English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor.

MPS-Authors
/persons/resource/persons93934

Kuner,  Thomas
Interdisciplinary WIN-Research Group on Olfactory Dynamics, Max Planck Institute for Medical Research, Max Planck Society;
Synaptic Transmission MNTB, Max Planck Institute for Medical Research, Max Planck Society;
Synaptic Transmission, Max Planck Institute for Medical Research, Max Planck Society;
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Korpi, E. R., Kuner, T., Seeburg, P. H., & Lüddens, H. (1995). Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor. Molecular Pharmacology, 47(2), 283-289. Retrieved from http://molpharm.aspetjournals.org/content/47/2/283.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-A809-9
Abstract
Numerous ligands affect inhibitory gamma-aminobutyric acid (GABA)A receptors, none of them showing strict receptor subtype specificity. We report here that a cerebellar GABAA receptor subtype can be uniquely modulated by furosemide but not by bumetanide, another Cl-/cation transport blocker. Furosemide specifically reversed the inhibition by GABA of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding in the cerebellar granule cell layer, as detected by autoradiography of rat brain sections. With recombinant receptors expressed in Xenopus oocytes, furosemide antagonized potently (IC50, about 10 microM), rapidly, and reversibly GABA-evoked currents of cerebellar granule cell-specific alpha 6 beta 2 gamma 2 receptors but not alpha 1 beta 2 gamma 2 receptors (IC50, > 3 mM). Furosemide reversed GABA inhibition of [35S]TBPS binding and elevated basal [35S]TBPS binding only with alpha 6 beta 2 gamma 2 and alpha 6 beta 3 gamma 2 receptors and not with alpha 6 beta 1 gamma 2 or alpha 1 beta 1/2/3 gamma 2 receptors. It appeared to interact with the receptor complex via a novel recognition site that allosterically regulates the Cl- ionophore. Furosemide is the first subtype-selective GABAA receptor (alpha 6 beta 2/3 gamma 2) antagonist and should facilitate studies on cerebellar physiology. It might serve as a prototypic structure for the development of additional subtype-selective GABAA ligands.