Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Methanol synthesis on ZnO(0001).II. Structure, energetics, and vibrational signature of reaction intermediates

MPG-Autoren
/persons/resource/persons126689

Kiss,  J.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126606

Frenzel,  J.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kiss, J., Frenzel, J., Meyer, B., & Marx, D. (2013). Methanol synthesis on ZnO(0001).II. Structure, energetics, and vibrational signature of reaction intermediates. Journal of Chemical Physics, 139(4): 044705, pp. 1-17. doi:10.1063/1.4813404.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-1E86-3
Zusammenfassung
A rigorous characterization of a wealth of molecular species adsorbed at oxygen defects on ZnO(000 (1) over bar) is given. These defects represent the putative active sites in methanol synthesis from CO and H-2. The oxidation state of the ZnO catalyst and thus the preferred charge state and the reactivity of the oxygen vacancies depend on the gas phase temperature and pressure conditions. Considering charge states of oxygen vacancies relevant at the reducing conditions of the industrial process, i.e., F++/H-2, F-0, F-0/H-2, and F--, as well as the F++ center which is abundant at UHV conditions and therefore important to allow for comparison with surface science experiments, we have investigated the structure, energetics, and vibrational frequencies of an exhaustive catalog of reaction intermediates using electronic structure calculations. After having identified the characteristic adsorption modes of CO, formate, formic acid, hydroxymethylene, formyl, formaldehyde, dioxomethylene, hydroxymethyl, hydroxymethoxide, methoxide, as well as methanol itself, the thermodynamic stability of all species with respect to the charge state of the oxygen vacancy and their electronic stabilization is discussed in detail and summarized in an energy level diagram. (C) 2013 AIP Publishing LLC.