Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Low-temperature phase diagram of Fe1+yTe studied using x-ray diffraction

MPG-Autoren
/persons/resource/persons126707

Koz,  C.
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126821

Rößler,  S.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126888

Tsirlin,  A. A.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126910

Wirth,  S.
Steffen Wirth, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126841

Schwarz,  U.
Ulrich Schwarz, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koz, C., Rößler, S., Tsirlin, A. A., Wirth, S., & Schwarz, U. (2013). Low-temperature phase diagram of Fe1+yTe studied using x-ray diffraction. Physical Review B, 88(9): 094509, pp. 094509-1-094509-10. doi:10.1103/PhysRevB.88.094509.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-1E54-2
Zusammenfassung
We used low-temperature synchrotron x-ray diffraction to investigate the structural phase transitions of Fe1+y Te in the vicinity of a tricitical point in the phase diagram. A detailed analysis of the powder diffraction patterns and temperature dependence of the peak widths in Fe1+y Te showed that two-step structural and magnetic phase transitions occur within the compositional range 0.11 <= y <= 0.13. The phase transitions are sluggish, indicating a strong competition between the orthorhombic and the monoclinic phases. We combine high-resolution diffraction experiments with specific heat, resistivity, and magnetization measurements and present a revised temperature-composition phase diagram for Fe1+y Te.