English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A phase-imaging technique for cyclotron-frequency measurements

MPS-Authors
/persons/resource/persons30445

Eliseev,  Sergey
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30312

Blaum,  Klaus
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37912

Dörr,  Andreas
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität, 69120 Heidelberg, Germany;

/persons/resource/persons81057

Eronen,  Tommi
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37578

Goncharov,  Mikhail
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität, 69120 Heidelberg, Germany;

/persons/resource/persons30602

Höcker,  Martin
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30667

Ketter,  Jochen
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität, 69120 Heidelberg, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., et al. (2014). A phase-imaging technique for cyclotron-frequency measurements. Applied Physics B: Lasers and Optics, 114(1-2), 107-128. doi:10.1007/s00340-013-5621-0.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-38BF-2
Abstract
A novel approach to mass measurements at the 10−9 level for short-lived nuclides with half-lives well below one second is presented. It is based on the projection of the radial ion motion in a Penning trap onto a position-sensitive detector. Compared with the presently employed time-of-flight ion-cyclotron-resonance technique, the novel approach is 25-times faster and provides a 40-fold gain in resolving power. Moreover, it offers a substantially higher sensitivity since just two ions are sufficient to determine the ion’s cyclotron frequency. Systematic effects specific to the technique that can change the measured cyclotron frequency are considered in detail. It is shown that the main factors that limit the maximal accuracy and resolving power of the technique are collisions of the stored ions with residual gas in the trap, the temporal instability of the trapping voltage, the anharmonicities of the trapping potential and the uncertainty introduced by the conversion of the cyclotron to magnetron motion.