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Abstract
Elucidating the dynamics of molecular processes in living
organisms in response to external perturbations is a central
goal in modern systems biology. We investigated the dynamics of
protein phosphorylation events in Arabidopsis thaliana exposed to
changing nutrient conditions. Phosphopeptide expression levels
were detected at five consecutive time points over a time interval
of 30 min after nutrient resupply following prior starvation. The
three tested inorganic, ionic nutrients NH+

4, NO−
3, PO3−

4 elicited
similar phosphosignaling responses that were distinguishable from
those invoked by the sugars mannitol, sucrose. When embedded
in the protein–protein interaction network of Arabidopsis thaliana,
phosphoproteins were found to exhibit a higher degree compared to
average proteins. Based on the time-series data, we reconstructed
a network of regulatory interactions mediated by phosphorylation.
The performance of different network inference methods was
evaluated by the observed likelihood of physical interactions within
and across different subcellular compartments and based on gene
ontology semantic similarity. The dynamic phosphorylation network
was then reconstructed using a Pearson correlation method with
added directionality based on partial variance differences. The
topology of the inferred integrated network corresponds to an
information dissemination architecture, in which the phosphorylation
signal is passed on to an increasing number of phosphoproteins
stratified into an initiation, processing, and effector layer. Specific
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phosphorylation peptide motifs associated with the distinct layers
were identified indicating the action of layer-specific kinases. Despite
the limited temporal resolution, combined with information on
subcellular location, the available time-series data proved useful
for reconstructing the dynamics of the molecular signaling cascade
in response to nutrient stress conditions in the plant Arabidopsis
thaliana.

Introduction
Intra-cellular communication and information processing is performed
by complex, dynamic, and context-specific molecular signaling networks
(Terfve and Saez-Rodriguez, 2012). Protein phosphorylation is the best
known post-translational modification involved in molecular signaling
and plays a significant role in a wide range of cellular processes in all
organisms (Cohen, 2000; Macek et al., 2008; Schulze, 2010). Enabled
by the development of novel sensitive experimental techniques to detect
phosphorylation sites in proteins (Larsen et al., 2005; Sugiyama et
al., 2007), the principle of phosphorylation-mediated activation and
inactivation of proteins and the modulation of molecular interactions has
been studied intensively in a broad range of organisms (Pawson, 1997;
Pawson and Nash, 2003; Pawson and Taylor, 2009). Time course studies
of phosphorylation events are of particularly high value in the context
of signaling as they allow to reveal the dynamics and the cause-effect
relationships between all molecular components involved in the signal
transduction process (Blagoev et al., 2004; Olsen et al., 2006; Niittylä et
al., 2007; Engelsberger and Schulze, 2012).
Besides advances on the instrumentation side, computational methods
have been devised to interrogate the resulting data sets. Both
descriptive as well as predictive computational methods have been
developed [For review, see Janes and Yaffe (2006)]. In the category of
descriptive approaches, in particular the methods clustering (Olsen
et al., 2006; Huang et al., 2007; Engelsberger and Schulze, 2012),
principal component analysis (PCA), singular value decomposition
(SVD), data mapping onto protein interaction networks (PIN), and
protein signaling networks (PSN) (Krüger et al., 2008; Jørgensen et al.,
2009) have been applied with the aim to reduce the complex behavior
of a molecular system to the core components, thereby “describing”
it in the most meaningful and parsimonious way. The primary goal of
descriptive approaches is to identify common as well as distinguishing
properties of the system under study exposed to different conditions
or at different time points. By contrast, predictive approaches allow
predicting the system's response given a set of conditions and data
for appropriate independent predictor variables (Terfve and Saez-
Rodriguez, 2012). Predictive approaches employ input/output regression
based methods (such as partial least squares regression (Gaudet et
al., 2005; Janes et al., 2005), multiple linear regression (Ekins et al.,
2008; Alexopoulos et al., 2010) as well methods that aim to infer (in
a sense “predict”) the web of interactions between all components
based on the available data using network inference methods [such as
correlation based inference methods (Ciaccio et al., 2010), modular
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response analysis (Kholodenko, 2006; Santos et al., 2007), multiple
input multiple output models (Nelander et al., 2008), Bayesian network
inference (Sachs et al., 2005; Ciaccio et al., 2010)] or reaction-based
models such as ordinary and partial differential equations (Aldridge
et al., 2006; Birtwistle and Kholodenko, 2009; Chen et al., 2009), rule-
based models (Borisov et al., 2005; Conzelmann et al., 2006; Hlavacek
et al., 2006; Danos et al., 2007; Faeder et al., 2009; Feret et al., 2009;
Sneddon et al., 2011), and logic-based models (Gat-Viks and Shamir,
2007; Watterson et al., 2008; Saez-Rodriguez et al., 2009; Morris et al.,
2010, 2011; Schlatter et al., 2011).
The field of network reconstruction gained particularly strong traction
in the context of gene expression regulation, where reverse engineering
models have been designed to infer gene regulatory networks from gene
expression data (Bansal et al., 2007; Hecker et al., 2009). More recently,
efforts were undertaken to use the generated large-scale experimental
phosphorylation site data that are now available in public databases to
reconstruct kinase-specific phosphorylation interactions, many of which
also make use of “known” protein–protein interactions (Linding et al.,
2007; Xue et al., 2008; Song et al., 2012; Newman et al., 2013).
In the plant research field, phosphoproteomic experiments interrogating
the dynamics of phosphorylation events by capturing more than two
time points are still very scarce (Niittylä et al., 2007; Chen et al., 2010;
Engelsberger and Schulze, 2012). By contrast, pairwise comparisons of
two conditions have been carried out rather frequently (Benschop et al.,
2007; Li et al., 2009; Reiland et al., 2009; Kline et al., 2010).
As sessile organisms, plants have evolved sensitive mechanisms in their
plasma membrane to detect and respond to rapid changes in external
nutrient conditions [e.g., reviewed for responses to nitrate in Wang et al.
(2012b)]. As still very little is known about post-translational regulation
of nutrient-induced signaling processes, these phosphoproteomic
experiments complement the existing knowledge gained from the
analysis of nutrient-induced transcript changes (Scheible et al., 1997;
Morcuende et al., 2007; Osuna et al., 2007; Krouk et al., 2010).
In this study, phosphoproteomics data obtained from starvation-
resupply experiments involving several different nutrient conditions
(nitrate, phosphate, ammonium, and the sugars mannitol and sucrose)
and sampling at five consecutive time points (Niittylä et al., 2007;
Engelsberger and Schulze, 2012) were analyzed. In the published
experiments, mannitol has served as osmotic control and was also
included here to define osmotic responses associated with nutrient
changes. Based on the time-resolved phosphoproteomic data set, we
conducted a systematic computational analysis of the dynamics of
the observed in nutrient-induced phosphorylation events by applying
descriptive approaches including clustering, data mapping onto PINs
as well as predictive approaches resulting in dynamic phosphorylation
network reconstructions. The objectives of this study were (a) to
identify commonalities as well as characteristic differences of the
phosphosignaling in response to different nutrient responses, and (b),
to exploit the available time-series dataset to test various network
reconstruction methods and performance metrics for their suitability to
generate plausible networks even if only short time series data serve as
input.
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Our results demonstrate that current proteomics technologies allow
monitoring of dynamic phosphorylation cascades at sufficient resolution
and precision amenable for an application of computational network
inference methods. The identified networks are characterized by distinct
topological layers involved in signal initiation, processing, and an
effector level. With time progression, we observed an increasingly
broadened recruitment of phosphoproteins characteristic of an
information dissemination flow in response to nutrient stimulation.
Specific phosphorylation peptide motifs associated with them were
identified indicating the action of layer-specific kinases.

Results
The dataset used in this study consists of phosphopeptide identifications
from starvation-resupply time course experiments (Niittylä et al.,
2007; Engelsberger and Schulze, 2012) and is available from the
PhosPhAt database (Durek et al., 2010). Label-free ion intensity
quantitation including retention time alignment was carried out to
obtain quantitative dynamic information across five time points of
phosphopeptide abundance upon resupply to starved seedlings with
five nutrients/organic substances (NH+

4, NO−
3, PO3−

4, sucrose, and
mannitol). As most network reconstruction methods rely on the data to
be complete, only datasets with quantitative information for all five time
points were retained for further analysis (Table 1). In total, 546 different
peptide sequences were used in the analysis.

Table 1
Number of phosphorylated peptides and proteins in each
nutrient/organic solute starvation-resupply treatment with
complete quantitative information across all five time points.
Mannitol NH4 NO3 PO4 Sucrose Peptides 180 76 86 144 60 Proteins 157 70 75
129 53

Characteristics of the condition-specific
phosphoprotein data sets

Phosphoprotein-set comparison across different nutrient
conditions

We first aimed to characterize the phosphorylation events following
different nutrient and osmotic challenges based on the presence and
absence of phosphorylated proteins. Thus, initially we ignored the
dynamics of any changes of the phosphorylation state of individual
phosphorylation sites. Some nutrient/osmotic treatments exhibited
a greater than expected overlap of their respective phosphoprotein
set indicative of similar signaling response processes (Table 2, File
S5). For example, while only one protein would be expected to be
observed in common between NO−

3 and NH+
4 treatment when drawn

randomly, 19 phosphoproteins were actually detected under both
conditions. By contrast, other treatments are characterized by less
similar phosphoprotein sets pointing to distinct phosphoprotein-
signaling events, such as under the osmotic mannitol treatment and
NH+

4 nutrient treatment conditions. Here, the number of commonly
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observed phosphoproteins is close to random. The overlap of the
commonly identified proteins for all nutrient conditions is visualized
by hierarchically clustering the inverse of the ratio between actually
observed common phosphoproteins in both of the considered treatment
conditions relative to the corresponding expected random number as the
distance metric. Smaller values of the inverse indicate larger overlaps,
and thus, similar phosphoprotein sets. The different treatments
segregated into two main classes, one containing treatments with
the organic molecules mannitol and sucrose, the other containing the
treatment with inorganic ions/salts NH+

4, NO−
3, and PO3−

4 (Figure 1A).

Table 2
Number of phosphoproteins found in common between two
treatments.
Mannitol NH4 NO3 PO4 Sucrose Mannitol 157 (4.71) 3 (2.10) 5 (2.25) 13 (3.87) 13
(1.59) NH4 3 (2.10) 70 (0.94) 19 (1.00) 13 (1.72) 5 (0.71) NO3 5 (2.25) 19 (1.00)
75 (1.07) 22 (1.85) 8 (0.76) PO4 13 (3.87) 13 (1.72) 22 (1.85) 129 (3.18) 9 (1.31)
sucrose 13 (1.59) 5 (0.71) 8 (0.76) 9 (1.31) 53 (0.54)

The number in parentheses is the expected common number of proteins
in each pair of treatments based on the PhosPhAt database.

Figure 1
Hierarchical clustering (“complete” linkage method) of the five
nutrient/organic solute treatments. (A) Clustering based on the
inverse of the ratio between actual number of common proteins and the
associated expected number based on PhosPhAt. (B) Clustering of the
treatments based on the change pattern frequency.

Dynamics of stimulus induced phosphorylation
Next, we included the dynamic information into the comparison of
substance-induced phosphorylation events by focusing first on the
qualitative change patterns across time. The Change pattern describes
qualitatively how phosphorylation levels change from one time point to
the next for a given phosphopeptide [increase, decrease, or unchanged
relative to defined thresholds (see Materials and Methods), File S1]. The
clustering of the different treatment conditions based on the change
pattern statistic associated with all detected, nutrient-condition-specific
phosphopeptides (Figure 1B) resembles the clustering obtained from the
static presence/absence call (Figure 1A). Again, the inorganic nutrients
(NO−

3, NH+
4, PO3−

4) cluster together and are distinct from the organic
solute treatments (mannitol and sucrose) with the latter exhibiting
differing change patterns.

Phosphorylation dynamics from a network perspective
So far, we have analyzed the available dynamic phosphorylation data
in a statistically-descriptive and comparative fashion, in which the set
of phosphoproteins were treated as independent entities. However,
in the real biological system they are part of an interaction network
and act in a whole-cell context. Thus, we investigated the set of
phosphoprotein when embedded into the context of known protein–
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protein interactions and, secondly, we aimed to reconstruct the dynamic
regulatory relationships between the identified phosphoproteins directly
from the data by applying network inference methods.

Mapping phosphorylated proteins onto protein interaction
networks

Since phosphorylation events are associated with protein–protein
interactions via physical kinase-substrate encounters, we mapped
the set of experimentally observed phosphoproteins onto the PIN of
Arabidopsis thaliana (Dreze et al., 2011). This provided (a) context
for those proteins that were observed in our dataset but without
detecting their interaction partners, and (b) allowed us to investigate
the specific role of phosphoproteins within the global network of
physical interactions. We used AtPIN (Brandão et al., 2009) as a large-
scale reference PIN, which, in addition to experimentally identified
interactions, also includes many predicted interactions based on
annotation transfer.
When mapped onto the AtPIN (Figure 2), the experimentally identified
phosphoproteins were found to possess significantly higher interaction
degrees [median (mean) of 6 (16.18)] compared to all other proteins
[median (mean) of 4 (12.69), p-value = 1E-04 according to the non-
parametric Mann-Whitney rank sum test (MWT)]. As our dataset
represents only a small fraction of all experimentally identified
phosphoproteins in Arabidopsis, we extended the PIN-degree
comparison to all phosphoproteins contained in PhosPhAt (Durek et
al., 2010) and compared them to all other proteins in the AtPIN. Again,
phosphoproteins were found to engage in more physical interactions
[median (mean) of 5 (15.28)) than non-phosphorylated proteins
median (mean) of 3 (12.05), p-valueMWT = 0]. The average degree of
phosphorylated proteins was found significantly higher also compared to
a series of 1000 same-sized random protein sets drawn from the AtPIN
(Insert in Figure 2).

Figure 2
Measured phosphoproteins mapped onto the AtPIN (june_2010
version). The cyan nodes represent the phosphorylated proteins
detected in the experiments and the size of the node is proportional to
its degree. Coloring of the edges reflect the nature of the evidence such
as experimental (blue color) or predicted (red color). The experimentally
detected phosphoproteins and their direct interaction partners are
shown only. The insert shows the real average degree of measured
phosphoproteins shown in red star and average degrees of 1000
random protein sets from AtPIN with the same size to the measured
phosphoproteins shown in black circle).

We checked whether protein abundance may be a confounding factor
in our analysis. While significant, no relevant positive correlation was
observed between degree and reported protein abundance (Piques et
al., 2009) with a Spearman rank correlation of r = 0.086 (p = 0.0001).
Thus, protein abundance associated with an increased likelihood of
experimental detection and possible increased degree cannot explain
the observed degree differences. Thus, phosphoproteins appear to play a
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central role in the network of physical interactions between the proteins
in Arabidopsis.

Network inference using a novel scoring scheme
When reconstructing networks from OMICS data, it is challenging to
evaluate the accuracy of the employed reconstruction method without
availability of suitable benchmark networks. Since the dataset studied
here comprises only five time points, network inference is particularly
challenging as the statistical power is low. We applied two scoring
schemes (see Materials and Methods) that employ prior knowledge to
help identify the most suitable inference method. The first method relied
on subcellular localization information and scored predicted interactions
by how likely they are based on the general observed frequency of
interactions between proteins from the same or different compartments
(SLPF-score, see Materials and Methods). The second scheme used the
semantic similarity method (Wang et al., 2007) and judged predicted
interactions based on the similarity of the respective Gene Ontology
annotation terms as interacting proteins are likely involved in the same
biological process and function.
A range of different reconstruction methods were tested and ranked
based on the two scoring schemes. The applied inference methods
included relevance based methods (Pearson correlation, first order
partial correlation, full order partial correlation), mutual information
based methods (MI), graphical model methods (Dynamic Bayesian
network, DBN). Based on the two scoring schemes, Pearson correlation
performed better than partial correlation (Table 3). The relevance
based methods (correlation-based methods) also performed better than
model- and mutual information-based methods, probably explained
by the limitations of the dataset (short length and noise). It should be
noted that the GO annotation used in the semantic similarity score was
possibly based in part on protein interaction information as available in
AtPIN as well so that the two applied scorings schemes are not entirely
independent.

Table 3
Accuracy scores of the reconstructed networks with same size
generated by different methods using the subcellular location
pair frequency (SLPF) metric and semantic similarity of gene
ontology terms (BP, CC, and MF).

“*_Jiang”, “*_Lin”, “*_Rel”, “*_Resnik” and “*_Wang” represent different
semantic similarity metric as introduced in Wang et al. (2007).
Larger score values correspond to networks with higher confidence.
The gray shaded values identify the highest score within each scoring
metric.
DBN, dynamic Bayesian network; FirstOrderPartialCorrelation, first
order partial correlation; FullOrderPartialCorrelation, full order partial
correlation; MI, mutual information; PearsonCorrelation, Pearson
correlation. The SLPF scoring scheme was based on AtPIN.

Based on the overall-performance of the various inference methods
as judged by the two scoring schemes (Table 3), we decided to use
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the Pearson correlation-based method to produce the final network of
phosphoproteins derived from the available data. As a disadvantage
compared to GGMs or other graphical model methods, Pearson
correlation-based inference methods result in undirected networks.
In order to infer cause-effect relationships (i.e., directed networks),
we assigned directionality to every edge as introduced in (Schäfer and
Strimmer, 2005; Opgen-Rhein and Strimmer, 2007). Here, directionality
assignments are based on the log ratio of partial variance between the
two nodes connected by an edge (see Materials and Methods).
The different nutrient/osmotic treatments resulted in separate
subnetworks connected, and thus merged, via central proteins involved
in compound uptake and signaling (Figure 3). For example, plasma
membrane ATPases (AT2G18960, AT4G30190), and water channel PIP2E
(AT2G39010) are regulated by phosphorylation and are involved in all
different treatments. Among the signaling proteins, calmodulin binding
protein (AT1G74690) was detected involved in the organic molecule
responses (mannitol and sucrose), but not with the inorganic salts.
Three different nutrient responses involved the MAP kinase MKK2
(AT4G29810). In all treatments, phosphorylation changes were observed
for the metabolic enzyme glutamate synthase (AT1G66200), which was
reported to integrate responses for changes in carbon, nitrogen, and
phosphate status through alterations in phosphorylation status (Oliveira
and Coruzzi, 1999; Lima et al., 2006).

Figure 3
Cytoscape representation (Smoot et al., 2011) of the
reconstructed network based on Pearson correlation (p ≤ 0.02).
Node shapes represent protein functions, edge colors represent the
treatments source for each interaction, edge line style represents if an
interaction exists in available database (“pp” means the corresponding
interaction does not exist in available PIN databases). A force-directed
layout was used.

The resulting final network consisting of the superset of all interactions
inferred for all individual nutrient conditions separately and merged via
the bridging (jointly occurring) phosphoproteins (Table S1, File S2) was
used in all subsequent analyses.

Topology characteristics of the reconstructed integrated
network

A primary goal of this study was to characterize the regulatory
interactions between phosphoproteins that are dynamically activated
or inactivated in response to changes of nutrient supply. We addressed
this question by using various parameters that are classically used to
describe complex interaction networks (Klemm and Bornholdt, 2005).
Node degree frequencies in the reconstructed network appear to be
relatively constant up to degree values of 4–5 (loge4 = 1.38). Above
this value, the degree distribution follows a power law distribution
(Figure 4), a commonly found characteristic of molecular interaction
networks (Yook et al., 2004; Albert, 2005). Nodes with greater degree
values are becoming increasingly unlikely, but the few nodes with
high degree levels may serve as central processing hubs (Table S2).
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In particular, nucleic acid binding proteins, such as transcription
factors were found among the proteins with high degree. This class of
proteins has previously been found to contain high numbers of clustered
phosphorylation sites in so-called phosphorylation hotspots (Riaño-
Pachón et al., 2010; Christian et al., 2012).

Figure 4
Degree distribution of the reconstructed integrated network in a
log–log plot (natural logarithm).

For the reconstructed integrated network, directionality was determined
based on the log ratio of partial variance as introduced in Schäfer
and Strimmer (2005) and Opgen-Rhein and Strimmer (2007). Given
the applied threshold (see Materials and Methods), directionality
was assigned to 343 out of 1067 total interactions. In the following,
we further inspected the directed interactions as candidate cause-
effect relationships only. We defined proteins with no in-degree
but out-degrees of one or greater as the “initiation” layer of the
network as the signaling cascade is initiated at this level given the
network. Proteins with one or greater in- and outgoing edges form
the “processing” layer. Proteins with only incoming but no outgoing
edges (out degree zero) constitute the “effector” layer as the signal
processing ends at those nodes (Figure 5). In the reconstructed network,
the numbers of nodes in the initiation/processing/effector layers were
identified as 75/98/104, respectively. Thus, the network “fans out”
with higher numbers of processing proteins than initiators and still
more effectors than processing proteins (Cytoscape file as File S3,
list in File S4). Accordingly, the in-degree [median (mean) of 1(1.7)]
is significantly lower than the out-degree [median (mean) of 2(2.1)]
for processing layer nodes (Mann-Whitney test, p-value: 0.02). Taken
together, the reconstructed network conforms to a topology in which the
information appears disseminated to an increasingly broadened set of
phosphoproteins.

Figure 5
Schematic representation of a network architecture with
broadening scope (“information dissemination topology”) as
presented from the current dataset in File S3 and S4.

In the “initiation” layer, we observed an overrepresentation of plasma
membrane proteins (p = 0.011, Fisher Exact test), compared to
processing and effector layers. By contrast, the “effector layer” is
particularly enriched for proteins with cytosolic location (p = 0.0012,
Fisher Exact Test) and proteins with nuclear location (p = 0.0048, Fisher
Exact Test). Thus, external stimulation induces signaling processes
at the plasma membrane that are relayed to cytosolic and nuclear
effectors. The enrichment for transcription-related proteins was highest
among the effector proteins (p = 0.059, Fisher Exact Test). Interestingly,
also among the effectors, a large number of kinase proteins (p = 0.0014,
Fisher Exact Test) was found, indicating that some of the observed
effectors may still be involved in further “processing”, but their targets
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were not captured within the time window analyzed in this study (30
min).
In general, 45% of the proteins of the initiation layer displayed a
maximum change point of phosphorylation at 3 min. In contrast,
the majority of proteins in the processing and effector layer showed
maximum change points in phosphorylation at later time points, such as
10 min (41% for processing, 44% for effectors). Thus, the initiation layer
in all treatments largely does refer to the “early” responses particularly
involving plasma membrane proteins, while processing and effector
layer are enriched in proteins with “late” responses particularly located
in the cytosol or nuclear compartments as has already been suggested
for nitrogen treatments (Engelsberger and Schulze, 2012).

Phosphorylation motifs in the layered network
Based on the layered functional topology of the reconstructed network,
we checked for the presence of layer-specific phosphorylation motifs
(Figure 6). The initiation layer was found to contain motifs with basic
amino acid residues RxxS, which are likely targets of calcium dependent
protein kinases. The double-S motif is common among membrane
proteins, such as aquaporins and was identified as a common motif
of a plant receptor kinase (Wu et al., 2013). The PxxxxS motif is yet
uncharacterized. The processing layer was also enriched in the basic
RxxS motif again possibly involving members of the CDPK/SnRK
family. Interestingly, in the effector layer, we found a significant (p-
value = 2.32E–05, Fisher's exact test) over-representation of SP
motifs, which were shown to be targets for MAP-Kinases. Thus, the
identified phosphorylation motifs also reflect the functional layout of
the reconstructed network from targets of membrane receptor kinases
and CPDKs or PKA in the initiation layer to MAP-Kinase targets in the
effector layer. The kinase specificity motifs with acidic amino acids,
such as SxxE, QxS and acidic motifs SxxE and SE are likely targets of
casein kinase II. These acidic motifs are particularly represented in the
processing and effector network layer. These acidic casein kinase II
motifs were also particularly present for the protein kinases AT4G08170,
AT4G10730, and AT4G38470 (Figure S1), which were the kinases with
highest degree in our reconstructed network.

Figure 6
Enriched motifs of phosphopeptides in different layer of the
reconstructed network. Motif-x was used with p-value threshold 0.01,
the occurrence threshold was set to 10.

Discussion
In this study, the dynamics of nutrient-induced protein phosphorylation
was investigated. The tested inorganic nutrients (NH+

4, NO−
3, and

PO3−
4) provoked distinctive responses compared to the organic solutes

(sucrose, mannitol) with regard to the participating phosphoproteins/
peptides and the dynamic change patterns. Based on the time series of
peptide phosphorylation levels, an integrated phosphorylation signaling
network was reconstructed using a newly designed scoring metric
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for the selection of the most appropriate network inference method.
In general, the topology of the inferred networks corresponds to an
information dissemination architecture in which the phosphorylation
signal is passed on to an increasing number of processing proteins
stratified into an initiation, processing and effector level layer. Specific
phosphorylation peptide motifs associated with the three distinct layers
were identified indicating the action of layer-specific kinases.
Due to limitations on experimental capacity as well as mass
spectrometric instrument time, the time series data used in this
study was rather short, but still constituted one of the largest
phosphoproteomic time series studied in plants so far. Nonetheless,
with only five time points available, reliable network inference is
challenging as the statistical power needed to infer interactions between
proteins is low. As protein phosphorylation levels were found to change
considerably, we conclude that the probed time interval (30 min) was
chosen adequately to capture the initial signaling events even though
the presence of protein kinases in the effector layer suggests that
the dynamics is still ongoing at the end of the measuring interval.
Apart from the limitations with regard to temporal resolution and time
interval, the available phosphoprotein set can be considered limited
also with regard to phosphoprotein coverage. (Phospho)proteomic
data sets collected still suffer from being incomplete due to slow
instrument acquisition cycles resulting in lower proteome coverage than
is commonly achieved in gene expression profiling using whole-genome
microarrays. Particularly, the requirement for quantitative values for all
five time points reduced the current data set from about 1000 identified
phosphopeptides to the core dataset of approximately 550 peptides with
intensity values from label-free quantitation. Out of these, only for 24
peptides full time course data were available from different biological
replicates. Nonetheless, we probed whether the underlying data are
sufficiently robust by comparing the time profiles of the available repeat
measurements for the same peptide, which we expect to be similar, to
profile comparisons across different peptides. Indeed, the same-peptide-
repeat profiles are much more similar to one another (average Pearson
correlation coefficient, ravg = 0.32) than peptide profiles associated with
different peptides (ravg = 0.02, pMann−Whitney = 2.2E − 05). Given the data
limitations and technical challenges, the success of network inference
attempts critically depends on the selected computational inference
method. We performed additional analyses to test the validity of the
detected relationships between phosphoproteins.

Evaluation of network inference methods
We systematically benchmarked a range of different methods by judging
their ability to reproduce networks that are consistent with prior
biological knowledge. In particular, we used subcellular localization
information and consistency of gene ontology annotations to assess the
merit of the networks obtained by the various tested methods. We found
that relevance-based networks such as linear Pearson correlation and
graphical Gaussian method based on regularized partial correlation
calculation, and designed initially for large scale gene regulatory
network reconstruction, worked best. In a similar study also involving a
five-timepoint phosphoproteomic study in growth-factor stimulated HeLa
cells, Pearson correlation was also used successfully in the network
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reconstruction of SILAC-based quantitative data (Imamura et al., 2010).
In general, given the data set limitations, simpler methods; i.e., methods
with fewer parameters, may prove superior compared to methods
needing large datasets for model and parameter fitting.
In principle, time series data allow detecting cause-effect relationships
via time-delay based correlations or using more advanced concepts
such as Granger causality (Walther et al., 2010). However, with only
five time points available here, such approaches were not applicable.
Nonetheless, as those methods bear great potential, efforts should be
undertaken to sample as many time points as possible.
We used protein subcellular localization and gene ontology in the
network reconstruction method performance assessment. Intuitively,
this information could also be used directly during the network
inference process. In fact, considering prior information such as
known interaction from online databases has been used as additional
weighting information in gene regulatory network or signaling network
reconstruction efforts integrating prior interaction information in the
framework of Bayesian networks (Lo et al., 2012; Pei and Shin, 2012).
The assumption that interacting proteins are more prone to interact
in the same subcellular compartment (similar functions or related
biological pathway) has been used in protein function annotation studies
(Van Noort et al., 2003).
Utilizing target-specific motif information as a type of prior
information also bears potential for use in phospho-signaling network
reconstruction. Based on the assumption that targets of a particular
kinase have conserved motifs, kinase-target relationships may be
predicted from sequence alone (Yaffe et al., 2001). However, due
to the still incomplete understanding of known kinase-substrate
motif information for many plant specific kinases, we did not use
this information in our approach. Efforts to infer kinase-substrate
interaction networks using existing information from large-scale
protein–protein interaction studies as prior information may contribute
toward expanding the knowledge of kinase-target relationships in the
future (Linding et al., 2007; Xue et al., 2008; Song et al., 2012; Newman
et al., 2013).

Support for the validity of the reconstructed network
The reconstructed network was compared to available protein–protein
interaction databases (Table 4). Eighteen of the predicted edges
are also reported in the various PIN-resources as direct physical
interactions compared to only seven agreements on average for
randomized networks of the same size (p < 0.001, same number of
edges, 1000 randomization runs). In addition, within the experimental
phosphopeptide data set, we found higher frequencies of positive
correlations between phosphopeptides compared to randomized data
sets (Figure S2) suggesting that a systematic signals are contained in
the data. While this signal may also originate from overall technical
biases, the former result of increased numbers of confirmed correlations
via protein–protein interactions supports the view that the detected
signal stemmed primarily from the underlying biological processes. The
edges identified in our regulatory network as well as in protein–protein
interaction networks include interaction in metabolic pathways (PGM
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—F2KP; 14-3-3—CINV1), ribosomal proteins (RPP1A—RPP2B, RPP2A
—RPP3A) as well as the plasma membrane ATPases (AHA1—AHA2).
Although these edges are not kinase-substrate pairs, they are likely to
be regulated by consecutive events in common pathways. Particularly
for ribosomal proteins and the plasma membrane ATPase, regulation by
phosphorylation has been described (Fuglsang et al., 2003; Hummel et
al., 2012).

Table 4
Common interactions between the reconstructed network and
online PIN databases.
Partner A Partner B Source AT1G23190 AT5G51820 AtPIN/STRING AT1G23190
AT1G07110 STRING AT5G38480 AT1G35580 ANAP/STRING AT2G27720
AT4G25890 ANAP/STRING AT5G61780 AT5G07350 STRING AT1G08420
AT4G03080 AtPIN AT2G18960 AT4G30190 AtPIN/STRING AT3G48740
AT2G18960 STRING AT2G18960 AT1G57990 STRING AT1G01100 AT2G27710
AtPIN/STRING AT1G15690 AT1G78900 STRING AT4G35100 AT2G39010 AtPIN/
ANAP/STRING AT3G09200 AT1G31340 ANAP AT3G52400 AT1G59870 ANAP/
STRING AT5G45510 AT2G27710 STRING AT5G37600 AT1G66200 AtPIN
AT3G14350 AT2G39010 STRING AT1G22280 AT2G40770 STRING

PIN-databases: AtPIN (Brandão et al., 2009), ANAP (Wang et al., 2012a),
and STRING (Franceschini et al., 2013).

Nonetheless, most protein pairs predicted in this study are not
reported as direct interactions in the various PIN databases. Aside from
acknowledging the obvious possibility that those predicted interactions
may be false-positives, we investigated whether the novel, but
uncorroborated node pairs may constitute plausible interactions in the
sense that they are predicted to occur in a local PIN-environment. We
mapped the predicted node pairs onto the integrated PIN (combination
of AtPIN, ANAP, and STRING) and computed the shortest path lengths
between them. Compared to node pairs drawn at random from the
available phosphoprotein set, we found that connected pairs, though not
interacting directly, frequently correspond to local interactions as their
average shortest path length is significantly smaller (mean = 4.56) than
for random pairs (1000 repeats, mean = 4.95, stdev = 0.12, p < 0.001).
Thus, in many cases, the interactions detected by our time-resolved
phosphorylation network inference approach appear to be indirect
regulatory interactions for which immediate protein partners are not
present in the data set used here. Alternatively, they may correspond
to altogether novel interactions as the predicted interactions may be
specific for the particular conditions investigated here, which may not
have been captured by other protein–protein interaction studies. For
example, several regulatory interactions between protein kinases (e.g.,
MKK2) and DNA-binding proteins (e.g., RGD3) or transcription factors
were identified in the reconstructed network, which were not present
in the protein–protein interactions data set. Moreover, the regulatory
interactions shown here seem to “shortcut” direct interaction paths.
While we intentionally chose a reconstruction method that best
reproduced prior biological information, the actual information itself
was not used during the reconstruction process. Furthermore, the
protein–protein interactions did not enter directly into the performance
assessment metric, but rather the probability of protein–protein
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encounter based on subcellular localization. Thus, the reported results
in support of the validity of the predicted interactions go beyond a
circular argument.

Nutrient-induced phospho-signaling in arabidopsis
Even though the detected phosphoprotein sets in the different nutrient
treatments overlapped more than expected by chance (Table 2), the
generated networks for the individual treatments did not result in
common directed interactions between them and could only be merged
based on jointly occurring phosphoproteins. Thus, with regard to
interactions, the treatments resulted in disjoint sets. Of course, the
above mentioned data set limitations may explain this observation. In
addition, because the number of possible directed interactions scales
with the square of the number of phosphoproteins and, furthermore,
the resulting networks are sparse, overlaps between them are less
likely than between the proteins sets themselves. If, on the other hand,
the result of disjoint interaction sets is taken as the truth, it can be
concluded that the different nutrient or osmotic stimuli trigger different
signaling cascades. Particularly, it is known that the mere osmotic
component (i.e., in mannitol treatment or also sucrose) is primarily
perceived through a histidine-kinase sensory system (Urao et al., 1999)
which inherently differs from transporter-based sensing systems in
nitrogen acquisition (Ho and Tsay, 2010). It is interesting to note that
the phosphoproteins commonly found in several different treatment
conditions (Table 2) preferentially fall into the processing level layer
[55% on average, significantly more than expected by chance (p = 1.2E–
4, binomial distribution processing layer vs. others accounting for layer
set sizes as well)]. This supports the network topology with a specialized
smaller number of initiators that induce the specific response but feed
into common proteins with information processing role. On level of
the effectors, again larger specificity could be observed regarding the
different treatments.
In biological signaling cascades, an increase of interaction space for
downstream kinases has been observed before. An example is the MAP-
Kinase cascade, in which the final effector kinase, the MAP-Kinase
(MPK) is activated by a MAP-Kinase-Kinase (MKK), which in turn is
activated by a MAP-Kinase-Kinase Kinase (MAP3K). In protein array
experiments identifying substrates to each of the different levels in
the MAP-Kinase cascade, largest numbers of interactions (Popescu
et al., 2009) were found with the MPKs (570 substrate candidates)
while “incoming” interactions of MPKs with the activating kinases
MKK resulted in far less confirmed interactions (9 MKKs). The MPK
signaling pathway is particularly involved in responses to abiotic stress
such as salt stress. Thus, the observed links to the MPK cascade could
particularly be an osmotic response and was especially observed with
the mannitol treatment.
A great diversity was also observed in the plant receptor kinases, many
of which feed into soluble kinase signaling pathways (Osakabe et al.,
2013). This receptor diversity particularly reflects the plant's potential
to respond to different stimuli with only a small number of receptor/co-
receptor pairs being activated by the particular signal and serving as
initiators for downstream cascades. Therefore, the topology observed
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in our reconstructed network is indeed reflected in biological signaling
networks with also receptor kinase as members of the initiation layer.
In our analysis, only proteins with phosphoproteomic profiles
consisting of five time points were included for network reconstruction.
This greatly reduced the data set from about 1000 of identified
phosphopeptides in the original studies to only approximately 500
peptides studied here. By imposing directionality, the layered network
only included 277 phosphoproteins. Important players in nutrient
signaling include the Snf1-related kinase family (SnRK) (Shin et al.,
2007) and a central growth regulator TOR (Caldana et al., 2013), which
was also shown to interact with nutrient responses. Although members
of these kinase families were found to be phosphorylated in response to
nitrogen changes (Engelsberger and Schulze, 2012), the data density
was not high enough to record full time profiles for these proteins and
thus they could not be included in this work. This indicates that key
responses do occur at individual time points only and these cases cannot
always be clearly distinguished from missing data points due to data-
dependent acquisition by mass spectrometry (Schulze and Usadel,
2010). Future challenges lie in efficiently including and biologically
weighting single occurrences within the signaling network context.

Conclusion
A primary goal of this study was to characterize the regulatory
interactions between phosphoproteins that are dynamically activated
or inactivated in response to changes of the nutrient and organic-
solute challenges supply. To address this question, we used methods
of classic statistical interaction network description and developed a
novel scoring metric for inferred networks. Our main findings suggest
a hierarchical architecture of regulatory phosphorylation networks with
proteins involved in signal initiation, signal processing, and an effector
layer. An increasing number of proteins in downstream hierarchical
layers of the network were found which is consistent with information
processing features typically observed in phosphorylation cascades. Our
work demonstrates that even with short time course data sets, network
inference methods are applicable for the reconstruction of information
processing networks.

Materials and methods
Experimental data

Time series phosphoproteomic data were obtained from two published
data sets involving sucrose and mannitol treatment (Niittylä et al.,
2007), as well as nitrate and ammonium treatment (Engelsberger
and Schulze, 2012), or phosphate treatment. The dataset is publicly
available in the PhosPhAt database (Durek et al., 2010). Briefly, in
all treatments, the experimental design involved starvation of 14-day
old Arabidopsis seedling for a particular nutrient and resupply of the
respective nutrients for various time periods (3, 5, 10, 30 min) after
which samples were taken. The starved seedlings served as controls
for that particular nutrient (0 min). Protein extracts were fractionated
into plasma membrane and soluble proteins before tryptic digestion and
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enrichment of phosphopeptides over TiO2 or IMAC. Phosphopeptides
were subsequently analyzed by LC-MS/MS on an Orbitrap mass
spectrometer. Label-free quantitation for all experiments was carried
out based on ion intensities of phosphopeptides and involved protein
correlation profiling to obtain quantitative values for precursor ions
without fragmentation spectra.

Expected number of phospho-proteins common to
pairs of treatments

For a given pair of treatments T1 and T2, the expected random number
of phosphopeptides observed in both treatments was calculated as NT1

· NT2/N assuming independence of the individual observations with N
referring to the total number of Arabidopsis phosphoproteins (5237,
downloaded on 10.20.2011) contained in the PhosPhAt database (Durek
et al., 2010), and NT1/2 referring to the number of phosphoproteins
observed in the respective treatment conditions.

Hierarchical clustering of phosphoprotein sets
Using a dissimilarity metric (the inverse of the ratio between the
actual number and the randomly expected number of phosphoproteins
observed jointly), the nutrient treatments were clustered using
hierarchical clustering (complete linkage).

Data set normalization
For each treatment, the original intensity values were first log-
transformed (natural logarithm). Afterwards, the median value of each
time point across all peptides was subtracted from every individual value
for a particular peptide and time point.

Detection of significantly changed peptide
phosphorylation levels between consecutive time
points

After normalization, phosphorylation of a particular phosphopeptide
was considered changed, if the difference d with d = a[t] − a[t − 1], t ≥
2, where a[t] represents the phosphorylation level at time point t, was
outside of a specified threshold range set to [−1.71, 1.64] for down- and
upregulation, respectively. The threshold criteria selection was based
on the observed mean and standard deviation of d across all intervals
and across all peptides for all treatments with the interval of no-change
determined as [mean(d) − std(d), mean(d) + std(d)].The dynamics of
phosphorylation level of a particular P-site was described qualitatively
as a succession of “increase,” “decrease,” and “no change” (relative to
thresholds defined above) events and referred to as the change pattern.
Note that despite phosphorylation being a binary on/off event for any
given phosphorylation site, phosphorylation levels were considered as
continuous variables as the measured experimental phosphorylation
levels resulted from an average across many protein copies in the
sample with most likely not fully coordinated on/off phosphorylation
events.
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Hierarchical clustering of change patterns
Each peptide time series was translated into a succession of four
qualitative changes of “increase,” “decrease,” or “no change” based
on the thresholds explained above. For each treatment, a frequency
vector with length 81 was calculated corresponding to the maximal
number of theoretically possible change pattern series (34 = 81). Each
element in the vector represents the proportion of peptides following
the corresponding change pattern in a particular treatment. Using the
Euclidean distance of the frequency vectors for each pair of treatments,
the nutrient treatments were clustered using hierarchical clustering
(complete linkage).

Protein interaction networks
PIN data was obtained from the public resources AtPIN (Brandão et
al., 2009), as of October 2011, comprising 96,821 interactions between
15,163 Arabidopsis proteins including both experimentally verified and
predicted interactions. In the assessment of reconstructed interactions,
several other online PIN databases [PhosPhAt (Zulawski et al., 2013),
ANAP (Wang et al., 2012a), and STRING (Franceschini et al., 2013)]
were also used. These databases also collect existing evidence for the
potential protein interaction in Arabidopsis.

Network inference methods
Various methods of network inference methods were applied including
correlation based methods (Peng et al., 2009) (Pearson correlation
[PearsonCorrelation], partial correlation[FirstOrderPartialCorrelation],
mutual information based method [MI] (Sales and Romualdi, 2011),
graphical model methods (Schäfer and Strimmer, 2005; Lèbre,
2009) (Dynamic Bayesian network [DBN], graphical Gaussian model
[FullOrderPartialCorrelation]). The abbreviation in square brackets
are also used in Table 3. The R package parmigene was used for the
mutual information based method. The R packages space was used for
partial correlation based methods. The R package G1DBN was applied
for dynamic Bayesian network inference. The R package GeneNet was
used for the graphical Gaussian model method.
Several of the employed methods require setting threshold parameters,
e.g., a minimum correlation coefficient and/or associated p-value of
correlation. Evidently, less strict thresholds result in larger networks.
In order to compare methods between each other based on obtained
networks of the same size, networks were pruned to a common size
of 3*N (N is the number of measured phosphopeptides) by eliminating
edges and associated nodes in decreasing score order; i.e., high-
confidence edges were retained. The size 3*N was chosen as molecular
interaction networks often exhibit an average degree of 2–4 (Werhli,
2012). Networks were first reconstructed for each nutrient treatment
condition separately and then merged into a single, final network as the
superset of all individual predicted interactions.
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Network inference method performance assessment
metric

In order to evaluate the accuracy of the reconstructed networks, we
devised a novel scoring metric that is based on the subcellular location
of proteins. Predicted interactions between proteins were scored by
how likely they are based on prior knowledge of physical interactions
between proteins from different or the same cellular compartments. For
all pairwise physical interactions contained in AtPIN, the subcellular
localization of the two interacting proteins as reported in SUBA
(Heazlewood et al., 2007) was determined resulting in a comprehensive
frequency table of physical interactions between proteins from all
compartments termed the subcellular location pair frequency (SLPF,
File S5). The corresponding subcellular location pair frequency network
is shown in Figure S3, the width of the edge is proportional to its
frequency. For example, it is very likely that two interacting proteins are
both from the nucleus as the corresponding edge (arc to itself) has a
large width. By contrast, direct physical interactions between proteins
located in the nucleus and in the endosome are less likely. Hence,
network inference methods can be compared to each other by summing
up the SLPF-score computed for all predicted set of interactions dividing
subsequently by the number of predicted interactions to account for
different network sizes. Better methods will be associated with higher
SLPF scores.
In addition to the SLPF-score, we also used the Gene Ontology (GO)
semantic similarity method (Wang et al., 2007), which includes not
only compartment component, but also molecular functions and
biological pathway, as a metric to assess the validity of the reconstructed
networks. Here, interactions are scored by how similar the GO
annotations of proteins predicted to interact are. Again, scores are
summed up for all predicted interactions and divided by their number.

Directionality of correlation-based interactions
After reconstructing the network based on Pearson correlation,
we used the method introduced in (Schäfer and Strimmer, 2005;
Opgen-Rhein and Strimmer, 2007) to calculate the directionality of
each interaction. First, the shrinkage estimate of correlation was
computed by function “cor.shrinkage” in R package “corpcor.” Secondly,
concentration matrix was calculated as the inverse of the correlation
matrix by function “solve” from R package “base.” Finally, the partial
variance was obtained as the reciprocal of diagonal element of the
concentration matrix, and then the ratio of partial variance was
calculated correspondingly. The direction of the arrows points from
the node with the larger standardized partial variance (the more
“exogenous” variable) to the node with the smaller standardized partial
variance (the more “endogenous” variable). The directionality threshold
value was set to a log-ratio of partial variances of ±0.002. The threshold
was obtained as the average top and bottom 25 percentile of log-ratios
across all five treatment conditions.
As networks were reconstructed separately for every treatment,
conflicts of directionality assignments are, in principle, possible.
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However, no directed edge between any two proteins was found common
to any pair of treatments.

Network properties
In undirected networks, the degree of a node n is the number of edges
linked to n (Assenov et al., 2008). The node degree distribution gives the
number of nodes with degree k for k = 0, 1, …. In directed networks,
the in-degree of a node n is the number of incoming edges and the out-
degree is the number of outgoing edges.

Functional term enrichment analysis
Fisher's exact test was used in the functional and localization
enrichment analysis based on the available Gene Ontology annotation
information from TAIR (version 10) (Lamesch et al., 2012), MAPMAN
annotation (Thimm et al., 2004) and SUBA subcellular localization
information. Specific GO-function terms associated with phosphorylation
processes were selected including “common” (=all other categories),
kinase, metabolic, transporter, and phosphatase. Selected GO-
localization terms were tested to detect preferences with regard
to subcellular localization including the terms nucleus, Golgi,
mitochondrion, endoplasmic reticulum, cytosol, extracellular, vacuole,
plasma membrane, plastid, peroxisome, cytoskeleton, cell plate,
endosome.

Semantic similarity
The semantic similarity of the gene ontology (GO) terms associated with
two genes was calculated based on the “Wang“ measure (Wang et al.,
2007), which aggregates the semantic contributions of their ancestor
terms (including this specific term) in the GO graph. The R package
“GOSemSim” was used in the semantic similarity calculations (Yu et al.,
2010).

Subcellular localization information
Subcellular localization information of Arabidopsis proteins was
obtained from the SUBA database (Heazlewood et al., 2007; Tanz et al.,
2013).

Phosphorylation-site motif detection
Motif-x was used in the phosphopeptide motif analysis, which is an
iterative strategy to build successive motifs through comparison
to a dynamic statistical background (Schwartz and Gygi, 2005).
The phosphopeptide sequence was extracted with length 13 (the
phosphorylation site was in the middle position). The p-value threshold
was set to 0.01 and the occurrence threshold was set to 10 as the motif-x
web service setting-up. The whole Arabidopsis proteome was selected as
the background reference.
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Figure S1
Phosphopeptide motifs of extracted from peptides associated with proteins
which have an absolute correlation coefficient greater than or equal to 0.8
with selected kinases based on the respective phosphorylation level profiles.
The analysis was done for those kinases with at least 10 correlated proteins.
Those proteins and their associated peptides were then interpreted as the kinase
targets. motif-x (Schwartz and Gygi, 2005) was used with p-value threshold 0.01, the
occurrence threshold was set to 10.

Click here for additional data file.

Figure S2
Distribution of Pearson correlation coefficients associated with the
actual experimental data (black) and randomized data (red lines, 1000
randomizations).

Click here for additional data file.

Figure S3
Subcellular location pair frequency network derived from AtPIN and SUBA.
The width of each edge is proportional to its frequency. Cytoscape was used to
visualize the network. Predicted interactions can be scored by how likely they are
given the expected interaction frequencies displayed here.

Click here for additional data file.

File S1
List of phosphopeptides including their dynamic change patterns. In the
“change pattern” column, “N” represents no change at corresponding time point
compared to the previous one, “U” and “D” represents up-regulated and down-
regulated, respectively.

Click here for additional data file.

File S2
Cytoscape file of the joint reconstructed Pearson correlation network based
on the different nutrient treatments.

Click here for additional data file.

http://www.frontiersin.org/journal/10.3389/fpls.2013.00540/abstract
http://www.frontiersin.org/journal/10.3389/fpls.2013.00540/abstract
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File S3
Cytoscape file of directional network in layered hierarchical layout. The
log ratio of partial variance was set to 0.002 to obtain the directional network for
interactions in the network of File S2 or Figure S3.

Click here for additional data file.

File S4
List of phosphoproteins and their properties in the layered network. “protein
based layer” column shows the layer position for each protein in this directional
network.

Click here for additional data file.

File S5
Interaction frequency for each pair of subcellular localizations. The
subcellular localizations include nucleus, Golgi, mitochondria, endoplasmic
reticulum, cytosol, extracellular, vacuole, plasma membrane, plastid, peroxisome,
cytoskeleton, cell plate, endosome, and unclear.

Click here for additional data file.

File S6
Commonly detected proteins among different pairs of treatments.

Click here for additional data file.

Table S1
Reconstructed network summary (number of nodes, number of interactions,
and average degree) for each treatment, which was then combined into an
integrated “super-“network.

Click here for additional data file.

Table S2
List of top 20 nodes (phosphoproteins) with highest degree in the
reconstructed network.

Click here for additional data file.
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