Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Zeitschriftenartikel

Effects of the tetronic acid derivatives AO33 (losigamone) and AO78 on epileptiform activity and on stimulus−induced calcium concentration changes in rat hippocampal slices

MPG-Autoren
/persons/resource/persons93955

Köhr,  Georg
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Directly responsible to the Managing Director, Max Planck Institute for Medical Research, Max Planck Society;
Georg Köhr Group, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Köhr, G., & Heinemann, U. (1990). Effects of the tetronic acid derivatives AO33 (losigamone) and AO78 on epileptiform activity and on stimulus−induced calcium concentration changes in rat hippocampal slices. Epilepsy Res., 7(1), 49-58. doi:10.1016/0920-1211(90)90053-X.


Zusammenfassung
The effects of members of a new class anticonvulsants, the tetronic acid derivatives, were studied in 3 in vitro models of epileptogenesis in rat hippocampal slices; the picrotoxin, the low magnesium and the low calcium model. The effects of AO33 (losigamone) and AO78 on stimulus−induced decreases in extracellular calcium concentration were also investigated. In all 3 models of epileptogenesis, both drugs blocked spontaneous and reduced stimulus−induced epileptiform discharges dose dependently and reversibly. Stimulus−induced changes in [Ca2+]0 were markedly diminished by these agents. The fact that the tetronic acid derivatives block the low Ca seizure−like events which develop independently from chemical synaptic transmission suggests that these agents have non−synaptic or direct membrane actions with subsequently reduced cellular excitability