Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Disorder-induced cubic phase in Fe2-based Heusler alloys

MPG-Autoren
/persons/resource/persons126689

Kiss,  J.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126564

Chadov,  S.
Stanislav Chadov, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126599

Fecher,  G. H.
Gerhard Fecher, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kiss, J., Chadov, S., Fecher, G. H., & Felser, C. (2013). Disorder-induced cubic phase in Fe2-based Heusler alloys. Physical Review B, 87(22): 224403, pp. 1-4. doi:10.1103/PhysRevB.87.224403.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-1EA8-8
Zusammenfassung
Based on the first-principles electronic structure calculations, we analyze the chemical and magnetic mechanisms stabilizing the cubic phase in Fe-2-based Heusler materials, which were predicted to be tetragonal when being chemically ordered. In agreement with recent experimental data, we found that these compounds crystallize within the so-called "inverted" cubic Heusler structure perturbed by a certain portion of the intrinsic chemical disorder. Understanding of these mechanisms is a necessary step to guide the successful future synthesis of the stable Fe-2-based tetragonal phases, which are promising candidates for the rare-earth-free permanent magnets.