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RNA polymerase fidelity and transcriptional proofreading
Jasmin F Sydow and Patrick Cramer
Whereas mechanisms underlying the fidelity of DNA

polymerases (DNAPs) have been investigated in detail, RNA

polymerase (RNAP) fidelity mechanisms remained poorly

understood. New functional and structural studies now suggest

how RNAPs select the correct nucleoside triphosphate (NTP)

substrate to prevent transcription errors, and how the enzymes

detect and remove a misincorporated nucleotide during

proofreading. Proofreading begins with fraying of the

misincorporated nucleotide away from the DNA template,

which pauses transcription. Subsequent backtracking of RNAP

by one position enables nucleolytic cleavage of an RNA

dinucleotide that contains the misincorporated nucleotide.

Since cleavage occurs at the same active site that is used for

polymerization, the RNAP proofreading mechanism differs

from that used by DNAPs, which contain a distinct nuclease

specific active site.
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Introduction
To ensure genetic integrity, DNA polymerases (DNAPs)

generally exhibit high fidelity, but low-fidelity DNAPs

also exist that accomplish special tasks such as translesion

synthesis (reviewed in [1–3]). RNA polymerases

(RNAPs) also operate with high fidelity since transcrip-

tion errors could result in non-functional non-coding

RNAs or in erroneous mRNAs that could give rise to

mutant proteins with impaired function [4]. Indeed tran-

scription accuracy is relatively high, with an estimated

error rate of less than 10�5 for bacterial and eukaryotic

RNAPs [5–7]. Since DNAPs and RNAPs share the same

catalytic mechanism, and since both enzyme families use

a DNA template to produce a complementary nucleic

acid strand, they may use similar mechanisms to ensure
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fidelity. Here, we first summarize the known mechanisms

underlying DNAP fidelity, and then we describe our

current understanding of RNAP fidelity mechanisms,

which has improved considerably over the past few years

owing to new functional and structural studies.

DNAP fidelity mechanisms
The major contribution to DNAP fidelity is the high

selectivity against incorporation of a wrong nucleotide,

which is achieved to a large extent by the shape com-

plementarity between a Watson–Crick base pair (bp) and

the enzyme’s active center [3,8,9]. Discrimination of

mismatches from matched bps is achieved by recognition

of the mismatch itself, rather than the surrounding

sequence, and its efficiency depends on the type of

mismatch [10–17]. DNAPs select dNTPs against rNTPs

with a ‘steric gate,’ formed between two amino acid side

chains of the active center that sandwich the substrate

sugar moiety and exclude a 20-OH group [18–23]. Import-

ant determinants for NTP selectivity are multiple con-

tacts formed between DNAP and the minor groove of the

template base-NTP bp [24].

DNAP fidelity further relies on mechanisms that act after

nucleotide selection. In particular, DNAPs slow down or

stop DNA extension after misincorporation and can

cleave off a mismatched DNA product end with a 30–50

exonuclease activity, a reaction referred to as proofread-

ing. In E. coli, the 30–50 exonuclease activity of DNAP I

resides on a different domain than the polymerase activity

[25–29]. DNAP III also has polymerase and exonuclease

activities located at different active sites, but residing on

separate subunits of the enzyme [30,31].

As shown for Bacillus stearothermophilus DNAP I, five sites

on the enzyme are important for fidelity: (i) the insertion

site, in which the NTP pairs with the template base, (ii)

the catalytic site, in which the 30-hydroxyl of the product

strand and the two catalytic magnesium ions are located,

(iii) the pre-insertion site, which houses the template base

in a step before incorporation, (iv) the post-insertion site

in which the growing 30-end of the duplex DNA is

located, and (v) the DNA template-product duplex bind-

ing region [32]. Structural studies of mismatch-containing

DNAP–DNA complex structures have shown that mis-

matches can induce disruptions of the active site by (i)

displacement of the template strand and disruption of the

pre-insertion site; (ii) disruption of the product strand and

the assembly of the catalytic site; (iii) disruption of both

the template and product strands; and (iv) fraying of the

DNA at the insertion site [32].
www.sciencedirect.com
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RNAP fidelity mechanisms
Early work on RNAP fidelity [33,34] showed that mis-

incorporation leads to slow addition of the next nucleo-

tide, and that a mismatched RNA 30-end can be removed

with factors that stimulate the weak polymerase-intrinsic

RNA 30-cleavage activity. In a bacterial RNAP elongation

complex (EC), a mismatched 30-nucleotide induces an

unactivated state of the enzyme, and is removed by Gre

factors that stimulate RNA cleavage [33]. In human

RNAP II, a mismatched 30-nucleotide causes slow

addition of the next nucleotide, and the intrinsic cleavage

activity is stimulated by the factor TFIIS [34]. Thus, as in

DNAPs, RNAPs achieve fidelity following two major

strategies, substrate selection and proofreading, which

involves the recognition and removal of a mismatched

nucleotide although in contrast to DNAPs, the cleavage

activity of RNAPs resides at the same, ‘tunable’ active

center that carries out polymerization [35,36]. Our un-

derstanding of RNAP fidelity mechanisms was recently

extended with biochemical and structural studies

[37,38,39��,40�,41�,42��,43��,44�]. We describe below that

these new studies show in more detail how transcription

errors are prevented, recognized, and removed.

Error prevention: RNAP selects the correct
substrate
To select the correct NTP substrate, RNAPs discriminate

rNTPs from dNTPs and select the rNTP that is comp-

lementary to the DNA template base. Substrate selection

apparently occurs in two steps and involves isomerization

of an open to a closed RNAP active center [41�,43��,45]

(reviewed in [46,47]). The substrate first binds to an open

active center in a pre-insertion state that probably allows
Figure 1

Error prevention: how RNAPs select the correct substrate. NTP (green cyan)

2O5J [43��]). RNA is in red, DNA template strand in blue. The catalytic meta

respectively. Depicted in gray are side chains of b0 and b (corresponding to

around the NTP. Thermus thermophilus (T.th.) RNAP residues and their corr

Hydrogen bonds between the NTP and RNAP are indicated by yellow dashed

complex structure rather than the yeast core RNAP II NTP complex since it

www.sciencedirect.com
sampling of NTPs. The correct NTP establishes Watson–
Crick interactions with the DNA template and is then

delivered to the insertion site [43��,48], where all contacts

required for catalysis are formed (Figure 1). Closure of the

active center involves folding of the mobile trigger loop

[39��,41�,43��]. The single-subunit RNAP from phage T7

also uses a two-step mechanism of substrate loading

[49,50], although in this enzyme two separate pre-inser-

tion and insertion sites exist, whereas the NTP bound in

the pre-insertion state of multisubunit RNAPs overlaps

the NTP in the insertion site. A distinct pre-insertion site

may exist for T7 RNAP since it does not have proof-

reading activity [51], and thus its fidelity relies entirely on

the selection of the correct substrate.

There is evidence that the trigger loop and its surround-

ing residues are important for fidelity. Two mutations in

the trigger loop of E. coli RNAP affect misincorporation

[52]. Mutation of Rpb1 residue Glu1103 in the RNAP II

trigger loop also promotes incorporation of incorrect sub-

strates [41�]. Mutations of several other trigger loop

residues have been shown to affect the fidelity of incorp-

oration by RNAP II [44�]. Residues in the vicinity of the

trigger loop also are important for fidelity, as shown for

residue Asp675 of the second largest subunit b0 in bac-

terial RNAP [37]. Additionally, a non-complementary

NTP shifts the equilibrium between closed and open

conformations of the RNAP EC towards the open state,

making release of the incorrect NTP likely and incorp-

oration unlikely [41�].

To discriminate rNTPs from dNTPs, RNAPs recognize

the 20-OH group of the ribose. In T. thermophilus RNAP,
bound to the insertion site of a bacterial RNAP elongation complex (PDB

l ions A and B are shown as a magenta and a green cyan sphere,

Rpb1 or Rpb2, respectively, in yeast RNAP II) at a distance of up to 5 Å

esponding residues in yeast RNAP II (S.c.) are provided in a table [43��].

lines. To illustrate the NTP insertion site, we used here the bacterial NTP

contains an intact RNA 30-hydroxyl group.

Current Opinion in Structural Biology 2009, 19:732–739
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Figure 2

Error detection: how mismatches induce off-line states. (a) An example

for active site disruption after misincorporation. Superposition of a

mismatched RNAP II EC containing a T�U wobble pair (orange, PDB

3HOU) with a corresponding matched EC (PDB 3HOV) reveals a �2 Å

shift of the RNA 30-hydroxyl (horizontal arrow). As a consequence, the

RNA 30-end is no longer in a position suited for an in-line nucleophilic

attack (vertical arrow) of the phosphodiester bond between the a and b

phosphates of the incoming NTP substrate (green cyan, taken from PDB

2O5J [43��]). The mismatched wobble pair is in orange. (b) RNA 30-

fraying pauses transcription. Frayed RNA 30-nucleotides as observed in

RNAP II ECs (PDB 3HOW and 3HOZ) clash with an NTP bound to the

insertion site (green cyan, taken from PDB 2O5J [43��]). Van der Waals

radii are illustrated by colored dots. Figure adapted from [42,84��].
the O20 and O30 of the rNTP ribose form hydrogen bonds

with Asn737 of the largest RNAP subunit b0 [38,43��]
(Figure 1). Mutation of the corresponding b0 Asn458 of

the E. coli enzyme leads to a dramatic increase of incorrect

dNTP incorporation [38]. In eukaryotic RNAP II, the

corresponding residue Asn479 of subunit Rpb1 was also

proposed to be involved in the discrimination of the

ribose sugar by interaction with the 20-OH of the incom-

ing rNTP [45,53] or with its O30 atom [39��]. Mutation of

Asn479 in the RNAP II system to serine led to decreased

rNTP versus dNTP discrimination similar to the bacterial

system, but this effect was apparently due to loss of

interaction with the 30-OH group [39��]. It has recently

been shown that also Rpb1 residue His1085 is crucial for

the selection of the correct sugar of the substrate [44�]. In

T7 RNAP, the hydroxyl group of Tyr639 forms a hydro-

gen bond with the 20-OH of an incoming rNTP [54–56].

Despite these mechanisms to ensure incorporation of the

correct substrate, misincorporations do occur. Systematic

studies of RNAP II showed that misincorporation effi-

ciency depends on the type of mismatch [42��]. The

different misincorporation efficiencies are broadly con-

sistent among different RNAP II studies [34,41�,42��] but

differ strongly from those reported for DNAPs [10–17],

probably reflecting a different active center structure in

both types of enzymes. In RNAP III, mismatch-specific

misincorporations were also observed [40�]. Misincor-

poration may result from mispairing of the substrate with

the template [42��] but also from non-templated nucleo-

tide incorporation since RNAP II can misincorporate

opposite an abasic template site [57]. In addition, mis-

incorporation can result from transcription of DNA

lesions [57,58] or by template misalignment [59�,60].

Error detection: mismatches induce off-line
states
Once a misincorporation error has occurred, RNAPs must

detect the mismatch and slow down transcription to open

a time window for proofreading. In RNAP III, misincor-

poration led to a slow-down of RNA extension [40�]. A

systematic study of RNA extension efficiencies by RNAP

II revealed that extension is always slower after misin-

corporation, but that the efficiencies vary with the type of

mismatch [42��]. RNA extension is particularly impaired

for those mismatches that are efficiently formed [42��].
Thus, RNAP avoids to make mistakes twice; if it mis-

incorporates, it does not extend the mismatch, and it

prevents formation of mismatches that would be easily

extended.

There is evidence that mismatches impair RNA exten-

sion by inducing off-line states of the EC. A mismatch can

stably bind to RNAP II and disrupt the catalytically

competent active site conformation. For example, a

T�U mismatch at the �1 position (+1 defines the nucleo-

tide addition site,�1 refers to the first upstream position)
Current Opinion in Structural Biology 2009, 19:732–739
can cause loss of the catalytic metal ion A and misalign-

ment of the nucleophilic RNA 30OH group [42��]
(Figure 2a). A mismatch can also induce an unactivated

state [33] that probably corresponds to the elemental

paused state of RNAP, a common intermediate during

elongation that results from a rearrangement of the EC

inhibiting nucleotide addition without backtracking [61–
63,64�,65]. Site-directed crosslinking and mutagenesis

revealed that this elemental pause contains a frayed

RNA 30-terminal nucleotide [63,64�,66]. Structural stu-

dies have now revealed two different locations for a frayed

nucleotide in the pore beneath the RNAP active site

[42��]. The fraying sites both overlap the NTP-binding

site, explaining how they pause nucleotide addition [42��]
(Figure 2b). In one site (fraying site I), the nucleotide

binds parallel to the axis of the DNA–RNA hybrid,

whereas it binds perpendicular to it in another (fraying

site II).

Error removal: RNAP backtracking and RNA
cleavage
Multisubunit RNAPs possess an intrinsic nucleolytic

RNA cleavage activity. RNA cleavage leads to a new

30-OH group at the RNA end at the polymerase active

site, allowing RNA synthesis to resume [67–69]. RNAPs I

and III possess a strong intrinsic RNA cleavage activity

[70,71�]. In RNAP III, cleavage activity is so strong that

misincorporation cannot be detected unless a cleavage-

deficient isoform of the enzyme is used [40�]. RNA
www.sciencedirect.com
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Figure 3

Error removal: model of the RNAP proofreading cycle. Crystal structures of RNAP II ECs in different functional states suggest a model for transcriptional

proofreading. The vertical dashed line indicates register +1, the nucleotide addition site. (a) post-translocation state (PDB 1Y1W), (b) pre-translocation state

(PDB 1I6H, downstream DNA was modeled from 1Y1W [47], (c) paused state with a frayed 30-RNA guanine (PDB 3HOW), (d) backtracked state (PDB 3GTJ),

(e) post-translocation state. In this structure, dinucleotide cleavage occurred after the crystallization setup (PDB 3HOY).

www.sciencedirect.com Current Opinion in Structural Biology 2009, 19:732–739
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cleavage occurs in dinucleotide steps in bacterial, eukar-

yotic and archaeal RNAPs [34,68,72–75]. For dinucleo-

tide cleavage to occur, the scissile phosphodiester bond

must be aligned with the catalytic site, which is achieved

by RNAP backtracking. During backtracking, the term-

inal, mismatched nucleotide is moved from position +1 to

position +2, the first position downstream of the nucleo-

tide addition site. Recent structural studies revealed

RNA backtracked by one position and suggested the

RNA end to occupy a site from which cleavage of a

dinucleotide can occur (referred to as proofreading site)

[39��]. This site overlaps with the fraying site II.

Model for transcriptional proofreading
The recent structural studies [42��,84��] together with

published biochemical work [34,40�,85�] converge on a

model for the mechanism of RNAP proofreading

(Figure 3). After misincorporation, the mismatched

nucleotide at position +1 of the RNA is frayed away from

the template, thereby pausing RNAP. Pausing is the first

step in backtracking [63,76–83]. The frayed nucleotide

then inhibits RNA extension, because it prevents NTP

binding, but favors backtracking, because the bp in

position +1 is disrupted. RNAP then backtracks by one

position and slightly shifts the mismatched RNA nucleo-

tide from a fraying site to an overlapping proofreading

site. Subsequent dinucleotide cleavage results in a new

RNA 30-OH group and an empty NTP-binding site, thus

re-accessing an on-line state that allows transcription to

resume. This mechanism is consistent with the obser-

vation in DNAPs that the 30-cleavage rate is governed by

the rate of fraying [86].

RNAP II fidelity is increased in vitro by preferential

removal of mismatched RNA ends in the presence of

TFIIS [34,41�,57,84��,87,88], although in vivo fidelity

does not entirely depend on TFIIS, but more on the

RNAP II subunit Rpb9, emphasizing the importance of

the RNAP intrinsic cleavage activity [89–91]. Preferential

removal of misincorporated RNA residues has also been

observed in E. coli, increased by cleavage-stimulatory Gre

factors [33] and in the archaeal system that contains the

cleavage factor TFS [75,92]. Cleavage stimulatory factors

may recruit the second metal ion required for catalysis or

the hydrolytic water molecule. They also may position

the substrates or backtracked RNA, or induce re-mobil-

ization of backtracked RNA bound to non-productive

sites. The structures of RNAP II ECs with TFIIS do

not reveal the course of backtracked RNA around the

active center [45,84��], and more studies are therefore

required to determine in detail how cleavage stimulatory

factors work.

Conclusions
Recent functional and structural studies of RNAP fidelity

mechanisms revealed similarities and differences to

DNAP fidelity mechanisms. Fidelity is achieved by
Current Opinion in Structural Biology 2009, 19:732–739
two strategies, selection of the correct NTP substrate,

and proofreading, which involves detection and removal

of the misincorporated nucleotide. Selection of the cor-

rect NTP is probably governed by similar mechanisms in

DNAPs and RNAPs, and involves an induced fit mech-

anism that requires closure of the active center induced

by an accurate base pairing of the NTP with the template

base. However, the mechanism of proofreading is entirely

different in DNAPs and RNAPs. Whereas an erroneous

DNA end is transferred from the DNAP polymerization

site to a DNA nuclease active site that resides in a

different domain or subunit, an erroneous RNA end

remains at the same, single ‘tunable’ active site of RNAP

that can switch from polymerization mode to nuclease

mode. A model for how proofreading by RNAP is accom-

plished has emerged and can be tested in detail in the

future.
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