English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Precipitation processes in a Mg–Zn–Sn alloy studied by TEM and SAXS

MPS-Authors
/persons/resource/persons75976

Rashkova,  Boryana
Former Dept. Microstructure Interfaces, Max Planck Institute for Intelligent Systems, Max Planck Society;
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben, Austria;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rashkova, B., Prantl, W., Görgl, R., Kečkéš, J., Cohen, S. S., Bamberger, M. S., et al. (2008). Precipitation processes in a Mg–Zn–Sn alloy studied by TEM and SAXS. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 494(1-2), 158-165. doi:10.1016/j.msea.2008.04.005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-5697-4
Abstract
The microstructural evolution of a Mg–Zn–Sn alloy was studied by combining X-ray diffraction (XRD), small angleX-ray scattering (SAXS), and transmission electron microscopy (TEM) in order to determine the individual phases, their size and volume fraction of the alloy. Solutionized and aged samples are analysed in detail concerning the nucleation, growth, morphology, and stability of precipitate phases. In the aged samples, firstly MgZn2 particles with a rod-like shape form, and secondly plate-like MgSn2 precipitates. The MgZn2 phase shows awell-defined orientation relationship with the Mg matrix. The formation of two types of precipitates is responsible for the occurrence of two pronounced hardness maxima. The growth behaviour of the MgZn2 phase is determined by combining TEM and SAXS measurements and the results are compared to the Lifschitz–Slyozov–Wagner (LSW) theory.