Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Muscle Contraction

MPG-Autoren
/persons/resource/persons93463

Holmes,  Kenneth C.
Protein Cristallography XDS, Max Planck Institute for Medical Research, Max Planck Society;
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Muscle Research, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Holmes, K. C. (1998). Muscle Contraction. In The limits of reductionism in Biology (pp. 76-92). London: Novatis Foundation. doi:10.1002/9780470515488.ch6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-A52A-8
Zusammenfassung
Understanding muscle contraction goes to the heart of one of the fundamental questions posed by classical philosophy, namely the nature of the πνευµα ψνχικoν. The nature of ‘understanding’ has altered greatly during the last two millenia, particularly in response to the development of the concept of energy. Moreover, understanding contraction depends on understanding muscle structure. Galen was the first to make a detailed anatomical examination of the mode of action of muscles and recognized the heart as a muscle, but this line of research was not pursued until Leonardo da Vinci rediscovered it 1400 years later. Vesalius used the phrase Machina Carnis, but it was first Descartes who proposed a neuromuscular machine. However, the level of understanding of the physiology of muscle depends critically on the resolution of the available anatomy. Radical new insight was provided by electron microscopy. But an understanding at a physicochemical level is only possible if the structures of the components are known at atomic resolution. These have become known in the last five years and have led to dramatic progress. The present level of understanding of muscle is a physicochemical explanation of how the hydrolysis of ATP by the component proteins actin and myosin leads to movement.