日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules

MPS-Authors
/persons/resource/persons95136

Scepek,  Susanne
Department of Molecular Cell Research, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94091

Lindau,  Manfred
Department of Molecular Cell Research, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Hartmann, J., Scepek, S., & Lindau, M. (1995). Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules. The Journal of Physiology - London, 483(1), 201-209. doi:10.1113/jphysiol.1995.sp020578.


引用: https://hdl.handle.net/11858/00-001M-0000-0019-A86B-B
要旨
1. We have investigated the granule size distributions in human and horse eosinophils by time-resolved patch-clamp capacitance measurements. 2. During exocytosis of single granules the electrical capacitance of the plasma membrane increases in discrete steps. The steps in horse cells are about six times larger than those in human cells in accordance with the difference in granule size. 3. In both species a multimodal capacitance step size distribution is observed with a first peak at 6-7 fF corresponding to granules with a diameter of about 450-500 nm and a surface area of about 0.7 microns2, which we call the unit granule. The other peaks in the distributions correspond to multiples of the surface area of these units. 4. These results show that the larger granules are formed by fusion of several unit granules and the final size of mature granules is determined by the number of units allowed to fuse with each other. Whereas in human eosinophils most granules consist of one or two units, most granules of horse eosinophils are formed by fusion of seven to fifteen units. 5. The intracellular fusion events associated with vesicular traffic are believed to occur constitutively. In contrast, our results indicate that a cellular mechanism exists which regulates the size of the mature granules by determining the number of units allowed to fuse with each other. In view of our recent report that granule-granule fusion can be activated by GTP gamma S, this regulation may possibly involve GTP-binding proteins.