Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electronic structure of fullerene-squaraine complexes for photovoltaic devices

MPG-Autoren
/persons/resource/persons58994

Sen,  Kakali
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Department of Chemistry, École Normale Supérieure, UMR ENS-CNRS-UPMC 8640;

/persons/resource/persons58496

Crespo-Otero,  Rachel
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Department of Chemistry, University of Bath;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58410

Barbatti,  Mario
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sen, K., Crespo-Otero, R., Thiel, W., & Barbatti, M. (2014). Electronic structure of fullerene-squaraine complexes for photovoltaic devices. Computational & Theoretical Chemistry, 1040-1041, 237-242. doi:10.1016/j.comptc.2014.02.024.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0023-CC5A-7
Zusammenfassung
Squaraine dyes are promising materials to be used as electron donors in photodevices. We applied quantum chemical methods to investigate the electronic spectrum of three different squaraine dyes and of their complexes with fullerene C60 in the gas phase. Based on the excited-state densities, the electronic states were characterized as localized, delocalized and charge transfer, allowing an understanding of the basic photophysics of these compounds. Comparison with experimental data showed that the measured short-circuit voltage is correlated not only to the energy of the charge-transfer state, but also to the energy of the lowest excited state, localized at the squaraine dyes. We discuss whether this may imply a non-Marcus regime for the charge-pair dissociation at the interface.