English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-Pressure High-Temperature Synthesis of ϵ-Fe2IrN0.24

MPS-Authors
/persons/resource/persons126634

Guo,  Kai
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126838

Schnelle,  Walter
Walter Schnelle, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126841

Schwarz,  Ulrich
Ulrich Schwarz, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Guo, K., Rau, D., Schnelle, W., Burkhardt, U., Niewa, R., & Schwarz, U. (2014). High-Pressure High-Temperature Synthesis of ϵ-Fe2IrN0.24. Zeitschrift für anorganische und allgemeine Chemie, 640(5), 814-818. doi:10.1002/zaac.201300609.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-1668-B
Abstract
A high-pressure high-temperature synthesis involving initial reaction, nitrogen depletion and annealing yields a new E-type iron iridium nitride. Energy dispersive X-ray spectroscopy of metallographic samples evidence a main phase having a molar metal ratio of Fe:Ir = 2:1 within experimental error. Chemical analyses and thermogravimetric measurements quantify the nitrogen content to 1.07 wt% (x = 0.24) and 1.2 wt% (x = 0.27), respectively. Above 750 K, the phase Fe2IrN0.24 decomposes into solid solutions E-Fe(Ir) and -Fe(Ir) involving the release of N-2 at ambient pressure. Magnetic susceptibility data suggest long-range antiferromagnetic ordering at T-N = 27 K.