English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature

MPS-Authors
/persons/resource/persons37308

Roeckner,  Erich
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37110

Botzet,  Michael
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37141

Esch,  Monika
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37167

Haak,  Helmut
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37170

Hagemann,  Stefan
Terrestrial Hydrology, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37193

Jungclaus,  Johann H.
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37234

Legutke,  Stephanie
Model & Data Group, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37265

Mikolajewicz,  Uwe
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

JClim-17-1605.pdf
(Publisher version), 278KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Latif, M., Roeckner, E., Botzet, M., Esch, M., Haak, H., Hagemann, S., et al. (2004). Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. Journal of Climate, 17, 1605-1614. doi:10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-9F50-5
Abstract
Sea surface temperature (SST) observations in the North Atlantic indicate the existence of strong multidecadal variability with a unique spatial structure. It is shown by means of a new global climate model, which does not employ flux adjustments, that the multidecadal SST variability is closely related to variations in the North Atlantic thermohaline circulation (THC). The close correspondence between the North Atlantic SST and THC variabilities allows, in conjunction with the dynamical inertia of the THC, for the prediction of the slowly varying component of the North Atlantic climate system. It is shown additionally that past variations of the North Atlantic THC can be reconstructed from a simple North Atlantic SST index and that future, anthropogenically forced changes in the THC can be easily monitored by observing SSTs. The latter is confirmed by another state-of-the-art global climate model. Finally, the strong multidecadal variability may mask an anthropogenic signal in the North Atlantic for some decades.