Quantum Mechanics Tackles Mechanics
Klemens Hammerer

Science **342**, 702 (2013);
DOI: 10.1126/science.1245797

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 20, 2014):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/342/6159/702.full.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/342/6159/702.full.html#related

This article cites 14 articles, 3 of which can be accessed free:
http://www.sciencemag.org/content/342/6159/702.full.html#ref-list-1

This article appears in the following subject collections:
Physics
http://www.sciencemag.org/cgi/collection/physics
Quantum Mechanics Tackles Mechanics

Klemens Hammerer

Quantum theory describes the physical cosmos at atomic and smaller scales, but can we apply quantum mechanics to large, distributed mechanical structures? Several recent experiments have shown that we can observe quantum dynamics of nano- and micro-mechanical oscillators. On page 710 of this issue, Palomaki et al. (1) report the controlled generation and verification of quantum entanglement of a mesoscopic mechanical device (a mechanical oscillator) with an electromagnetic microwave field. Entanglement is considered to be the distinguishing feature that separates quantum from classical physics. Only the properties of the entire system have precise values, and the mechanical resonator and the microwave field must be described by one compound quantum-mechanical wave function. No such wave functions can be assigned to either of the subsystems separately.

In the experiment performed by Palomaki et al., a thin circular aluminum membrane (100-nm thick and 15 mm in diameter) was suspended in a fixed frame and was free to oscillate like a drumhead. The fundamental mode of this mechanical oscillator is the one that became entangled with the microwave field. The aluminum also served as one end of a parallel plate capacitor that was integrated into a resonant circuit with a characteristic frequency in the microwave domain at a frequency of $2\pi \times 8$ GHz (see the figure, panel A). The mechanical motion of the drum mode changed the capacitance and with it the resonance frequency of the microwave cavity. This mechanism resulted in an extremely strong mutual coupling between the mechanical and the microwave resonator.

The coupling happened on a time scale faster than the characteristic time scale on which quantum states of the two resonators could be destroyed by uncontrolled interactions with their respective environments. At the experimental temperature of 20 mK, the

A micromechanical oscillator can only be described with quantum mechanics after it is entangled with microwave fields.
cold-atom thermoelectrics

THERMODYNAMICS

The microscopic theory of the Peltier and Seebeck effects (10) indicates that the generation of Peltier and Seebeck effects in cold-atom systems could be a promising avenue for achieving high thermoelectric performance. This is because the Peltier and Seebeck effects in cold-atom systems are temperature-dependent, whereas in traditional thermoelectric materials, these effects are almost constant. Moreover, the Peltier and Seebeck effects in cold-atom systems can be controlled by external parameters such as the temperature and magnetic field, which can be used to optimize the performance of the thermoelectric devices.

Two coupled reservoirs of cold atoms can be used as a model system to study the thermoelectric effect.

Nanoscience Center, Department of Physics, Post Office Box 35 (YFL), FI-40014 University of Jyväskylä, Jyväskylä, Finland, and Low Temperature Laboratory, Aalto University, Post Office Box 15100, FI-00076 AALTO, Finland. E-mail: tero.t.heikkila@jyu.fi

References

10. V. B. Braginsky, F. Y. Khalili, Quantum Measurement (Cambridge Univ. Press, Cambridge, 1995).

10.1126/science.1245797

www.sciencemag.org SCIENCE VOL 342 8 NOVEMBER 2013 703

Published by AAAS