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Abstract

Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not
straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct
interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the
case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of
dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and
was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture
components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of
84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major
limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to
reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish
between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach
requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the
effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous
sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the
mixture composition. Additionally, our model provides new insights into the established and widely used Sanger
sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/
beggel/linkageinformation.zip.
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Introduction

Direct Sanger sequencing is cheap and widely used but suffers

from low sensitivity regarding the detection of minor variants and

from the loss of linkage information. The problem of reconstruct-

ing the linkage of several ambiguous sequence positions has been

addressed only in the setting of diploid genomes so far. Linkage

information is of clinical relevance as treatment decisions, for

instance for human immunodeficiency virus and hepatitis B

patients, are often based on Sanger sequence data of the viral

genome [1–3]. A particular problem arises when two ambiguous

sequence positions are present within the same codon (Figure 1).

Then the amino acids expressed cannot be determined precisely

due to the lack of linkage information.

Significant attempts have been made to infer linkage informa-

tion from Sanger sequencing data [4–8]. These methods are

tailored to genomes that contain a mixture of two different

sequences one of which harbors an insertion or deletion. In this

case, the chromatogram downstream of the insertion or deletion

shows a high number of double peaks as the two genetic variants

are superimposed with a phase shift. These methods rely on prior

knowledge (reference sequence or set of possible single nucleotide

polymorphisms (SNP)) or the availability of both the forward and

the reverse chromatogram. Otherwise, such methods can only be

applied in situations where the two mixture sequences are

sufficiently similar and the analyzed fragment is significantly

longer than the insertion or deletion [4]. The method we present

here does not rely on diploid genomes that contain a heterozygous

insertion or deletion. It is tailored to viral genomes that can have a

more complex quasispecies without insertions or deletions.

Additionally, we explore a source of information that is encoded

in the peak heights of the sequencing chromatograms and has not

been considered so far.

Dye-labeled terminator sequencing chromatograms exhibit

heterogeneous peak heights that result from different affinities of

the polymerase for dideoxynucleotides (chain terminator nucleo-

tides) rather than natural nucleotides during polymerase chain

reaction amplification [9–11]. The rate of incorporation has been

found to also depend on the up- and downstream subsequence

[12,13]. This effect is referred to as sequence context-dependent

incorporation of dideoxynucleotides. Methods for estimating the

relative frequency of two DNA bases present at a sequence

position account for this effect by comparing the observed peak

heights to the peak heights of reference chromatograms [13,14].
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Interaction effects between peaks of nearby ambiguous sequence

positions are considered to be confounding the interpretation of

chromatograms and, therefore, are disregarded or averaged out by

these methods. In contrast, we have found that such interactions

harbor valuable information for inferring haplotype frequencies.

We have developed a probabilistic model that exploits this

interaction for the purpose of reconstructing the linkage and

thereby also determines the amino acids expressed at two nearby

ambiguous sequence positions.

The key assumption of our approach is that the collection of

peak heights of a mixture of clonal variants (which are called

haplotypes, in the following) is the proportion-weighted mixture of

the peak heights of the underlying haplotypes. The underlying

physico-chemical reasoning is as follows. Context-dependent

incorporation of dideoxynucleotides resulting in context-depen-

dent peak heights occurs at the level of each polymerase molecule

that incorporates dideoxynucleotides with an affinity depending on

the DNA subsequence it is processing. The observed sequencing

chromatogram is the sum of all individual molecular fluorescence

impulses. Thus knowing the peak heights of all possible haplotypes

present in a mixture, given that these show distinct patterns,

renders the determination of the haplotype composition feasible.

As context-dependent incorporation of dideoxynucleotides is a

local effect the methodology we present here will only infer linkage

information over a short genomic region, maybe up to 5 bases. A

Gaussian noise model was added to the mixture assumption to

account for variation in peak heights. Marginal model likelihoods

in combination with the marginals of the model parameters are

used for model selection.

Materials and Methods

In a preliminary study we analyzed a set of sequencing

chromatograms from three dilution series published in [14]. This

motivated the mixture assumption and provided evidence that

sequencing chromatograms contain linkage information and that

reconstructing the haplotype composition might be feasible. In

order to evaluate our hypothesis we designed and created two in

vitro test sets, each consisting of four clonal hepatitis B virus (HBV)

variants that differ at two nucleotide positions along with two sets

of in vitro mixtures of the four respective haplotypes.

Data preparation for the preliminary analysis
The chromatograms of three dilution series published in [14]

were obtained from the authors. Each dilution series was created

by mixing different pairs of DNA fragments that differ at a single

genomic position (single-nucleotide polymorphism). Experimental

mixture proportions were 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8,

1:9 and 0:10. Thus, eleven samples per dilution series were

available. Each sample was amplified and sequenced three times.

In vitro experimental setup
The wild-type HBV plasmid vector pCH9-3091 was modified

by site-directed mutagenesis. This resulted in a set of six clonal

HBV variants (Table 1). The clonal variants v1,v2,v3,v4 represent

all possible haplotypes for the two ambiguous positions 610 and

612 in the Reverse Transcriptase shown in Figure 1. Likewise, the

haplotypes v1,v2,v5,v6 represent all possible haplotypes for two

SNPs at positions 610 and 614. Test set 1 (TS1) consists of 29 in

vitro mixtures of the four haplotypes v1,v2,v3,v4 and test set 2 (TS2)

consists of 42 in vitro mixtures of the four haplotypes v1,v2,v5,v6.

Mixtures were prepared by equimolar mixing. The in vitro

mixtures were submitted to independent sequencing reactions,

each with the same set of oligonucleotides. The compositions of

the test sets are available in Table S1.

Clonal variants or mixtures of clonal variants were amplified

and sequenced using two distinct established protocols and

sequencing machines. TS1 and TS2 were prepared according to

[15] and [16], respectively. Sequencing of TS1 was performed on

ABI 3130xl using BigDye version 1.1 while TS2 was sequenced on

ABI 3730 using BigDye version 3.1. TS2 was prepared during the

revision of the manuscript. The use of two different sequencing

protocols was due to technological development and not originally

intended in the design stage of the study. However, incorporating

two technologies enables us to document the robustness of our

approach with respect to sequencing protocols.

In silico test set
An in silico test set of 1771 samples was created using all possible

mixture fractions on a grid with precision 0.05 using haplotype set

v1,v2,v3,v4. Test chromatograms were computed using the mixture

assumption.

Figure 1. Sequencing chromatogram. The sequencing chromatogram shows two nearby ambiguous sequence positions 610 and 612. At
position 610 adenine and guanine are present. At position 612 adenine and thymine are present. Positions are numbered with respect to the Reverse
Transcriptase of the hepatitis B virus genome. This chromatogram raises the question which of the bases at positions 610 and 612 are present on the
same clonal variant.
doi:10.1371/journal.pone.0081687.g001

Linkage Information from Sequencing Chromatograms
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Conditional distribution assumption
The computational approach requires repetitive sequencing of

all possible clonal variants in the mixture as training data. Each

haplotype has its own characteristic sequencing chromatogram

profile because of the effect of context-dependent incorporation of

dideoxynucleotides. The chromatogram of a mixture of haplotypes

is then the proportion weighted combination of these four

haplotype-specific profiles (with some variance). As a preprocess-

ing step all sequencing chromatograms were normalized using a

sequence region (called the normalization region) upstream from

the region under analysis. Each DNA base (A, T, C, G) requires its

own normalization parameter. These four parameters were set

such that the average peak height of each base in the

normalization region is 1000. Let cjki denote the normalized peak

heights of the sequencing chromatograms of the four haplotypes

with j~1,:::,4 indexing a set of haplotypes (either haplotype set

v1,v2,v3,v4 or haplotype set v1,v2,v5,v6), k~1,:::,q indicating the

sequencing replicate and i~1,:::,n representing all peak heights in

a window of about 20 bases around the ambiguous positions. This

includes all positions both ambiguous and non-ambiguous. The

haplotype-specific profiles pji were computed as the median

normalized peak heights of the sequencing replicates.

pji : ~median(cj1i,:::,cjqi): ð1Þ

Given the fractions a1,a2,a3,a4 (with aj§0 and
P

j aj~1) of a

mixture of four haplotypes the corresponding mixture profile mi

was computed in terms of the weighted sum of the peak heights of

the individual haplotypes. Here the weights are the fractions of the

haplotypes:

mi : ~
X

j

aj
:pji: ð2Þ

The likelihood of an observed chromatogram with peak heights

D~fhi,i~1,:::,ng given a mixture profile mi is specified using the

conditional distribution assumption: given normalization constants

cA,cC ,cG,cT for each DNA base, the mixture components

M(f1,:::,4g and the corresponding mixture fractions aj , the

normalized peak heights cB½hi �
:hi are assumed to be normally

distributed with mean equal to the mixture profile peak heights mi

and constant variance s2. Here B½hi� denotes the DNA base of

peak height hi.

P(cB½h�
:hjM,a)~N (mi,s

2) ð3Þ

N denotes the likelihood function of the Gaussian distribution

and the variance s2 reflects sequencing-dependent variations in

peak heights, which were estimated using sequencing replicates of

clonal variants.

Data likelihood
In order to apply equation (3) (to compute the data likelihood

P(DjM,a)) the normalization constants cA,cC ,cG,cT need to be

estimated. Therefore, the data D is partitioned into the distinct

union of D~Deval
_||Dfit. Deval contains all ambiguous and Dfit

the remaining peak heights. cA,cC ,cG,cT are estimated on Dfit

using the maximum likelihood principle given the conditional

distribution assumption (3) and the mixture profile mi. Fitting each

normalization constant is an ordinary least-square regression

problem for each mixture profile mi. The likelihood of the

observation P(DjM,a) is then computed using equation (4). Thus,

we evaluate P(DjM,a) by computing P(DevaljM,a,Dfit). After the

normalization constants cA,cC ,cG,cT have been estimated using

Dfit the peak heights of Deval can be assumed to be independent,

given the conditional distribution assumption (3). This allows the

likelihood function to be factorized.

P(DjM,a)~P(DevaljM,a,Dfit)~P
h[Deval

P(cB½h�
:hjM,a) ð4Þ

Model selection
The primary goal is to determine the haplotypes M(f1,:::,4g

represented by a given chromatogram. Maximum likelihood

estimates derived from the conditional distribution assumption overfit

and likely produce point estimates indicating that all four haplotypes

are present. In order to guard against overfitting regularization is

employed by computing the marginal model likelihoods according to

equation (5) with uniform priors P(ajM) [17].

P(DjM)~P(DevaljM,Dfit)~

ð
P(DevaljM,a,Dfit):P(ajM) da ð5Þ

For the setting with two ambiguous sequence positions seven

alternative models need to be considered, which are M1z4, M2z3,

M1z2z3, M1z2z4, M1z3z4, M2z3z4 and M1z2z3z4. Thus,

inferring the haplotype composition is a 7-fold classification

problem. The notation M1z4 is used to indicate a mixture of

haplotypes 1 and 4, M1z2z3 is used to indicate a mixture of

haplotypes 1, 2 and 3, etc.. Other subsets of f1,:::,4g, e.g. f1,2g,
do not exhibit two ambiguous positions in the chromatogram and

therefore can be excluded.

Additionally, the modes b1, . . . ,b4 of the posterior marginals of

the model parameters a1, . . . ,a4 of the full model M1z2z3z4 are

computed. For each j[f1,2,3,4g let aj denote all ai with i=j.

Table 1. Experimental setup.

Haplotype Position 610 Position 612 Position 614 Comment

v1 Adenine Guanine Adenine Wild-type

v2 Guanine Guanine Adenine rtM204V

v3 Adenine Thymine Adenine rtM204I

v4 Guanine Thymine Adenine rtM204V

v5 Adenine Guanine Thymine

v6 Guanine Guanine Thymine

Six clonal hepatitis B virus genomes (haplotypes) were created by varying three
nearby nucleotide positions. Haplotypes v1,v2,v3,v4 represent all possible
combinations of the two variants adenine and guanine present at position 610
and the two variants guanine and thymine present at position 612. These
nucleotide variants are clinically relevant as they represent two primary
resistance mutations rtM204I and rtM204V. Haplotypes v1,v2,v5,v6 represent all
possible combinations of the two variants adenine and guanine present at
position 610 and the two variants adenine and thymine present at position 614.
Positions are numbered with respect to the Reverse Transcriptase of the
hepatitis B virus genome.
doi:10.1371/journal.pone.0081687.t001
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bj : ~ argmax
aj

P(aj jD,M1z2z3z4)

~ argmax

aj

ð
½0,1�3

P(ajD,M1z2z3z4) daj

* argmax
aj

ð
½0,1�3

P(ajM1z2z3z4):P(DjM1z2z3z4,a) daj

ð6Þ

A model M(f1,:::,4g is considered to be inconsistent with

b1, . . . ,b4 given a certain cutoff value t if there exists j[M with

bjƒt and (in case M=M1z2z3z4) if there is k=[M with bkwt. In

words, there is a haplotype j indicated by the model with low bj

and a haplotype k not present in the model with high bk, which

together indicate a strong contradiction of the model with the

parameter marginals. The latter condition can and need only to be

fulfilled if the model under consideration is not the full model

(M1z2z3z4). Models that are inconsistent with the modes of the

parameter marginals are excluded from the model selection

procedure. The cutoff t used to evaluate the prediction perfor-

mance on TS1 was chosen to optimize accuracy on TS2 and vice

versa.

The respective integrals (5) and (6) were approximated using a

grid of a values of precision 0.025. This resulted in 12341

parameter configurations, for which the log-likelihoods were

computed and summed up to compute the marginal model

likelihoods and the posterior marginal parameter distributions.

Performance Evaluation
Haplotype reconstruction for two ambiguous sequence positions

is a 7-fold classification problem. Prediction performance at the

model level is measured in terms of accuracy. Prediction

performance is also evaluated at the clonal level. For this purpose,

each 7-fold classification problem is interpreted as four 2-fold

classification problems defined by the prediction of the presence or

the absence of each of the four possible haplotypes. Confidence of

predictions is expressed in terms of an uncertainty cutoff. Each

prediction is either correct, incorrect or unassigned. A sample

remains unassigned if the marginal likelihood of the best model

divided by the marginal likelihoods of all other models falls below

the uncertainty cutoff.

Results

We developed a computational model to describe the expected

sequencing chromatogram of a mixture of haplotypes. Such a

model facilitates the inference of the haplotype composition i.e. to

infer the mixture components and fractions. To validate the model

two test sets were created. Each test set consists of four clonal HBV

variants, which differ at two nearby nucleotide positions, and

corresponding test samples of in vitro mixtures of the respective

haplotypes (Table 1). Further, in silico test samples were created to

study limitations of our approach.

Preliminary analysis
We analyzed chromatograms of a dilution series with nominal

mixture proportions 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9

and 0:10. We were interested in changes of peak heights near the

ambiguous sequence position and found that the normalized peak

heights upstream of the ambiguous sequence position were almost

identical for all nominal mixture proportions. At the ambiguous

sequence position and at the two to four bases downstream we

observed a smooth and almost linear transition of the peak heights

between the samples with nominal mixture proportions 10:0 and

0:10 (Figure 2). This gave rise to the mixture assumption: the peak

heights of a mixture of haplotypes are the proportion-weighted

mixtures of the peak heights of the underlying haplotypes. The

mixture assumption is common-sense for the ambiguous sequence

position in a dilution series. Methods for quantifying base

frequencies based on chromatograms rely on this principle

[13,14]. Additionally, we found that this holds for all peak heights.

It becomes evident near ambiguous sequence positions where the

peak heights of the underlying haplotypes differ due to the effect of

sequence context-dependent incorporation of dideoxynucleotides.

Finally, Figure 2 shows that there is indeed linkage information in

sequencing chromatograms as the peak height at e.g. position 2

depends on the relative frequencies of the bases present at the

ambiguous sequence position.

The mixture assumption was employed to estimate the mixture

fractions of three dilution series. The maximum likelihood

estimates for the mixture fractions derived from the chromato-

grams were close to the nominal mixture fractions for dilutions

series 1 and 2 with average absolute errors of 0.01 and 0.03,

respectively (Figures 3A and 3B). Dilution series 3 showed a

nonlinear relationship between nominal and estimated propor-

tions, resulting in an average absolute error of 0.14 (Figure 3C).

This nonlinear relationship is likely caused by varying amplifica-

tion efficiencies of the different clonal variants. Almost identical

results for these data were reported by [14]. Note that the variance

in the estimates originates from repetitive amplification and

sequencing of the same in vitro mixture. The experiment described

above was repeated while blanking out the ambiguous positions.

Thus, we employed only sequence positions 22, 21, 1 and 2

(Figure 2) to estimate the mixture fractions. This resulted in

fraction estimates with higher average errors of 0.05, 0.08, 0.26

and higher variances (Figures 3D–3E). The mixture assumption

facilitates the estimation of the fractions of a mixture without using

the ambiguous positions. Previous methods that quantify mixture

fractions based on sequencing chromatograms only consider

ambiguous positions and neglect the information provided by

surrounding peaks [13,14].

We now focus on the problem of haplotype reconstruction

based on sequencing chromatograms in the special case of two

ambiguous sequence positions. For this problem four possible

haplotypes 1, . . . ,4 with fractions a1, . . . ,a4 need to be considered.

Table 1 rows 1 to 4 lists the four possible haplotypes for the

combination of two important HBV drug resistance mutations

within the Reverse Transcriptase domain. The haplotype reconstruc-

tion problem has three degrees of freedom a1,a2,a3 which

determine a4 due to
P

j aj~1. An estimate of the fraction of the

first ambiguous position p1 gives rise to a1za3~p1 as haplotype 1

and 3 are wild-type at the first ambiguous position. Similarly, an

estimate p2 of the fraction of the second ambiguous position

provides a1za2~p2. These frequency estimates can be derived

from the chromatograms thus reducing the complexity to one

degree of freedom. This implies that the peak heights of the

ambiguous positions impose strong constraints that limit the space

of possible solutions to a straight line in the three-dimensional

space of all possible solutions. Within this set of possible solutions

we face the problem of model selection. Further evidence from the

surrounding peaks or slightly different configurations of the four

ambiguous peaks are required to localize the correct solution.

Linkage Information from Sequencing Chromatograms
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In silico experiment
In order to study elementary properties of our approach we

created a set of in silico test samples. 1771 artificial chromatograms

were created for the set of haplotypes v1, . . . ,v4 (see Table 1) based

on equation (2) using a grid of a values with grid size 0.05. Test

data were generated without adding a noise component. The

noise-free setting provides an upper bound on the model

performance to be expected on real-world data and simplifies

the analysis of model characteristics and limitations. Mixture

chromatograms were truncated to nucleotide positions 600 to 620.

Positions 610 and 612 were employed to compute the data

likelihoods. The value of the standard deviation s was estimated

using the sequencing repetitions of the haplotypes. s was set to

20.94.

Only 867 (49%) of the 1771 in silico test samples were predicted

correctly. Figure 4 visualizes all incorrectly predicted test cases

separately for each falsely predicted label. The four surfaces of the

simplex correspond to the four 3-mixture models M1z2z3,

M1z2z4, M1z3z4 and M2z3z4. Test samples that lie in the

interior of the simplex but close to one of its faces display mixtures

of all four haplotypes with one haplotype having low frequency

(Figures 4A–4D). These test samples were regularized towards the

surface by using the marginal likelihoods for model selection. This

reveals a major restriction of the model in terms of sensitivity.

Figure 2. Peak heights of dilution series. The figure shows the median normalized peak heights of the chromatograms of a dilution series sorted
by nominal mixture proportion. The normalized peak heights before the ambiguous sequence position are almost identical for all nominal mixture
proportions. At the ambiguous sequence position and at up to five bases downstream of the ambiguous sequence position a smooth and apparently
linear transition between the peak heights of the samples with nominal mixture proportions 10:0 and 0:10 can be observed.
doi:10.1371/journal.pone.0081687.g002

Figure 3. Fraction estimates for dilution series. All subplots show nominal mixture fractions versus estimated mixture fractions for three
dilution series. A–C use all peak heights and provide proportions estimates with low error and low variance. D–E ignore the peak heights at the
ambiguous positions and try to estimate the mixture proportions based on the unambiguous positions only. The resulting fraction estimates show
higher error and higher variance.
doi:10.1371/journal.pone.0081687.g003

Linkage Information from Sequencing Chromatograms

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e81687



The test set can be divided into two groups: those samples that

contain at least one haplotype with a fraction of no more than

10%, and those for which each present haplotype occurs in a

fraction higher than 10%. The samples of the first group were

predicted correctly in 383 (32.0%) of 1200 cases. The samples of

the second group (all present haplotypes exceed a fraction of 10%)

were predicted correctly in 484 (85%) of 571 cases.

Figure 4E indicates a second systematic failure:

34 M1z2z3z4, 5 M1z2z3 and 7 M2z3z4 samples were incorrect-

ly predicted as mixtures of haplotypes 1 and 4. All of these samples

satisfied the set of linear constraints a2{a3ƒ0:05, a2ƒ0:35 and

a3ƒ0:35. Similarly, 32 M1z2z3z4, 5 M1z2z4 and 4 M1z3z4

samples were falsely predicted as mixtures of haplotypes 2 and 3

(Figure 4F). These samples satisfied the constraints

2a1za2za3{1ƒ0:05, a1ƒ0:30 and a4ƒ0:30. In order to

improve prediction performance we analyzed the marginal

posterior distributions of the fraction parameters a1, . . . ,a4. E.g.

for all of the seven M2z3z4 test samples that were misclassified as

M1z4 we observed that the modes of posterior marginal

distributions of a1 were zero while the modes of a3 had a mean of

0:22+0:07. Thus, the modes of the posterior marginals were clearly

inconsistent with the model predictions based on the marginal

model likelihoods. By checking the consistency of the model

predictions with the modes of the posterior marginals using a cutoff-

value of 10% (as described in the Methods section) all misclassified

3-mixture test samples could be corrected. Nevertheless, the

consistency rule does not improve prediction performance on the

4-mixture test samples. The inability of the model to distinguish

between 2-mixture and 4-mixture test samples (if one of two sets of

linear constraints is fulfilled) is a major limitation of the model in

terms of accuracy.

In vitro validation
Our hypothesis was that the haplotype composition of arbitrary

mixtures can be reconstructed using information from the

ambiguous and the surrounding peak heights. In order to test

this hypothesis, we created two in vitro training sets, each composed

of six sequencing repetitions of the underlying haplotypes (Table 1)

to compute the individual haplotype profiles and a respective test

set of in vitro mixtures. Test set 1 (TS1) based on haplotypes

v1,v2,v3,v4 contained 29 mixtures and test set 2 (TS2) based on

haplotypes v1,v2,v5,v6 contained 42 mixtures. When model

selection was solely based on the marginal model likelihoods

prediction accuracy at the model level was 96.6% on TS1 and

47.6% on TS2. By application of the consistency rule as described

in the Methods section prediction accuracy improved to 71.4% on

TS2 and remained unchanged on TS1. The respective cutoff used

to evaluate the prediction performance on TS1 was chosen to

optimize accuracy on TS2 and vice versa. A cutoff of 10% was

used for both data sets. Note that model selection in our setting is a

7-fold classification problem and the accuracy expected by chance

amounts to only 14.3%. Prediction performance was also

evaluated at the clonal level. In this evaluation scheme we treated

the 7-fold classification problem as four 2-fold classification

problems that amounted to the prediction of the presence or the

absence of each of the four possible haplotypes. Using this

evaluation we could study the accuracy of the model predictions in

more detail than when assessing accuracy in terms of 0–1 error at

the model level. For instance, the incorrect classification of a

M1z2z3z4 test sample as M1z2z3 would result in an accuracy of

75% as three of four haplotypes were predicted correctly. Clonal

level prediction accuracy was 97.4% for TS1 and 84.5% for TS2.

Figure 5 summarizes the prediction performances on TS1 and

TS2 both at the model level and at the clonal level. Additionally,

Figure 4. In silico prediction results. 1771 in silico test chromatograms were created by computing the mixture profiles on a grid of a values with
precision 0.05. Test chromatograms were classified by the mixture model with s~20:94. The subplots show all falsely classified samples separately for
each falsely predicted label. Six major cases of misclassification can be observed. Subplots A–D show test samples that consist of four haplotypes with
at least one haplotype having low frequency. Subplots E and F show test samples that were predicted as mixtures of haplotypes 1 and 4 or of
haplotypes 2 and 3, respectively. The data points of subplot E satisfy the linear constraints a2{a3ƒ0:05, a2ƒ0:35 and a3ƒ0:35. The data points of
subplot F satisfy 2a1za2za3{1ƒ0:05, a1ƒ0:30 and a4ƒ0:30.
doi:10.1371/journal.pone.0081687.g004
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we present the results as a function of the prediction confidence

expressed by the uncertainty cutoff. E.g. at an uncertainty cutoff of

4.0 only 2.6% (5.4%) of predictions at the clonal level were

incorrect, 14.6% (30.4%) were unassigned and 82.8% (64.2%) of

predictions were correct on TS1 (respectively TS2).

Discussion

This article describes the first attempt, to our knowledge, to use

peak heights from sequencing chromatograms to infer linkage

information about nearby ambiguous positions. We derived a

generative model to describe the expected peak heights of a

mixture of haplotypes by combining the chromatograms of the

underlying haplotypes. The model was motivated by visual

inspection of the peak heights of a dilution series. Our model is

a generalization of previous methods for estimating the fractions of

one ambiguous sequence position [13,14]. The main difference is

that we employ a generative model whose parameters are

estimated by probabilistic inference rather than by comparing

the observed peak heights to the template peak heights. Previous

methods neglected nearby peak heights as they are usually

influenced by the ambiguous peaks to be analyzed. In contrast,

we exploit this interaction effect to infer linkage information.

The high prediction accuracy of our method on two in vitro test

sets of 29 and 42 mixture samples showes that sequencing

chromatograms do contain linkage information. The prediction

accuracy on TS1 was 97.4% at the clonal level and 96.6% at the

model level while the accuracy on TS2 was 84.5% at the clonal

level and 71.4% at the model level. We found that the marginal

distributions of the model parameters aj based on the data

likelihoods are informative of the mixture composition. Prediction

performance at the model level increased from 47.6% to 71.4% on

TS2. The Bayesian framework provides confidence values for the

predictions in terms of posterior distributions, which can be

applied to reduce the number of false predictions at the cost of a

higher number of unclassified samples.

The evaluation of the model on a set of 1771 in silico test samples

revealed several limitations of our approach. First, the model

cannot reliably detect minor populations with frequency of no

more than 10%. In such cases, the predictions are regularized

towards simpler models, which do not contain the low-frequency

haplotype. Second, we found that if the mixture fractions aj satisfy

one of two sets of linear constraints then the mixture is always

predicted to be either a mixture of the haplotypes 1 and 4 or to be

a mixture of haplotypes 2 and 3. The true mixture components in

the former case are M1z4, M1z2z3, M2z3z4 and M1z2z3z4 and

in the latter case are M2z3, M1z2z4, M1z3z4 and M1z2z3z4.

This becomes plausible by looking at the proportion estimates p1

and p2 of the two ambiguous positions. If p1 and p2 are equal

(p1~p2), then the observed peak heights can be interpreted to

originate from a mixture of haplotypes 1 and 4 with a1~p1 and

a4~1{p1. From p1~p2 follows a1za3~a1za2 and immedi-

ately a2{a3~0. If additionally a2 and a3 have low frequency

(below 35%), we obtain the set of linear constraints that are

fulfilled by all in silico test cases, which were falsely classified as

mixtures of haplotypes 1 and 4 (Figure 4E). The presence of

haplotypes 2 and 3 does not become strongly evident by looking at

the surrounding peaks due to their relatively low frequency.

Similarly, if the frequency estimates at the two ambiguous

positions fulfill p1~1{p2, the mixture can be interpreted to

contain only the haplotypes 2 and 3 with a2~p2 and a3~p1.

From p1~1{p2 follows a1za3~1{a1{a2 and immediately

2a1za2za3{1~0, which is the constraint satisfied by all in silico

test cases that were falsely predicted as a mixture of the haplotypes

2 and 3. This observation is reflected in the in vitro test set TS2, in

which four samples (9.5%) were incorrectly classified at an

uncertainty cutoff of 4:0. Three samples were 4-mixtures

misclassified as M2z3 with 2a1za2za3{1 amounted to 0.0,

0.0 and 0.025, respectively. Additionally, one M1z2z3 sample was

misclassified as M1z4 with a2{a3 equal to 0:025.

To summarize, we think that the misclassifications do not result

from inaccurate likelihood computations, but rather from the

model regularization. Simpler models are preferred, if the peak

heights at the ambiguous positions do not imply a more complex

model. This is the case, in particular, when one haplotype in a

mixture of four haplotypes has low frequency (misclassified as a

mixture of three haplotypes), when p1&p2 (misclassified as M1z4)

or when p1&1{p2 (misclassified as M2z3).

Figure 5. Prediction accuracy on in vitro test sets. The figure shows the prediction accuracy on test sets TS1 (subplots A and B) and TS2
(subplots C and D). Prediction accuracy was evaluated both at the clone and at the model level. Each test sample is either predicted correctly,
predicted incorrectly or unassigned. The latter happens when the marginal likelihood of the best model divided by the marginal likelihoods of all
other models falls below the uncertainty cutoff displayed on the x-axis.
doi:10.1371/journal.pone.0081687.g005
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We evaluated our hypothesis to perform inference on the

haplotype compositions for only two sets of sequence positions

within the Reverse Transcriptase domain of the HBV genome.

Nevertheless, peak heights usually display very distinctive patterns

and thus we assume the approach will also work in other settings.

Two different amplification and sequencing protocols in concert

with two different sequencing machines were employed to

generate the two test sets. This indicates the robustness of the

method with respect to sequencing protocols. The reasoning that

the problem is essentially one-dimensional after the mixture

fractions are estimated implies that the model very likely cannot

successfully be extended to infer the haplotype composition in the

presence of more than two nearby ambiguities. Additionally, the

locality of the effect of sequence context-dependent incorporation

of dideoxynucleotides limits the capacity of the approach to infer

phase information of ambiguous positions that are more than a

few bases (up to five bases, at most) apart from each other. On test

set TS2, in which the two ambiguous positions were three

positions apart from each other, prediction accuracy was impaired

in comparison to TS1, in which the two ambiguous positions were

only separated by a single base.

The advent of next-generation sequencing (NGS) technologies

has superseded traditional Sanger sequencing in many applica-

tions [18]. NGS technologies offer increased sequencing depth and

speed through a high degree of parallelization and miniaturization

and allow the detection of minor variants with relative frequencies

of as low as 10{4 [19]. NGS data also naturally provide linkage

information over the whole read length, which may further be

extended by the use of paired-end reads [20]. Compared to our

approach, NGS technologies are far more sensitive and accurate

in determining the haplotype composition of a mixture and can

deliver long-range linkage. Nevertheless, traditional Sanger

sequencing is cheaper than NGS and NGS will not be accessible

in many laboratories for some time to come. Before this

background, certain applications, in which the limitations of our

approach in terms of sensitivity, accuracy and limited range are

acceptable, may not require NGS.

Conclusions

We have developed and validated an approach to compute the

peak heights of a mixture of haplotypes based on the chromatograms

of the underlying haplotypes. The model can be used to infer the

haplotypes present in a mixture and therefore the short-range linkage

for two ambiguous sequence positions. The effect of sequence

context-dependent incorporation of dideoxynucleotides — an effect

that was previously regarded as detrimental — was employed. The

effectiveness of our method shows that short-range linkage informa-

tion can be inferred from sequencing chromatograms with no further

assumptions on the mixture composition. The model also allows the

estimation of the fractions of nearby ambiguities and therefore

overcomes the limitations of [1]. As a major limitation to its

widespread applicability the model requires the sequencing chro-

matograms of all possible haplotypes in the mixture. The source code

of our method can be downloaded at http://bioinf.mpi-inf.mpg.de/

publications/beggel/linkageinformation.zip.

Supporting Information

Table S1 Composition of the in vitro test set 1 (TS1) and test set 2
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