analyzed value. For the total EVPI the reason the points lie clustered on a line is
a compensating effect of economic and risk-related value for a change in PRTP. As
PRTP increases, the risk-related EVPI increases (as brown lines move to the right,
points move upward) but the economic EVPI decreases (red lines further to the right
are lower).

Figure 4.2c shows the relative reduction of the ECCP by learning in 2015. Changing
CRRA does not seem to affect the economic reduction of ECCP much (point to
point on one line) as the lines are relatively flat, however, a change in PRTP (line
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to line) can affect the relative value greatly. This implies that PRTP defines the
relative economic benefit from perfect information whereas CRRA plays a minor
role. Overall, the relative reduction in cost of mitigation (economic ECCP) is about
three times larger (25%-37%) than the relative reduction of risk (10%-15%).

4.3.3. Effect on Decisions

What remains to be shown is the absolute effect of SDR on temperature and on
decisions. For sake of simplicity only the NOLEARN case is considered to find the
effect of normative parameters on the mitigation strategy. Due to the nature of CRA,
and the recalibration that is done for each combination of normative parameters,
the effect on the mitigation strategy is small. This is because the same target has
to be reached in all cases.

In Figure 4.3a, the annual emissions are plotted. All are rapidly decreased in order
to reach the target. A bundle of trajectories decrease to zero emissions about a
decade later. These are the simulations with a PRTP of 4%. One would assume
that due to these extra emissions the resulting temperatures have to be higher. This
is only the case on average, the maximum temperature is actually the same. The
reason for this is that an investment into fossil fuels causes short term emissions of
aerosols creating a short term reduction in climate forcing. This shifts the peaking
of the temperature a few years and allows for a slight increase in emissions. After
the peak, the temperatures always stays about 0.05°C higher which incurs a greater
nominal risk, however, due to the larger discounting, this is accepted.
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Figure 4.3. – (a) Emissions, (b) expected temperature and (c) fossil to renewable
energy ratio in 2050 for the NOLEARN scenario and 24 combinations of CRRA and
PRTP plotted as SDR (shades of brown). (c) shows lines of equal PRTP (yellow
0.5%, red 1%, black 2% and cyan 4%). (a) shows a difference in emissions in the
year 2050 which is again reflected in (c) (cyan line). For 4% PRTP more is emitted
but due to cooling effect of aerosols, temperatures still reach the target at the
expense of higher temperatures later. (b) is evidence for little effect of SDR on the
temperature.
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Figure 4.3b shows expected temperature and it is easy to see that, no matter what
the choice of normative parameters is, the solution has the same maximum. Overall
the effect on the actual temperature is very small. This highlights a key benefit of
CRA: the decisions are only influenced marginally by the choice of SDR.

The increased fossil fuel activity of the 4% PRTP case can be seen by plotting the
ratio of fossil to renewable energy for the year 2050, as shown in Figure 4.3c. The
gray curve shows around 8% whereas all other curves lie mostly below 2%. This case
is not of much relevance because 4% PRTP is widely viewed as unsupportable but
it shows nicely that different preferences can lead to different solutions even though
the same climate target is reached in an optimal fashion.

4.4. Misjudged Discounting

4.4.1. Correct Normative Parameters

For the following analysis, we make an exploratory assumption that there is a choice
of normative parameters that best reflects the behavior or ethical preferences of the
global community. The parameters that are used for the policy advising scenario
might deviate from this best choice. This section finds the impact of such a “wrong”
choice in terms of forgone welfare.

Before going into the analysis a few points to be considered are presented. Firstly,
misjudging the SDR will over or under estimate the impact of the climate in relation
to the economic decisions in general. CRA relies on a recalibration to a target, which
is itself a normative decision. This recalibration balances the risk-related values to
any changes in normative parameters as shown in Section 4.2.2. This effect greatly
reduces the impact of a wrong selection of parameters on the climate.

Secondly, the economy will develop according to the savings rate, which is derived
from the interest rate, which in turn is represented by the SDR. The Ramsey type
growth model used follows the paradigm that the economy will develop in an optimal
sense. Lets assume that the interest rate is internal to the economy and determined
by the behavior of agents, which will then drive the economy along an optimal path.
This implies that it is not possible to force the economy along a non-optimal path,
provided the market is free to adjust. This implies that a climate policy might lead
to suboptimal decisions in the energy sector but the rest of the economy is free to
adjust to the situation in an optimal way.

The counter assumption would be that the policy maker, steers the economy (or
places incentives accordingly) to follow a calculated optimal path even though the
SDR that was used to calculate this optimal path might not reflect the preferences
of society. We refer to this situation as a fixed economy. Both assumptions allow for
the calculation of the loss of welfare, if optimization is done under the assumption
of a “wrong” SDR. The two scenarios are:
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1. Fixed economy: all investment decisions, consumption paths, and risk is found
using a particular set of parameters p0. The loss is calculated by evaluating
these decisions under parameter set p1.

2. Free economy: only investments in the energy sector are fixed, i.e. the climate
policy is fixed to the strategy found in a simulation with parameters p0. The
loss is calculated if these decisions were evaluated under parameter set p1 while
other decisions, such as consumption and investment into the common good,
can adjust to maximize utility.

4.4.2. Loss due to Misjudgment

To find the welfare loss described above we compare optimal solutions with subopti-
mal solutions. We divide the control variables into two camps: the ones that control
energy policy x and others y. In the “free economy” case, the controls y are chosen
by the market mechanism to be optimal, whereas x is chosen by the energy policy
defined by the policy maker. Furthermore, we consider two possible control paths
x0 and x1 representing the optimal decisions for a set of normative parameters p0

and p1 respectively. We denote the welfare as W (xi, yj; pj) as it depends on controls
and normative parameters. If i = j the solution is optimal, however, if a policy x0

is chosen on the basis of p0 but the policy is evaluated in a world where p1 is true
then the welfare is necessarily suboptimal.

With a fixed economy, we compare the welfare in a world where the controls y can
not be adjusted by the market mechanism and are set by the optimization under the
assumption of normative parameter set p0. If it turns out that the true parameters
are p1 the CBGE loss can be calculated by:

∆fix =

[
W (x0, y0; p1)

W (x1, y1; p1)

] 1
1−η

− 1. (4.14)

On the other hand, if the economy can adjust freely to the true parameters we have
a smaller loss calculated by:

∆free =

[
W (x0, y1; p1)

W (x1, y1; p1)

] 1
1−η

− 1. (4.15)

Note that the welfare values, that are compared, always have to be based on the
same normative parameters, otherwise the calculation of CBGE is not valid. Figure
4.4a shows a contour plot for the “fixed economy” case. The SDR is calculated by
the Ramsey equation from the normative parameters CRRA and PRTP as discussed
in Section 4.2. The hypothesis (the parameters used for policy finding) represents
p0 whereas the reality is p1. The loss of welfare can reach up to 40% CBGE which
is an astonishingly large value. It can be interpreted as the value that would be lost
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if society were forced along a path devised by a dictator with completely different
discounting preferences than the aggregate society or an ill-posed incentive scheme.
This large loss only appears if the true SDR differs by more than a factor two from
the hypothesis.

Figure 4.4b shows the case for the “free economy”. Here the economy can adjust to
the “true” normative parameters which reduces the welfare loss greatly. The leftover
welfare loss originates only from suboptimal investments into the energy sector. This
loss can be interpreted as the loss of welfare if an energy policy is fixed that is based
on wrong assumptions about the SDR of society. It seems that it is worse to assume
a high discount rate if it is low in reality (bottom, right), than vice versa. In general,
it is soothing to know that an error by about 2% points SDR only creates a loss of
below 0.2% as long as the market is free to adjust.
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Figure 4.4. – Loss of welfare in CBGE percentage if policies are optimized under
different normative discount rates, than the model is subject to. (a) shows the result
including the whole economy in the fixed decisions and (b) shows the situation if
only the energy sector is decided bases on the hypothesized parameters.

This small loss is partly due to the recalibration which is at the heart of CRA
and constitutes one of its strengths. If it is assumed, that the economy will grow
along an optimal path, and it is up to the policy maker to decide the energy policy
(investments), using a CRA with a target greatly reduces the impact of the choice
of normative parameters. The underlying reason being that CRA acts similar to
a CEA by reducing the climate policy question to “How to fulfill the target at the
lowest cost possible?”. A real trade-off between costs and benefits, as is done in
CBA, is only a second order effect. The normative decisions are exported to the
choice of climate target.

It is unclear what this result means for the policy maker and we offer some ideas here.
Policy makers should rather use lower discount rates to find optimal climate policy,
as the error made, if the choice of SDR turns out to be incorrect, is smaller than
vice versa. This argument is also supported by Weitzman (2007a). An argument

61



Chapter 4 Discounting and Risk Aversion

to further support a choice of lower than normal SDR is that society has a lower
discount rate for climate problems than for the actions in the economy. Similarly,
people tend to have much lower discount rates when considering the future of their
child, than when making purely economic decisions.

It is generally easier for policy makers to discuss targets rather than normative
parameters, therefore the recommendation would be to focus on setting a widely
accepted consistently posed target, rather then figuring out which the correct nor-
mative parameters are.

4.5. Discussion

This chapter shows the, possibly extreme, effect a change in normative parameters
can have on a wide variety of aspects. But what implications does this have and
how can this information be used productively?

It is still an open question how to map society’s preference into a model of the
climate problem. To some extent, a climate target takes on the role of determining
how important a stable climate is to the decision maker. In a CBA this is done
through the damage function in conjunction with the discount rate. The role of the
discount rate is greatly reduced in CRA due to the recalibration, hence, SDR ceases
to be “the biggest uncertainty of all” (Weitzman, 2007a). Consequently, for finding
climate policy, improved normative parameters are not as important when using
CRA because the preference order is captured by the target used for calibration.

However, if EVPI or cost of mitigation is sought to be the major output of the
analysis, then the normative parameters have a large effect and more research is
needed into which normative parameters are supported by society. Model output
can vary an order of magnitude for these monetary results of the analysis. The ECCP
varies from 0.5% CBGE to a maximum of 4% CBGE. The maximum is reached at
an SDR between 5% and 6%/yr. The economic ECCP, i.e. the cost of mitigation,
peaks with a value of 1.5% CBGE.

The EVPI for learning in 2015 varies in a similar fashion between 0.2% and 0.7%
CBGE. Formulated as a ratio, the EVPI makes up between 15% and 25% of ECCP.
This fraction increases, if just the economic parts are considered, to a range of 25%
to 37%, i.e. roughly 1/3 of the cost of mitigation can be saved if information arrives
in 2015.

The reason for the strong dependence on discounting is that the SDR is responsible
for the relative importance of time steps. Suppose a stream of utility changes is
strongest in a specific time interval, as for example the value of information is be-
tween the compared learning time points. Then the SDR will define the importance
of this time interval and therefore change the value greatly, even though decisions
have not changed at all. Discounting may even be so strong, that the time interval
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considered is discounted into irrelevance, or discounting is so small that the time
interval looses importance next to all the subsequent time steps. This discussion
clarifies that there is an SDR for which values such as EVPI and ECCP reach their
maximum, i.e. when the time constant of the discount rate resonate with the time
horizon of the effect that is analyzed.

In MIND-L the SDR which resonates with the cost of mitigation as well as the value
of information lies around 5%/yr which is a good average of the popular choices.
This is equivalent to a time constant of 20 years.

To find out if 5%/yr would be a good choice, we find the loss that we would endure
if, in truth, society endorsed a different SDR than the one used to find the optimal
climate policy. For discount rates in the span of 2.5%/yr to 12%/yr the loss of
welfare would lie below 0.5% CBGE which is in the same order of magnitude as the
EVPI.

We find that it is generally better to underestimate the SDR than to overestimate
it. This is beneficial because ethical discussions tend to drive the discount rate to
lower values and it is in line with Weitzman (2007a), who explains that in problems
with such long periods it is best to use interest rates at the lower end of possible
values. Therefore, we recommend using an SDR below 5%/yr.

Our analysis is also related to the work by Dietz & Matei (2013) who devise a
theory of time-stochastic dominance to find sets of normative parameters in which
one solution is dominant. Our approach relaxes this theory to a more moderate
question of finding an optimal solution which performs well in a wide range of
possible SDRs. Another related theory is the minimax regret theory by Savage
(1951) which aims to find the choice which brings the least regret in the worst case.
This can also be applied here but is heavily dependent on the range of SDR that is
analyzed and therefore the usefulness is questionable in this situation.
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5. Analytical CRA and further
Approximations

5.1. Introduction

The overall goal of this chapter is to harvest benefits from using simplified models
to understand fundamental relations and interactions. Throughout the analysis
presented so far, simple relationships have been found between parameters and model
results such as the exponential dependence of the trade-off parameter on discount
rate and risk aversion or the dependence of value of information on the social discount
rate. These are indicators that MIND-L’s evaluation with a Cost-Risk Analysis
(CRA) and a climate target could be represented by simpler equations and still
yield important insights.

The aim of the first part of this chapter is to find analytical expressions for optimal
emissions and to understand the mechanisms behind the optimization. Giving an
analytical expression for value of information is difficult and beyond the scope of
this thesis, therefore we restrict ourselves to calculating optimal emissions which
still allows for some insight. The first sections introduce the simplifications that are
needed to formulate the static model. Next, the no-information case is calculated and
the calibration to a target is conducted. Lastly, we calculate the optimal emissions in
the perfect information case, distinguishing four cases. An example plot is provided
to show the situation if the climate target is very strict.

The second half of the chapter looks into the shape of the optimum of a standard
CRA simulation with MIND-L, without learning, i.e. the same scenario presented
in Chapter 2. The immediate vicinity of the optimal solution is probed by adding
small variations to the main control variables. The main control variables are chosen
to be the investments into renewable and fossil based energy until 2150, yielding 52
variables.

By studying the welfare loss that is inflicted if the solution is forced away from the
optimum by randomly drawn offsets, a second order function can be found that
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describes the shape of the welfare equation at the optimal solution. The coefficients
of the function allow for an assessment of which decisions, or variables, are most
important.

5.2. Analytical Static CRA

In Chapter 2 CRA was introduced by using a static model. A lot of insight can be
gained by constructing a static model, as it is much simpler to grasp and often is a
good first approximation for a dynamic problem. In discussion about the trade-off
parameter and recalibration in Chapter 4 it was demonstrated that the climate’s re-
sponse time scale also expresses itself in CRA. This leads to the key assumption that
the climate problem can be conceptually split into two time steps. In the first time
step, the economic decisions are made and in the second step, the climate impacts
are realized depending on the economic decisions. This allows for the construction
of a static model and can be backed up by considering the plot of expected costs of
climate protection (ECCP) divided across time as shown in Figure 3.4 and in Held
et al., 2009.

Therefore, CRA is reformulated as a stylized tradeoff between a decision to mitigate
now and the effect of climate later. In essence this is a two time step model but
without mitigation decisions in the second step as well as no climate effect in the
first step. The reason being that a target such as 2°C requires strong early miti-
gation and temperatures have not risen far enough to matter during the first time
step. A further simplification is reached by only considering no information or per-
fect information situations. A more complex framework might include act-learn-act
dynamics but to understand what CRA does this is not necessary.

This section formulates CRA and calculates the optimal emissions analytically to
enable future analysis on this level. We show that there are four cases as already
described in Section 3.2.3.

The dynamic problem for the case without learning is reprinted here for convenience:

W = max
X

tend∑
t=0

S∑
s=1

ps

U(X, t)︸ ︷︷ ︸
economic

− βR(T (X, t, s))︸ ︷︷ ︸
risk-related

 e−δt (5.1)

We conduct the following approximations and simplifications to arrive at a static
model:

1. The control variable is assumed to be cumulative emissions E. This choice
has enjoyed wide popularity due to its simplicity and good capacity to capture
future temperature rise.
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2. Temperature is calculated by T = Eθρ1 where θ is the climate sensitivity
which is uncertain and ρ1 is a conversion parameter. The climate sensitivity is
distributed according to f(θ) which is assumed to be log-normal throughout
this thesis. The parameter γ that was used in Chapter 2 is equivalent to θρ1

but the added distinction is needed here to be able to interpret θ as the climate
sensitivity.

3. The risk from a temperature increase is calculated by the exceedance amplitude
above the guard rail: Θ (T − Tg) (T − Tg) where Θ is the Heaviside function
and Tg is the guard rail.

4. The economic utility is replaced by a deviation from the exponential growth
path, i.e. as negative costs of mitigation. We choose C(E) = ρ2E

−n where
ρ2 is again a conversion parameter. It is a reasonable choice because it bears
close resemblance to the CRRA function and features infinite marginal costs
at E = 0.

5. Discounting is done by introducing representative time steps, as has been done
in Section 4.2.2.

These changes result in the following simplified form:

W = max
E

ˆ ∞
0

{
−ρ2E

−ne−δtC − βΘ (Eθρ1 − Tg) (Eθρ1 − Tg) e−δtR
}
f(θ)dθ (5.2)

If no learning is modeled, the cumulative emission E (in the following only referred
to as “emissions” for simplicity) is a scalar, i.e. for all states of the world the same
decisions are made. If learning is modeled, the emissions are a function of the value θ
that is “learned”. The first step in a CRA is to calibrate the no-information scenario
to the desired climate target. Then the optimal emissions for the perfect information
case can be determined.

5.2.1. The No Information Case

First we discuss the case of no learning and conduct the calibration, similar to
Section 4.2.2. A calibration target is given by the temperature guard rail Tg and
“safety” pg (probability of staying below Tg). This target is just reached if E is equal
to Eg which follows from the temperature equation: Tg = Egθgρ1 where θg is the pg

quantile of the climate sensitivity, i.e.: F (θg) = pg. To simplify the expression we

pull parameters together into β̂ and omit any constants as they do not affect the
maximization problem (Ŵ = W/

(
ρ2e
−δtC

)
). The welfare reads:

Ŵ = −E−ng − β̂
ˆ ∞
θg

(Egθρ1 − Tg) f(θ)dθ (5.3)
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with

β̂ = β
e−δtR

ρ2e−δtC
=

β

ρ2

e−δ(tR−tC). (5.4)

Further, we define a general function H(E), to replace the integral in equation 5.3
(for E = Eg). We also define θ̄ as the expected value of θ. The welfare function is

reduced to Ŵ = −E−n − β̂H (E) with:

H(E) := Eθ̄ρ1 − Tg + ρ1E

ˆ Tg
Eρ1

0

F (θ)dθ, (5.5)

It is helpful to calculate the derivative of H(E) w.r.t. E:

ĥ(E) := H ′(E) = θ̄ρ1 −
Tg

E
F

(
Tg

ρ1E

)
+ ρ1

ˆ Tg
ρ1E

0

F (θ)dθ. (5.6)

The expressions Tg/ρ1E is repeated often and represents the climate sensitivity θ∗

that is necessary for the emissions E to reach a temperature Tg. By transforming the
coordinates and carrying out the integral in equation 5.6 a simplified representation
of ĥ can be found1:

h(θ∗) = θρ1

[
1− F

(
θ∗e−σ

2
)]
. (5.7)

For the further calculation we define:

h̃(θ∗) := 1− F
(
θ∗e−σ

2
)

(5.8)

which is only dependent on the distribution of θ, shown in Figure 5.1. For a log-
normal distribution f(θ) = LN (0.973, 0.4748) and climate target of 2°C with a
safety of 66%, the approximate value of h̃(θg) ≈ 0.5.

With these helper functions we can reduce the maximization problem to:

max
E

{
−E−n − β̂H (E)

}
. (5.9)

1For this the following equation is necessary:
´ x
0
F (θ)dθ = xF (x) − θ̄F

(
xe−σ

2
)

assuming that

F (θ) is the cumulative distribution function of a log-normal distribution with parameters µ and
σ.
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Figure 5.1. – A plot of h̃(θ∗) where θ∗ is the climate sensitivity which makes tem-
peratures rise to Tg if emissions are E, i.e. θ∗ = Tg/(ρ1E). The circle marks the
value of h̃(θg) which is roughly around 0.5.

The optimality condition, that the first derivative with respect to E is equal to
zero, leads to the following expression for the trade-off parameter, ensuring that the
derivative is zero exactly at E = Eg:

β̂ =
nE−n−1

g

h (θg)
. (5.10)

Reinserted into the original welfare equation we have an expression for the optimal
welfare:

ŴNL = −E−ng −
nE−n−1

g

h (θg)
H (Eg) . (5.11)

This completes the calibration process and describes the case with uncertainty and
no learning. The optimal emission strategy is Eg by design and equal for all states
of the world θ. For the business as usual (BAU) case, we assume that the maximum
feasible emissions are Emax which would lead to a (scaled) welfare −E−n−1

max because
there are no effects from the climate in the BAU case. The scaled welfare is multiplied
by ρ2e

−δtC to be scaled back into the original welfare units. Assuming n > 0 and a
large value for Emax results in BAU welfare to be close to zero. The cost of mitigation
is represented by the change of welfare from the BAU welfare level to the economic
part of WNL given by −ρ2e

−δtCE−ng .

5.2.2. The Full Information Case

In the case of full information, the optimal emissions E(θ) depend on the value
of θ that was learned. To reach the overall welfare the expected value across θ is
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calculated. The complete and calibrated welfare equation reads:

Ŵ =

ˆ ∞
0

max
E(θ)

{
−E(θ)−n −

nE−n−1
g

h (Eg)
Θ (E(θ)θρ1 − Tg) (E(θ)θρ1 − Tg)

}
f(θ)dθ.

(5.12)

For clarity, we first look at the maximization for a specific value of θ and later include
the expected value operation. If upper and lower feasibility limits on cumulative
emissions are assumed, the optimization has four possible regimes in θ that are
analogous to those identified in Section 3.2.3. The regimes are distinct in the way
their optimal emissions are calculated and can be separated by three limiting values
of climate sensitivity: θlow, θsw and θhigh.

1. If θ < θlow even the BAU case emissions do not produce temperatures above
the guard rail and therefore no mitigation has to be done. This leaves the
optimal cumulative emissions to increase to:

E∗1 = Emax. (5.13)

2. If θlow < θ < θsw the optimal solution is to stay below the guard rail, i.e. just
reach it, and pay the costs for doing so, because the marginal risk from crossing
the guard rail surpasses the marginal cost saving. The optimal emissions are
given by:

E∗2(θ) =
Tg

ρ1θ
. (5.14)

3. If θsw < θ < θhigh the full trade-off between risk and cost is made. The first
order condition derived from equation 5.12 reads:

nE(θ)−n−1 =
nE−n−1

g

θh̃ (θg)
θ. (5.15)

Therefore, optimal emissions are given by:

E∗3(θ) = Eg

(
θ

θh̃ (θg)

)− 1
n+1

. (5.16)

4. The last regime covers the case that θ > θhigh with resulting optimal emissions
below the feasibility limit forcing the solution to maximum mitigation:

E∗4 = Emin. (5.17)
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The lower limit θlow is found by equating Emax and E∗2(θlow) to find the value of
climate sensitivity for which even maximum emissions would not breach the guard
rail:

θlow =
Tg

ρ1Emax

. (5.18)

The value of climate sensitivity (θsw) for which the regime switch from 2 to 3 takes
place when the marginal cost of staying below the guard rail is equal to the marginal
risk of crossing it. This is the same as finding the point at which the optimal

emissions for case 2 and 3 are identical, i.e. E∗2(θsw)
!

= E∗3(θsw). For convenience and
future reference the optimal emissions at this point are referred to by Esw:

Esw = Eg

(
θsw

θh̃ (θg)

) 1
−n−1

=
Tg

ρ1θsw

, (5.19)

θsw = θg

(
θg

θh̃ (θg)

) 1
n

. (5.20)

The value of θhigh is more complicated as it depends on the previous values. It lies
at the point where the otherwise optimal emissions begin to be less than Emin. A
differentiation has to be done by the relation between Emin and Esw. This defines
which of the cases (2 or 3) is active when Emin is reached. Once this is known, θhigh

is calculated by equating the optimal emissions accordingly:

Emin > Esw : E∗2(θhigh)
!

= E∗4(θhigh), (5.21)

Emin < Esw : E∗3(θhigh)
!

= E∗4(θhigh). (5.22)

From this it follows:

θhigh =


Tg

ρ1Emin
Emin > Esw

θh̃ (θg)
(

Eg

Emin

)n+1

Emin < Esw

. (5.23)

Note that if Emin > Esw, case 3 is never realized, as the optimal emissions reach the
bound before a trade-off with the risk would be optimal.

We have now calculated all four possible optimal emission expressions and the lim-
iting values for θ. Hence, we can now formulate the expected welfare for the perfect
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information case. The completely expanded expression is given in Appendix A.4, we
show here the simplified end result assuming that θhigh > θsw and using the previ-
ously determined optimal emissions. We also divide the total welfare into economic
welfare ŴC and risk-related welfare ŴR components:

ŴC =− E−nmaxF (θlow)

−
ˆ θsw

θlow

E∗2(θ)−nf(θ)dθ

−
ˆ θhigh

θsw

E∗3(θ)−nf(θ)dθ

− E−nmin (1− F (θhigh)) , (5.24)

ŴR =β̂
( ˆ θhigh

θsw

(E∗3(θ)θρ1) f(θ)dθ

+ Eminρ1

ˆ ∞
θhigh

θf(θ)dθ

− Tg (1− F (θsw))
)
. (5.25)

5.2.3. Special Case of Strict Targets

The tedious analytical derivation of welfare now bears fruit by giving insights into
the situation if the target is strict, i.e. the target is such that it can only be met in
the no-information case if emissions are close to Emin. We highlighted characteristics
thus far in the thesis that lead us to the claim that the 2°C and 66% target is quite
strict and produces optimal emissions that are close to the feasibility limit. We make
use of this as a simplification by stating that the optimal emissions in the no-learn
case, Eg, are very close to the minimum emissions, Emin. To study the implications
we first calculate an expression for Esw by inserting equation 5.20 into equation 5.19:

Esw = Eg

(
θh̃ (θg)

θg

) 1
n

. (5.26)

The mean climate sensitivity lies at 2.96 whereas θg is the 66% quantile (for a 66%
safety target) and lies at 3.22. We already stated above that h̃ (θg) ≈ 0.5 for a 2°C
guard rail and 66% safety target. Together with the knowledge that n > 1 this
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allows the conclusion that Esw < Eg ≈ Emin. Therefore, case 3 is never realized and
the following holds for the upper threshold of the climate sensitivity:

θhigh =
Tg

ρ1Emin

. (5.27)

This finding can explain the fact that temperatures gravitate towards a 2°C anomaly
after learning (see Figure 2.7a). In other words, the guard rail acts as an attractor
because it is the only optimum which is not at the emission bounds.
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Figure 5.2. – Optimal emissions (black) for perfect information about the climate
sensitivity θ. The optimal emissions for each of the four cases are also plotted in
thick colored lines. Various values of θ and emissions of interest are marked. The
assumptions made are: a target of 2°C and 66%; a minimum possible emissions level
at 90% of the optimal emissions of the no information case; for the cost function:
n = 2.

We close the analytic investigation with an example plot of optimal emissions shown
in Figure 5.2. Additional assumptions needed to create this plot are boundaries
(minimum and maximum) of possible emissions. The optimal emissions of the third
case (red curve) are never globally optimal. During the entire Case 2, i.e. between
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θlow and θhigh, the temperature exactly meets the guard rail which allows for the
assumption that the average temperature will be close to the guard rail. Another
interesting aspect is that the emissions in the no information case (Eg) are at the
lower end and so the value of incoming information is created by the possibility of
increasing the emissions if climate sensitivity is learned to be smaller than θg.

Risk-related value of information originates from the reduction in temperature and
emissions if climate sensitivity is learned to be above θg which only has a probability
of 34% by construction.

5.3. Approximating the Welfare Function

An IAM in an optimization framework finds the optimal decisions, i.e. those max-
imizing welfare. The result is a point in the control space and there is little in-
formation about the surrounding points of such an optimal point. For real world
applications it is relevant to know if the area around the optimum is flat or not. A
flat optimum has the benefit that even if decisions deviate from the optimal solution
by small amounts, the welfare loss is tolerable.

For MIND-L without learning we investigate the optimal solution to explore the
shape of the welfare function in the optimum and to develop an understanding
about what variations in decisions are acceptable. We will assume that 0.1% CBGE
(certainty and balanced growth equivalent) is an acceptable change in welfare as it
is in the range of year to year variability of gross world product. We hope to answer
two questions:

1. What are the most important decisions? By how much can decisions vary
without affecting the outcome by more than 0.1% CBGE.

2. Is there a time horizon for the decisions after which they become ineffective.
A simulation of the decisions further into the future than such a horizon would
not yield any benefit. This could optimize the horizon of the simulation for
the economy in IAMs and improve the model speed.

To this end, we vary the important control variables, namely investment into fossil
and renewable energy sectors over time. In total 52 variables are analyzed by taking
20000 draws from normal distributions centered around the respective optimal value
and constrained by feasibility limits (refer to Section 5.3.1). The reference case is
the NOLEARN scenario from Chapter 2. To estimate the welfare function we fit
a second order function to the welfare losses with the extremum set to equal the
optimal solution.

5.3.1. Control Variables

The control variables that are considered for study are investments into renew-
ables and investments into fossil fuels between 2015 and 2140. This results in
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a vector of 52 variables (MIND-L works with 5 year steps) which we denote by
x = ( xfossil xrenew ) and defined as:

x = I − Iopt (5.28)

where I and Iopt are the test point and the optimal values of the investments re-
spectively. The vector x represents deviations from the optimum control values and
is determined by drawing random samples from a normal distribution with a zero
mean for each variable. The normal distribution is the same for each variable and
chosen with a variance that produces welfare losses of around 0.1 % CBGE, the ac-
ceptable level decided upon above. The standard deviation is equal to 0.25 trillion
USD (which is about 1% of the initial production output of the economy in MIND-
L, see Figure 5.3 for clarification). If I is less than the lower limit of investments
for any of the 52 variables, that particular variable is bounded by the lower limit.
Hence, the distribution of xfossil is one-sided because the optimal investments are
zero and can not be decreased (see 5.3a and c).

Figure 5.3a and b show the distributions of xfossil and xrenew respectively whereby
it can be seen that the distribution is equal over time. These deviations are added
to the optimal investment paths and the resulting envelopes of investment paths in
the sample is shown in red in Figure 5.3c and d. Note that the distributions are
independent and identically distributed (i.i.d.), therefore, it is extremely unlikely
that an investment path follows one of the borders of the envelope exactly.

After all 52 variables have been drawn, these values are used to fix the investments
while all other decision variables are allowed to adjust during the optimization pro-
cess. The decision maker is not allowed to “waste” investment, i.e. any investment
into fossil fuels has to be converted into emissions eventually. The calculated welfare
is translated into a CBGE percentage loss compared to the optimum.

The CBGE loss that this non-optimality induces is shown in Figure 5.4a and is on
average around 0.1% CBGE by construction because we specifically chose the stan-
dard deviation of x to give welfare losses on this order of magnitude (by numerical
approximation). This allows an estimate to be made on how much the investment
decisions can vary without causing a significant loss of welfare, i.e. without diverging
too far from the optimum and creating more than 0.1% CBGE loss.

Therefore, the envelopes shown in Figure 5.3c and d can be viewed as the allowable
variation in investments, i.e. a variation with a variance of 0.25 trillion USD. What
the analysis is lacking is the inclusion of time. The goal is to find the possible
variances for each time step, that produce the same welfare effect. This can be
achieved by performing a regression to find the effect of a change of investment in
each time step.
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Figure 5.3. – Distribution of x, i.e. deviations of the variables from the optimum
for (a) fossil energy and (b) renewable energy. The absolute investment paths are
shown in (c) and (d). Fossil energy investment is close to zero in the optimum so
negative deviations are not possible.

5.3.2. Approximating Function

The functional form of the fit for the regression has to be chosen in a way that
forces the maximum to be at x = 0. This follows trivially from the fact that the
point denotes the optimal solution in the model run, therefore, any deviation has to
result in a loss of welfare. This is supported empirically by observing that there are
no positive values in Figure 5.4a. For there to be a maximum the function has to
have at least second order terms. Furthermore, the gradient at x = 0 has to be zero
forcing all linear and constant terms to be zero. We are left with only the second
order terms (1378 coefficients). The condition for x = 0 to be a maximum is that
the Hessian has all negative eigenvalues. This condition is difficult to implement as
a constraint on the regression and is therefore only checked in retrospect. The first
48 eigenvalues of the Hessian are negative whereas the last 4 are positive.

The root mean square error of the regression is equal to 0.0087% CBGE which is
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Figure 5.4. – (a) Distribution of the CBGE loss given in % with respect to the
optimal solution for 20000 random draws of control vector x. (b) The difference
between the second order fit estimation and the true deviations for the 20000 draws.

acceptable considering the order of magnitude of the non-optimality itself. The
distribution of the error is plotted in Figure 5.4b. In summary, the approximation
is well suited to represent MIND-L with CRA in the regime of 0.1% CBGE losses.

5.3.3. Coefficients

The resulting square coefficients are plotted in Figure 5.5. All coefficients that are
not significant to a 5% level according to the student-t test p-value, or are zero,
are white. Positive values are colored red and negative values are blue to black.
There are only 464 significant coefficients which are non-zero of a total of 1378. The
diagonal terms are the largest. The 95% confidence intervals, calculated from the
regression, are plotted in Figure 5.5d for the diagonal terms. The mixed energy
terms are the least significant as most values are small compared to the others. The
units of the coefficients are utils per square US dollar and very specific to the model
scaling and formulation, therefore, the absolute values are of little interest.

The first observation that can be made is that the welfare is more sensitive to changes
in investments into fossil energy than investments into renewable energy, for changes
of the same absolute magnitude. The reason for this is that fossil investments are
on the whole much smaller than investments into renewables (as seen in Figure 5.3c
and d). Especially early investments into fossil fuels have a strong negative effect
on welfare.

After 2050, both types of investments have roughly the same influence which is
much lower than in early years. The reason for this results from the fact that any
investments after 2050 do not affect the climate risk as much anymore and therefore
the welfare loss is merely due to the consumption loss which is the same for both
types of investments.
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Lastly, the effects of a change in one type of investment is largely independent from
a change in the other type as can be seen by the random pattern in Figure 5.5c.
The only notable mixed terms are for fossil investments at different time instances in
(a). This is due to the budget effect for emissions. If a sum was invested into fossil
fuels in one time instance then any subsequent investment will be worse because the
overall cumulative emissions are raised.
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Figure 5.5. – Coefficients of second order polynomial fit to estimate welfare of MIND-
L around the optimum of a NOLEARN scenario. The coefficients are divided into
groups where (a) both variables are investments into fossil energy, (b) both are
investments into renewable energy and (c) mixed terms. In Pane (d) the diagonal
terms are shown on their own with 95% confidence bounds. Only significant coeffi-
cients (5% level) are shown, all others are colored white. The main finding is that
the investments into fossil fuels in the first decades are the most important.

5.4. Discussion

The analytical model of CRA for the climate problem allows us to find analytical
expressions for the optimal emissions. We find four possible regimes for the optimal
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emissions in a perfect information scenario depending on the climate sensitivity that
is learned. The first case represents the decision to do no mitigation because climate
sensitivity is very low. In the second case, emissions are chosen to exactly hit the
guard rail whereas the third case consists of the actual trade-off and temperatures
cross the guard rail. The fourth case represents maximum mitigation.

Due to the fact that climate change is already quite advanced, the widely discussed
2°C target moves closer and closer to the feasibility limit (as modeled in MIND-L).
We show that this implies that an actual trade-off between risk and cost (Case 3) is
not made, instead the decision is made to either stay below the guard rail or pass
it as little as possible (by doing maximum mitigation). In the full dynamical model
this is not completely true but the probability share of cases that go into a trade-off
is around 16% of which most only violate the target for a few decades.

The second half of the chapter concludes that a variability of investments of up to
0.25 trillion USD (2012) creates about 0.1% CBGE welfare loss which is usually
treated as acceptable. The approximation of the welfare equation is intended to
be an exploratory study to gain insight into shape of the optimum. We found the
optimum to be flat with respect to investments after 2050 which leaves the possible
deduction that it suffices to represent the economy until around 2060. Another
possible inference is that learning after 2050 is of little value.

In contrast to a CEA, which produces infeasibilities if a small change in the invest-
ment decisions leads to the violation of the target, CRA allows for such an analysis
although a climate target is included in a fashion.
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Cost-Risk Analysis (CRA) is, so far, the only tool that enables a community that
supports climate targets to assess climate policies while including the possibility of
resolving uncertainty at some point in the future. CRA was first proposed for the
climate problem by Schmidt et al. (2011) and is a trade-off between expected utility
from consumption and expected utility loss from increasing temperatures, defined
by the risk metric.

This thesis applies the method and discusses the adjustments necessary to yield a
productive analysis. For the analysis, we borrow the concept of degree years as a
risk measure for climate change from Schneider & Mastrandrea (2005) and further
assume that a community exists which supports a climate target of staying below
2°C temperature rise with 66% probability (called “safety”). This assumption is
partly based on discussions of the UNFCCC (2011).

In the following, the main findings and contributions of this thesis are summarized
and we conclude with an outlook onto possible future applications and evolutions of
CRA.

6.1. Summary

The contributions and findings are divided into three sections: (i) the framework,
including all aspects that are necessary to calculate and understand the value of
information, (ii) robustness of CRA, showing how CRA reacts to changes of key
parameters and finally, (iii) other aspects of a learning event besides the value of
information.

(i) A Working CRA Framework

The originally proposed CRA (Schmidt et al., 2011) focused on a risk metric that
was based on the probability of violating a guard rail as it reflects Cost-Effectiveness
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Analysis (CEA) as close as possible. We showed that this leads to “sacrificing” if the
climate sensitivity is learned to be very high, i.e. mitigation is abandoned. To correct
this behavior, which is not in line with the assumed preferences of the community
endorsing climate targets, the risk metric is based on expected discounted degree
years (expected and discounted area below the temperature path and above the
guard rail). This prevents the sacrificing behavior as there is always an incentive to
reduce temperatures, even for small reductions.

The remaining degree of freedom for the risk metric is the trade-off parameter con-
necting risk to utility. The trade-off parameter sets the marginal value of reducing
temperatures and its value was not discussed specifically in previous publications.
We use a calibration technique, previously unexplored in climate science, to set the
trade-off parameter to the lowest value that still produces an optimal solution that
fulfills the climate target. The set up of the model for the calibration should reflect
the situation in which the target was devised so that the preferences of the com-
munity can be properly reflected. The calibration in this thesis assumes a scenario
without future learning.

The CRA solution was compared to CEA with chance constrained programming,
with the same climate target. We find that optimal decisions are similar until 2050
and then diverge, where CRA mandates more mitigation and therefore leads to
lower temperatures than CEA. In total the cost of mitigation increases from 1.30%
(in CEA) to 1.52% CBGE1. We infer that CEA simulation results remain useful for
short term decisions if an uncertainty is considered that is not resolved.

By the novel approach of decomposing a change in welfare along three dimensions
we are able to determine the origin of such a change. The three dimensions are time,
states of the world and the differentiation between economic and risk-related sources.
The decomposition is done by linearizing and rescaling the CBGE equation. Applied
to the expected value of information (EVPI) and expected cost of climate protection
(ECCP, mitigation costs together with monetized risk) the following conclusions can
be summarized:

1. ECCP is divided roughly equally across economic and risk-related sources (see
Table 6.1) but is strongly skewed in the time dimension. The risk-related
ECCP mainly originates after 2050 and only from states of the world with a
climate sensitivity above 3.5°C, whereas the economic ECCP originates mainly
before 2050 and equally across all states of the world. This confirms the often
assumed conceptual time scale division between economic action and climate
impacts.

2. EVPI for learning in 2015 compared to learning in 2075 results in a total
value of 0.66% CBGE. About one third is due to risk-related changes, i.e. a
reduction in temperature, and the rest is due to consumption increases. Most

1CBGE is the certainty and balanced growth equivalent and can be interpreted as a change in
consumption each year. See Anthoff & Tol (2009) for details. Applied to 2012 gross world
product and assuming a 75% consumption share, 1% CBGE is equal to about 500 billion USD.
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of the economic value originates from the time between the compared learning
events (2015 – 2075) as this is the interval in which an information advantage
exists. The states of the world with a climate sensitivity below 3.5°C generate
most of the EVPI. The reason being that learning is most valuable if it allows
to increase emissions.

3. Economic EVPI makes up around 1/3 of economic ECCP (i.e. the cost of
mitigation). This is a substantial reduction and is comparable to the added
value of the carbon capture and storage technology (Luderer et al., 2011). The
reason for such a large value lies in the fact that, if information is not available,
the decision maker is forced to do close to maximum mitigation in order to
reach the target. Whereas, if available, around 66% of the states of the world
can emit more than before.

A summary of the EVPI and ECCP is given in Table 6.1.

% CBGE Economic Risk-Related Total

EVPI(2015,2075) 0.46 0.20 0.66
ECCP(2075) 1.52 1.93 3.45

Table 6.1. – EVPI(2015,2075) split into economic and risk-related terms and com-
pared to their ECCP counterparts. The economic ECCP is interpreted as the cost
of mitigation. Values are given in percentage CBGE which gives the certainty
equivalent change in initial consumption that would produce the same difference in
welfare for the same utility function and identical growth rates.

(ii) Robustness of CRA

CRA exhibits a robust behavior with respect to many aspects of the decision prob-
lem. These are summarized in the following:

1. If the risk metric is changed, for example by changing the linear penalty above
the guard rail to a quadratic function, the recalibration of the trade-off param-
eter to the given target compensates the change in marginal risk. Therefore,
the impact of the form of penalty function on the analysis is greatly reduced.
The EVPI, as well as the decisions, stay stable for a variety of penalty func-
tions above the guard rail. We tested functions ranging from a logarithmic
function up to a fourth order polynomial penalty function.

2. If the social discount rate (SDR) is varied2, the resulting optimal climate policy
is only marginally affected (optimal emissions only deviate around the year
2040 and only for extreme values of 4%/yr as a pure rate of time preference).
The calibration cancels out most of the effect of the SDR on the valuation of

2The social discount rate, or interest rate, is chosen implicitly by setting the pure rate of time
preference and the constant relative risk aversion.
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future climate risks. This is one of the strengths of CRA: it allows for the
partial substitution of the choice of SDR by the choice of climate target as a
valuation of climate effects. In contrast, the optimal decisions of a standard
cost-benefit approach with a damage function, are more sensitive to the choice
of SDR.

3. Although the effect of SDR on the optimal climate policy is small (see point
2), a misjudgment of the SDR can create a loss of welfare due to the resulting
suboptimal climate policy. This welfare loss is found to be moderate, around
0.2% CBGE for a misjudgment of 2%/yr. An underestimation of SDR has less
impact than an overestimation. We therefore recommend using values at the
lower end of the commonly used SDR, in line with Weitzman (2007a). This
also agrees well with ethical discussions about how the climate problem should
be discounted.

4. The safety for a case with learning is similar (ca. 70%) to the calibrated safety
target of 66%. This implies that our choice to do a calibration with the no-
learn scenario is not an important choice. If a learning scenario were to be
chosen, similar results would be obtained, underlining the robustness of CRA.
The underlying mechanism for this robustness is that 66% safety is close to
the maximum feasible safety in MIND-L of 74%.

5. An aspect of robustness is the sensitivity of the welfare to small variations
in the decisions. CRA with a climate target and without learning is found
to give a flat optimum relative to decisions after 2050. The most important
policy decisions are the investments into fossil fuels before 2050. The allowed
variability of investment decisions that produces welfare losses of only 0.1%
CBGE has a standard deviation of 0.25 trillion USD. This is substantial com-
pared to a value of around 4 trillion USD for investments into renewables in
2050. We conclude that it is not necessary to follow the optimal decisions
exactly and a certain economic variability is allowed without threatening the
welfare substantially. In the presence of thresholds such as a climate target,
this is generally not the case because a small variation can lead to the violation
of the target. The CRA approach to targets is robust w.r.t. this aspect.

(iii) Effects of Perfect Learning in CRA

Due to the relatively unexplored field of learning under climate targets, CRA has
enabled some conclusions relating to learning:

1. Changing the target by adjusting the guard rail or adjusting the probability
target has different effects only if learning is considered. Generally it is ex-
pected that relaxing a target yields a lower value of information, as the cost of
mitigation is also lower. However, relaxing the target by increasing the guard
rail increases the EVPI for information after 2020 (due to more states of the
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world doing zero mitigation) although EVPI is decreased if the target is re-
laxed by decreasing the necessary safety. This strengthens the need for clear
communications and formulations of a climate target and specifically how it is
adjusted, if need be.

2. We distinguish four possible regimes (“cases”) in which the optimal decisions
can lie depending on what value of the climate sensitivity is learned and we
calculate the optimal emissions for a static problem. The first regime (Case
1) plays a minor role (5% of state of the worlds) and includes the business
as usual decision if climate sensitivity is very low and the guard rail is not
reached. Due to the rather stringent target of 2°C and 66% safety, the range
of climate sensitivity that leads to a trade-off between cost and risk (Case 3)
is very small (16% ) and even zero for a static case. Most of the the solutions
(65%) drive temperatures to just under the guard rail, therefore preventing any
risk (Case 2). A long term violation of the target (Case 4) is due to learning
of a climate sensitivity which is so large that maximum mitigation is reached
(about 14%). Over long periods, the temperature will gravitate towards the
guard rail, which is a consequence of the structure of the penalty function,
also expressed by the small share of Case 3.

3. The EVPI is influenced greatly by the choice of SDR although optimal deci-
sions are not effected (as stated in the 2. point of the previous section). Both,
EVPI and ECCP, peak at an SDR of about 5%/yr and for extreme SDR
(2%/yr-14%/yr) a reduction by an order of magnitude is possible. This is due
to a matching of time scales of SDR and the climate problem itself. High SDRs
will devalue most of the relevant period between 2015 and 2100 and low SDR
will also reduce its weight because of increasing weight given to the time after
2100. This means that for extremely low SDR values, counter-intuitively, the
value of information is strongly reduced, as shown in Figure 4.2b, and with it
the incentive for research. The effect that giving the future more value would
reduce incentive for research seems odd and hints at the possibility that the
climate problem and the economy should be discounted at different rates.

Considering the thesis as a whole, there are two mechanisms that mainly drive the
results: (i) the robustness of the calibration technique and (ii) the fact that a 2°C
target with a likely chance is increasingly difficult to reach. The calibration technique
is a powerful tool to include preferences into an analysis. Instead of formalizing all
possible effects of climate change into one damage function under great uncertainty,
we make use of the already aggregated preferences present in the formulation of a
climate target. In this way we take some pressure off the quest to evaluate all possible
impacts and provide a tool to examine climate policy presuming that society is in
favor of a specific goal until uncertainty around impacts are reduced sufficiently.

In general, the thesis supports increased investment into the reduction of the uncer-
tainty around the climate sensitivity as well as the transient climate response. The
expected value of resolving the uncertainty in the next decade is on the order of 100
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billion USD (in 2012) per year. We hope that this thesis motivates scientists and
policy makers to consider the implications when formulating climate targets under
uncertainty and be clear about their preferences in the light of future learning.

6.2. Outlook

The calculation of the value of information, as was done in this thesis, allows for
the estimation of the value of projects that reveal such information. This thesis
concentrates on the uncertainty present in the climate response, hence the value of
information found can indicate the value of research and projects that are able
to reduce the uncertainty on the climate response. As Stevens & Bony (2013)
point out, research about the physicochemical properties of water in the atmosphere
could reduce this uncertainty. Increased measurement accuracy of the temperature
anomaly (also studied in Cooke et al. (2013)) and the ocean heat content would
also decrease the uncertainty. In general, measuring campaigns such as the Argo
system3 (3560 robotic probes deployed across all oceans) or remote sensing satellites
contribute to the reduction in uncertainty and all these investments work towards
harnessing part of the EVPI found in this thesis.

The structure of CRA that was used here, allows for the choice of a pure rate of
time preference and a constant relative risk aversion to describe the economic be-
havior. To ensure time consistency, the risk-related utility loss was discounted with
the same pure rate of time preference as was used to discount the utility stream from
consumption. However, the fact that society might have more complex preferences
raises the question how these can be uncoupled and how the emerging time incon-
sistency could be handled. To some extent this is done by calibration to a climate
target, however, possible future studies might separate these “normative” parame-
ters into economic and climate related parts. Furthermore, the constant relative
risk aversion also brings with it an elasticity of inter-temporal substitution. Traeger
(2014) has suggested to decompose the two effects to better map the preferences of
society.

There are other possible applications of CRA to problems that CEA struggles with.
Bosetti et al. (2009) and Luderer et al. (2011) study the effect of late participation
with CEA but are limited to studying time shifts that still allow compliance with
the target. Luderer et al. (2011) find that a delayed participation until the year
2030 does not allow a 450 ppm CO2 target in 2100. If participation is delayed until
2020 the authors allow for an overshoot before 2100 to establish feasibility. If large
uncertainty and learning is included in the analysis, it becomes increasingly difficult
to produce a feasible CEA (with chance constrained programming) simulation. The
underlying reason is that CEA is not an expected utility framework and therefore
a violation of the climate target constraint cannot be weighed against the danger

3http://www.argo.ucsd.edu/
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of doing so. CRA allows for overshooting the target indefinitely and therefore stays
operational even after elongated times of inaction which opens the possibility to do
thorough analysis of delayed participation.

CRA is designed to bridge the gap until impact models have matured. But when
is the point reached where cost-benefit analysis with damage functions should be
preferred over CRA? A hybrid decision framework is also possible by including all
the specific impact functions that are known and augmenting the analysis with a
calibrated risk function to cover impacts that were left out. Such hybrid models
promise to be an interesting field of future research.
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A.1. Numerical Considerations

Approximating the Heaviside Function

To ensure that the solver CONOPT can cope with the non-differentiable functions
(Heaviside function) they are approximated by error functions. This somewhat
blurs the guard rail targets on the order of 0.1°C. This is acceptable because natural
variability is also on this order of magnitude.

Finite Horizon Effect

The model runs until year 2200, i.e. a finite horizon. Effects that can arise include:

1. As the end approaches, the decision maker will cease to invest into mitigation
because the effects will only manifest beyond the horizon. This results in heavy
investment into fossil fuels in the last time steps of the model run for a climate
protection scenario.

2. The discount factor is not at zero in 2200, so that theoretically the years that
come beyond the horizon should still have an influence on the welfare. Without them
the importance is skewed towards the beginning, i.e. the future has less importance
than would be the case with an infinite horizon.

To reduce the impact of the finite horizon effect, the very last time step is discounted
by a value that includes the geometric sum of the discount factor continued into
infinity. In effect, this pretends that the economy is continued with the constant
consumption level of the last time step into infinity. We consider only the results up
to 2150 for the plots.
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Probability of Violation

Including a calculation of the safety (1 - probability of violating the guard rail) is
necessary in a CEA in the form of chance constrained programming. As CRA is a
trade-off analysis this is not necessary anymore. However, during the calibration a
measure of probability has to be introduced. The probability can either be calculated
per time slice (soft) or per temperature path (hard). As the calibration is done in the
NOLEARN scenario, in which the temperature paths of different SOWs cannot cross
each other, soft and hard crossing probabilities are the same. This strengthens CRA
as it does not depend on the definition of the probability measure. For reference the
equations for the different variants are given here.

The soft variant calculates the probability per time slice and then looks for the
maximum:

Psoft = max
t

{
S∑
s=0

psΘ (T (t, s)− Tg)

}
. (A.1)

Here Θ represents the Heaviside function. The hard variant has a stronger condition:

Phard =
S∑
s=0

psΘ
(

max
t
{T (t, s)} − Tg

)
(A.2)

No matter when the SOW crosses the guard rail, it is counted into the total proba-
bility of violation.

When calculating the probability for the LEARN cases in retrospect, we adopt the
hard interpretation by extracting the maximum temperature of each realization of
climate sensitivity. The probability is found by sorting the maximum temperatures
and giving each value a 5% probability quantile through which a cumulative distri-
bution is constructed (see Figure 2.6).

Optimization procedure

To make sure that the solution of the optimization is optimal, a strategy was followed
that tries to work against the effect of multiple optima. The concept relies on the
fact that if multiple optima exist they will be characterized by one solution with
higher temperatures on the whole and one solution with lower temperatures. Any
GAMS optimization can be started with an initial guess. The strategy consisted
of starting the model once with high temperatures (BAU case) and once with low
temperatures (NOLEARN case). The solutions used for the initial guess originate
from previous runs.
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The next step in the strategy is to restart the optimization four times to guarantee
that the solver found an optimum. The solutions for both strategies tended to
converge. We conclude that no relevant local optima exist that could complicate the
optimization.

Convergence for Infinite Climate Sensitivity

Weitzman (2009) opened a discussion by showing that expected damages can turn
out to be infinite. For the approach in this thesis the equivalent case would be
if expected risk were to be infinite. This is not the case due to the log-normal
distribution and the fact that the risk is linear in climate sensitivity as shown in
Figure A.1.
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Figure A.1. – Discounted degree years (“risk”) for different values of climate sensi-
tivity and for the same emissions.

Assuming the linear dependency of the risk on the climate sensitivity θ, the con-
vergence can be tested by calculating the integral over the domain of the climate
sensitivity by assuming a log-normal distribution f(θ) with parameters µ and σ.
The integral evaluates to less than infinity as it is the definition of the expected
value of the distribution:ˆ ∞

0

θf(θ)dθ = eµ+σ2

2 <∞. (A.3)

Therefore, by using a discounted degree years as the risk metric, we avoid the dismal
proposition so long as the probability distribution has a finite mean value.

We tested the convergence numerically by choosing a sampling technique which
includes the 99% quantile of the distribution and we found no substantial change in
model behavior.
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A.2. Descriptive Sampling

To be able to sample the distribution representatively, this thesis uses the same
strategy as was used by Lorenz et al. (2012b) and is similar to the ideas in Saliby
(1990) but instead of finding equiprobable samples numerically we do it analytically.
The derivation follows two steps: (i) division of the distribution into equally probable
intervals and (ii) representation of the intervals by mean value. The calculations are
shown here.

The mean value θ̄ of a log-normal distribution f(θ) is defined as follows:

θ̄ =

ˆ ∞
0

θf(θ)dθ (A.4)

To find N samples that have the same probability, the expected value of each of the
N quantiles has to be found. The above integral only works because the integral
over f(θ) is unity. If the mean value over only a part of the distribution is to be
found, the result has to be normalized. Over an arbitrary interval [a, b] the expected
value equals:

θa,b =

´ b
a
θf(θ)dθ´ b

a
f(θ)dθ

(A.5)

The intervals for N samples are [(n − 1)/N, n/N ] for n between 1 and N . The de-
nominator evaluates to F (b)−F (a), i.e. for the samples of interest: 1/N . Assuming
F−1 is the inverse cumulative distribution function then the nth sample is given by:

θn = N

ˆ F−1( nN )

F−1(n−1
N )

θf(θ)dθ (A.6)

This can be solved analytically to give:

θn =
1

2
θ̄N

(
Erf

[
σ√
2

+ InverseErfc

[
2(n− 1)

N

]]
− Erf

[
σ√
2

+ InverseErfc

[
2n

N

]])
,

(A.7)

where Erf and InverseErfc correspond to the error function and the inverse of the
complementary error function. The parameter σ is the second parameter for the
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log-normal distribution. This is a analytically exact way of calculating the samples.
The beauty lies in the fact that∑

n θn
N

= θ̄. (A.8)

We used N = 20, visualized in Figure A.2 and the values are given explicitly in
Table A.1.
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Figure A.2. – Sampling of the climate sensitivity distribution, LN (0.973, 0.4748),
taken from Wigley & Raper (2001).

SOW CS [°C] CDF [%] SOW CS [°C] CDF [%]

1 1.01 2.1 11 2.73 52.5
2 1.33 7.4 12 2.90 57.5
3 1.53 12.5 13 3.08 62.5
4 1.70 17.5 14 3.28 67.5
5 1.85 22.5 15 3.52 72.5
6 1.99 27.5 16 3.79 77.5
7 2.13 32.5 17 4.13 82.6
8 2.27 37.5 18 4.58 87.6
9 2.42 42.5 19 5.27 92.6
10 2.57 47.5 20 7.17 98.2

Table A.1. – Climate sensitivity (CS) and the value of the cumulative distribution
function (CDF) for each of the 20 SOWs.

A.3. CBGE Linearization Error

In Chapter 3 the change of CBGE between two simulations is calculated as a measure
of welfare loss and then split into parts according to the differences in welfare. Here
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we show the comparison of the actual total CBGE with the sum of the CBGE parts.
In the notation used in the chapter the error that is plotted in Figure A.3 is given
by:

Error =

(
∆̃

∆
− 1

)
∗ 100. (A.9)
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Figure A.3. – The relative percentage error of EVPI that is made when linearizing
the CBGE calculation for different SDR. Color gradient indicates the learning point.
The lighter the color, the later the learning point. Learning points lie between 2015
and 2075.

A.4. Analytical Welfare Equation

For the interested reader the complete expression for the welfare in a perfect infor-
mation case and assuming θhigh > θsw is given below. The probability distribution
of the climate sensitivity is given by f(θ) and the cumulative distribution by F (θ).
For the case where the above inequality does not hold, it suffices to set θhigh = θsw

to attain the correct expression.

Ŵ = ŴC + ŴR (A.10)
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ŴC =− E−nmaxF (θlow)

−
(
Tg

ρ1

)−n ˆ θsw

θlow

θnf(θ)dθ

− E−ng

(
ρ1

h (Eg)

) n
n+1
ˆ θhigh

θsw

θ
n
n+1f(θ)dθ

− E−nmin (1− F (θhigh)) (A.11)

ŴR =−
nE−n−1

g

h (Eg)

(
Eg

(
ρ1

h (Eg)

) n
n+1
ˆ θhigh

θsw

θ
n
n+1f(θ)dθ

+ Eminρ1

ˆ ∞
θhigh

θf(θ)dθ

− Tg (1− F (θsw))

)
(A.12)
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Geden, O. (2013). Modifying the 2Â°C Target. German Institute for International
and Security Affairs.

Gollier, C. (2004). The economics of risk and time. The MIT Press.

Golub, A., Narita, D. & Schmidt, M. (2013). Uncertainty in integrated assessment
models of climate change: Alternative analytical approaches. Environmental Mod-
eling & Assessment, pp. 1–11.

Groom, B., Hepburn, C., Koundouri, P. & Pearce, D. (2005). Declining discount
rates: The long and the short of it. Environmental and Resource Economics,
32(4), pp. 445–493.

Ha-Duong, M., Grubb, M. & Hourcade, J. (1997). Influence of socioeconomic inertia
and uncertainty on optimal CO2-emission abatement. Nature, 390.

Ha-Duong, M. (1998). Quasi-option value and climate policy choices. Energy Eco-
nomics, 20(5-6), pp. 599–620.

Heal, G. & Millner, A. (2013). Discounting under Disagreement. Working Paper
18999, National Bureau of Economic Research.

Held, H., Kriegler, E., Lessmann, K. & Edenhofer, O. (2009). Efficient climate
policies under technology and climate uncertainty. Energy Economics, 31, pp.
S50–S61.

Hope, C. (2011). The Social Cost of CO2 from the Page09 Model. Economics Dis-
cussion Paper No. 2011-39.

Howitt, R. (1995). Positive mathematical programming. American journal of agri-
cultural economics, 77(2), pp. 329–342.

Iverson, T. & Perrings, C. (2012). Precaution and proportionality in the management
of global environmental change. Global Environmental Change, 22(1), pp. 161–177.

Jagannathan, R. (1985). Use of sample information in stochastic recourse and
chance-constrained programming models. Management Science, 31(1), pp. 96–
108.

Keller, K., Kim, S.R., Baehr, J., Bradford, D.F. & Oppenheimer, M. (2007). What is
the economic value of information about climate thresholds? Human-Induced Cli-
mate Change: an Interdisciplinary Assessment, SchlesingerM, KheshgiH, SmithJ,

99



Bibliography

De La ChesnayeF, ReillyJM, WilsonT, KolstadC (eds). Cambridge University
Press: Cambridge, pp. 343–354.

Kelly, D.L. & Kolstad, C.D. (1999). Bayesian learning, growth, and pollution. Jour-
nal of Economic Dynamics and Control, 23(4), pp. 491–518.

Kleinen, T. (2005). Stochastic information in the assessment of climate change.
Dissertation, University of Potsdam, Germany.

Kriegler, E. & Bruckner, T. (2004). Sensitivity analysis of emissions corridors for
the 21st century. Climatic Change, 66(3), pp. 345–387.

Kriegler, E., Riahi, K., Bauer, N., Schwanitz, V.J., Petermann, N., Bosetti, V.,
Marcucci, A., Otto, S., Paroussos, L., Rao, S., CurrÃ¡s, T.A., Ashina, S., Bollen,
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