English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A facile Fmoc solid phase synthesis strategy to access pimerization-prone biosynthetic intermediates of glycopeptide antibiotics

MPS-Authors
/persons/resource/persons117956

Brieke,  Clara
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92561

Cryle,  Max
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;
Cytochrome P450, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Brieke, C., & Cryle, M. (2014). A facile Fmoc solid phase synthesis strategy to access pimerization-prone biosynthetic intermediates of glycopeptide antibiotics. Organic Letters, 16(9), 2454-2457. doi:10.1021/ol500840f.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-8F83-1
Abstract
A rapid protocol based on Fmoc-chemistry for the solid phase peptide synthesis of vancomycin- and teicoplanin-type peptides is described. Epimerization of highly racemization-prone arlyglycine derivatives is suppressed through optimized Fmoc-deprotection and coupling conditions. Starting from easily accessible Fmoc-protected amino acids, this strategy enables the enantioselective synthesis of peptides corresponding to intermediates found in vancomycin and teicoplanin biosynthesis with excellent purity and in high yields (38%–71%).