English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Preparative separation of enantiomers of inhalation anaesthetic gases by using Pressure Swing Adsorption

MPS-Authors
/persons/resource/persons101566

Mutavdžin,  Ivana
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  Andreas
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mutavdžin, I., & Seidel-Morgenstern, A. (2014). Preparative separation of enantiomers of inhalation anaesthetic gases by using Pressure Swing Adsorption. Talk presented at 10th International PhD Seminar on Chromatographic Separation Science. Egmond aan Zee, The Netherlands. 2014-02-23 - 2014-02-25.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0017-E594-5
Abstract
About one third of all synthetic drugs are produced in the form of racemates, containing two enantiomers of the same substance, although only one of them is effective. Studies on racemic anaesthetic gases indicate that pure enantiomers may have better pharmacological properties in comparison to the racemate. In order to design improved anaesthetics, it is important to further investigate the mechanism of the action of pure enantiomers and to develop efficient methods of their separation. In this work fluorinated volatile anaesthetics like isoflurane, enflurane and desflurane are investigated. There are different processes for separation of these gases, like capillary chromatography, as well as more advanced multi-column options like Simulated Moving Beds (SMB) and Pressure Swing Adsorption (PSA). This work considers the separation of enantiomers of anaesthetic gases by dynamic simulation of a PSA process. The basic case of a single column with four steps was studied and modelled as a system of differential algebraic equation, which were solved using gPROMS software. Information about the system and adsorption isotherms were taken from the literature as well as obtained experimentally using columns packed with modified cyclodextrin supported on porous glass beads. Illustration of a simple PSA process for separation of the aforementioned anaesthetic gases will be shown, as well as simulation results that involve parametric studies of the process performance, measured in terms of purity, recovery and productivity of the target enantiomer.