English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Finding Associations among Histone Modifications Using Sparse Partial Correlation Networks

MPS-Authors
/persons/resource/persons50407

Lasserre,  Julia
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50124

Chung,  Ho-Ryun
Computational Epigenetics (Ho-Ryun Chung), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Lasserre.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Lasserre, J., Chung, H.-R., & Vingron, M. (2013). Finding Associations among Histone Modifications Using Sparse Partial Correlation Networks. PLoS Computational Biology, 9(9), e1003168-e1003168. doi:10.1371/journal.pcbi.1003168.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-0B2D-A
Abstract
Histone modifications are known to play an important role in the regulation of transcription. While individual modifications have received much attention in genome-wide analyses, little is known about their relationships. Some authors have built Bayesian networks of modifications, however most often they have used discretized data, and relied on unrealistic assumptions such as the absence of feedback mechanisms or hidden confounding factors. Here, we propose to infer undirected networks based on partial correlations between histone modifications. Within the partial correlation framework, correlations among two variables are controlled for associations induced by the other variables. Partial correlation networks thus focus on direct associations of histone modifications. We apply this methodology to data in CD4+ cells. The resulting network is well supported by common knowledge. When pairs of modifications show a large difference between their correlation and their partial correlation, a potential confounding factor is identified and provided as explanation. Data from different cell types (IMR90, H1) is also exploited in the analysis to assess the stability of the networks. The results are remarkably similar across cell types. Based on this observation, the networks from the three cell types are integrated into a consensus network to increase robustness. The data and the results discussed in the manuscript can be found, together with code, on http://spcn.molgen.mpg.de/index.html.