Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA)

Björn Schwalb*, Daniel Schulz, Mai Sun, Benedikt Zacher, Sebastian Dümcke, Dietmar E. Martin, Patrick Cramer and Achim Tresch

Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany

Associate Editor: Ivo Hofacker

ABSTRACT

Summary: Standard transcriptomics measures total cellular RNA levels. Our understanding of gene regulation would be greatly improved if we could measure RNA synthesis and decay rates on a genome-wide level. To that end, the Dynamic Transcriptome Analysis (DTA) method has been developed. DTA combines metabolic RNA labeling with standard transcriptomics to measure RNA synthesis and decay rates in a precise and non-perturbing manner. Here, we present the open source R/Bioconductor software package DTA. It implements all required bioinformatics steps that allow the accurate absolute quantification and comparison of RNA turnover.

Availability: DTA is part of R/Bioconductor. To download and install DTA refer to http://bioconductor.org/packages/release/bioc/html/DTA.html

Contact: schwalb@lmb.uni-muenchen.de

Received on November 3, 2011; revised on December 23, 2011; accepted on January 23, 2012

1 INTRODUCTION

Total RNA levels are a consequence of RNA synthesis and decay. These individual contributions can be monitored by Dynamic Transcriptome Analysis (DTA) [Aumann et al. 2012, Friedel et al. 2010, Miller et al. 2011]. DTA requires culturing cells in the presence of a labeling substrate (e.g. 4SU or 4tU). During a short, non-perturbing RNA labeling pulse, cells incorporate 4tUTP into newly transcribed RNA instead of uridine. This setup yields three types of RNA fractions: total cellular RNA, newly transcribed labeled RNA and pre-existing unlabeled RNA. The quantification of these fractions on microarrays or by RNA-seq is used to estimate RNA synthesis and decay rates on a genome-wide scale, assuming exponential decay. For each RNA g, the synthesis rate μ_g and the decay rate λ_g are estimated from the equations

$$e^{-\lambda_g + \alpha} \frac{U_g}{T_g} = 1 - \frac{L_g}{T_g} \quad T_g = \frac{\mu_g}{\lambda_g + \alpha} \quad \alpha = \log(2) / CCL,$$

where t is the labeling duration, CCL the cell cycle length, and L_g, U_g, T_g are the measurements of the labeled, unlabeled and total RNA fractions, respectively. α can be set to 0 in the case of primary cells (e.g. macrophages). It has been shown that DTA has higher sensitivity and higher temporal resolution in detecting gene regulatory changes than standard transcriptomics.

*To whom correspondences should be addressed.

2 IMPLEMENTATION AND AVAILABILITY

DTA is implemented in R (version ≥ 2.14, Ihaka et al. 1996) and is part of Bioconductor (version ≥ 2.10, Gentleman et al. 2004). To download and install DTA and all its dependencies refer to http://bioconductor.org/packages/2.10/bioc/html/DTA.html.

Other methods to infer RNA decay rates from gene expression data have been published by Friedel et al. (2010) and Rabani et al. (2011). So far, only Friedel et al. (2010) have provided a Java implementation of their estimation procedure. The DTA package is the first to cover all aspects of the RNA labeling technique: Bias correction, detailed visualization of quality control aspects and proper handling of the results. It contains simulation methods and functions for error estimation based on replicates and resampling. Further it contains four example datasets for Yeast, Mouse and Human [Boelken et al. 2008, Miller et al. 2011, Sun et al. 2011].

3 USAGE AND APPLICATION

DTA can be used for genome-wide synthesis and decay rate estimation under all kinds of perturbations and for all kinds of organisms. The rate extraction procedure can be easily accessed via the core function DTA::estimate. Its input consists of a matrix containing the normalized measurements of the total, labeled and unlabeled RNA fractions (datamat) and a description of the experimental design (phenomat). For a more detailed explanation of the required objects, we refer to the package vignette. In addition to this, the number of uridines in each transcript is needed for
The raw data is first normalized, then mapped to Yeast ORF IDs and Pol = DTA.estimate(Pol.phenomat, Sc.datamat,
Wt = DTA.estimate(Wt.phenomat, Sc.datamat, Sc.datamat = DTA.map.it(cDTA.datamat, cDTA.datamat = DTA.normalize(Raw.datamat,
consider the parameter essential to check the reliability of the results. RStudio users should
of quality control plots, if then the estimation procedure
> library(DTA)
> data(Run2011)

The raw data is first normalized, mapped to Yeast ORF IDs, and then the estimation procedure DTA.estimate generates a series of quality control plots, if check = TRUE. These are absolutely essential to check the reliability of the results. RStudio users should consider the parameter RStudio.

> cDTA.datamat = DTA.normalize(Raw.datamat, Sp.affy.reliable)
> Sc.datamat = DTA.map.it(cDTA.datamat, map = Sc.affy2ensg)
> Wt = DTA.estimate(Wt.phenomat, Sc.datamat, Sc.tnumber, Sc.ensg.reliable, ccl = 93.5, LtoRratio = 0.05, check = FALSE)
> Pol = DTA.estimate(Pol.phenomat, Sc.datamat, Sc.tnumber, Sc.ensg.reliable, ccl = 149.8, LtoRratio = 0.05, check = FALSE)

Note that it is advisable to experimentally determine the median cell cycle length (ccl) of a sample if appropriate as a correction factor. Additionally, the ratio of labeled to total mRNA can be passed to the estimation procedure to yield the reported median wild-type mRNA half-lives (Miller et al., 2011). The same ratio is then used to estimate the mRNA half-lives of the rpb1-N488D strain (Pol). This is reasonable as the data has been pre-processed via added Sp cells (DTA, normalize). To yield Figure just execute the following:

> r = Sc.ensg.reliable
> x = log2(Pol6"sr"[r]/Wt6"sr"[r])
> y = log2(Pol6"sr"[r]/Wt6"sr"[r])
> heatscatter(x,y,xlim=c(-4,1),ylim=c(-4,1))

4 CONCLUSION
The DTA package delivers straightforward methods to estimate RNA synthesis and decay rates from pre-processed microarray or RNA-Seq measurements that are obtained via the DTA/cDTA protocol. The DTA package fulfills the high standard of the Bioconductor platform, regarding documentation and usability. It can therefore be easily incorporated in R scripts for pre-processing and further statistical analysis of the results can readily be carried out by other methods within the R/Bioconductor programming environment.

ACKNOWLEDGEMENTS
We thank Kerstin C. Maier, Martin Seizl, Laurent Lativiere, Nicole Pirkl and Stefanie Etzold (Gene Center Munich) for stimulating discussions and great experimental work.

Funding: A.T. was supported by the LMUexcellent guest professorship ‘Computational Biochemistry.’ P.C. was supported by the Deutsche Forschungsgemeinschaft, SFB646, TR5, FOR1068, NIM, the European Molecular Biology Organization (EMBO), an Advanced Investigator Grant of the European Research Council, a LMUexcellent research professorship ‘Molecular systems biology of gene regulation’, the LMUinnovativ project Bioimaging Network (BIN), and the Jung-Stiftung.

Conflict of Interest: none declared.

REFERENCES