Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River

MPG-Autoren
/persons/resource/persons96463

Roth,  Vanessa-Nina
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62384

Gleixner,  Gerd
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roth, V.-N., Dittmar, T., Gaupp, R., & Gleixner, G. (2013). Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River. Geochimica et Cosmochimica Acta, 123, 93-105. doi:10.1016/j.gca.2013.09.002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-55CA-D
Zusammenfassung
We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) to identify the molecular composition of dissolved organic matter (DOM) collected from different ecosystems along a transect crossing Siberia's northern and middle Taiga. This information is urgently needed to help elucidate global carbon cycling and export through Russian rivers. In total, we analyzed DOM samples from eleven Yenisei tributaries and seven bogs. Freeze-dried and re-dissolved DOM was desalted via solid phase extraction (SPE) and eluted in methanol for ESI-FT-ICR-MS measurements. We recorded 15209 different masses and identified 7382 molecular formulae in the mass range between m/z = 150 and 800. We utilized the relative FT-ICR-MS signal intensities of 3384 molecular formulae above a conservatively set limit of detection and summarized the molecular characteristics for each measurement using ten magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (DBE)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w and (AI)w) for redundancy analysis. Consequently, we revealed that the molecular composition of DOM depends mainly on pH and geographical latitude. After applying variation partitioning to the peak data, we isolated molecular formulae that were strongly positive or negatively correlated with latitude and pH. We used the chemical information from 13 parameters (C#, H#, N#, O#, O/C, H/C, DBE, DBE/C, DBE/O, AI, N/C, DBE-O and MW) to characterize the extracted molecular formulae. Using latitude along the gradient representing climatic variation, we found a higher abundance of smaller molecules, nitrogen-containing compounds and unsaturated C=C functionalities at higher latitudes. As possible reasons for the different molecular characteristics occurring along this gradient, we suggested that the decomposition was temperature dependent resulting to a higher abundance of non-degraded ligninderived phenolic substances. We demonstrated that bog samples, which were differentiated from river samples by their lower pH values, distinguish themselves by their higher unsaturation and molecular size. These molecular characteristics might suggest less phenol oxidase degradation occurs alongside a higher abundance of phenolic substances in bogs due to low pH and anoxic conditions. We concluded that heating at the higher latitudes will increase decomposition and feedback on the nitrogen cycle due to the increased mineralization of organic nitrogen compounds, although the peat system will be less affected due to pH inhibition