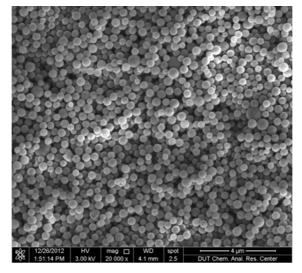


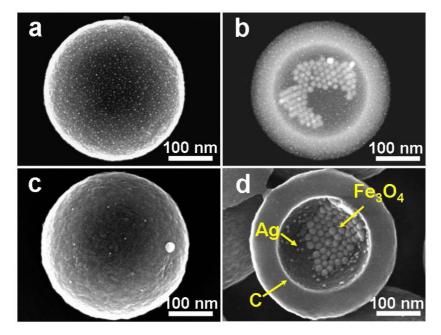
Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013

Fabrication of Magnetic Yolk-Shell Nanocatalyst with Spatially Resolved Functionalities and High Activity for Nitrobenzene Hydrogenation


> Qiang Sun,^[a] Chun-Zao Guo,^[a] Guang-Hui Wang,^[a] Wen-Cui Li,^[a] Hans-Josef Bongard,^[b] and An-Hui Lu^{*[a]}

chem_201300307_sm_miscellaneous_information.pdf


Calculation of hydrogen consumption during the catalytic test. The hydrogenation of nitrobenzene follows the reaction below:

$$\mathbb{O}$$
-NO₂+ 3H₂ $\xrightarrow{\text{Fe}_3O_4@h-C/Pt}$ \mathbb{O} -NH₂+ 2H₂O

The stoichiometry of nitrobenzene and H_2 is 1:3 according to the above reaction formula. So the amount of consumed H_2 are estimated 0.162 mmol (0.6 mmol×9%×3=0.162 mmol) in first run under H_2 .

Figure S1. SEM image of Fe₃O₄@*h*-C/noble metal.

Figure S2. SEM and HAADF-STEM images of a, b) Fe₃O₄@*h*-C/Pd; SEM images of c) Fe₃O₄@*h*-C/Ag and d) Fe₃O₄@*h*-C/Ag after cutting the hollow carbon spheres into hemisphere.

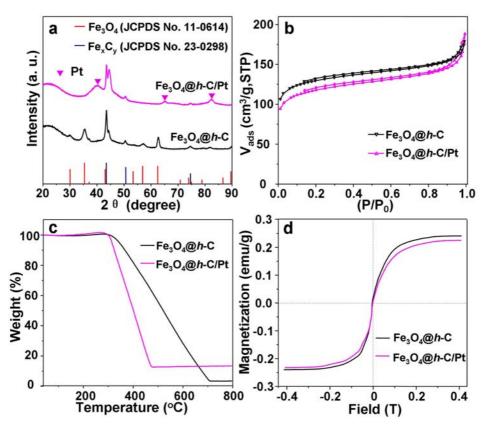


Figure S3. a) XRD patterns, b) N2 sorption isotherms, c) TG curves, and d) magnetic hysteresis curves of Fe₃O₄@h-C and Fe₃O₄@h-C/Pt.

Table S1. Textural parameters of Fe₃O₄@*h*-C and Fe₃O₄@*h*-C/Pt.

No	$S_{\text{BET}}(\text{m}^2 \cdot \text{g}^{-1})$	$S_{\rm mic}({\rm m}^2 \cdot {\rm g}^{-1})$	$V_{\text{total}}(\text{cm}^3 \cdot \text{g}^{-1})$	$V_{\rm mic}({\rm cm}^3\cdot{\rm g}^{-1})$
Fe ₃ O ₄ @ <i>h</i> -C	440	312	0.25	0.14
Fe ₃ O ₄ @ <i>h</i> -C/Pt	401	270	0.24	0.12

Table S2. A comparative list of the nitrobenzene hydrogenation at atmospheric pressure.

Catalyst	Weight of catalyst	Loading quantity	nitrobenzene	Temperatur e	Reaction time	Conversion	${{{\rm TOF}}\atop{{\left({{{{\rm{h}}}^{ - 1}} \right)}^*}}}$	Ref.
$Fe_3O_4@h-C/Pt$	25 mg	1.59 wt%	0.6 mmol	30 °C	2 h	38 %	285	This study
Pt/CNTs	25 mg	3.1 wt%	0.25 ml (2.5 mmol)	50 °C	3 h	100 %	213	[1]
Pd/H ₂ N- SiO ₂ /Fe ₂ O ₃	2.2 mg (2 mmol Pd)		2 mmol	Room temperature	90 min (1.5 h)	100 %	0.67	[2]

* TOF values were calculated on the basis of the total metal using the molar ratio of the converted substrate over the catalyst divided by the reaction time.

^[1] Y. Zhao, C.-H. Li, Z.-X. Yu, K.-F. Yao, S.-F. Ji, J. Liang, Mater. Chem. Phys. 2007, 103, 225-229.

[2] D. K. Yi, S. S. Lee, and J. Y. Ying, Chem. Mater. 2006, 18, 2459-2461.