Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Strong Increase of Tc of Sr2RuO4 Under Both Tensile and Compressive Strain

MPG-Autoren
/persons/resource/persons126653

Hicks,  Clifford W.
Clifford Hicks, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons130372

Brodsky,  Daniel O.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons130374

Barber,  Mark E.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126742

Mackenzie,  Andrew P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hicks, C. W., Brodsky, D. O., Yelland, E. A., Gibbs, A. S., Bruin, J. A. N., Barber, M. E., et al. (2014). Strong Increase of Tc of Sr2RuO4 Under Both Tensile and Compressive Strain. Science, 344(6181), 283-285. doi:10.1126/science.1248292.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-7F0D-A
Zusammenfassung
A sensitive probe of unconventional order is its response to a symmetry-breaking field. To probe the proposed p(x) +/- ip(y) topological superconducting state of Sr2RuO4, we have constructed an apparatus capable of applying both compressive and tensile strains of up to 0.23%. Strains applied along < 100 > crystallographic directions yield a strong, strain-symmetric increase in the superconducting transition temperature T-c. < 110 > strains give a much weaker, mostly antisymmetric response. As well as advancing the understanding of the superconductivity of Sr2RuO4, our technique has potential applicability to a wide range of problems in solid-state physics.