English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Physiological mismatching between neurons innervating olfactory glomeruli in a moth

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Anton, S., & Hansson, B. (1999). Physiological mismatching between neurons innervating olfactory glomeruli in a moth. Proceedings of the Royal Society B: Biological Sciences, 266(1430), 1813-1820. doi:10.1098/rspb.1999.0851.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-5D79-9
Abstract
The primary olfactory centres of most vertebrates and most neopteran insects are characterized by the presence of spherical neuropils, glomeruli, where synaptic interactions between olfactory receptor neurons and second-order neurons take place. In the neopteran insect taxa investigated so far, receptor neurons of a specific physiological identity target one glomerulus and thus bestow a functional identity on the glomerulus. In moths, input from pheromone-specific receptor neurons is received in a male-specific structure of the antennal lobe, called the macroglomerular complex (MGC), which consists of a number of specialized glomeruli. Each glomerulus of the complex: receives a set of peripheral sensory afferents that encode one of several compounds involved in sexual communication. The complex is also innervated by dendritic branches of antennal lobe output neurons called projection neurons, which transfer information from the antennal lobe to higher centres of the brain. A hypothesis stemming from earlier work on moths claims that the receptor neuron innervation pattern of the MGC should be reflected in the pattern of dendrites of projection neurons invading the different MGC glomeruli. III this study we show that in the noctuid moth Trichoplusia ni, as in several other noctuid moth species, this hypothesis does not hold. The degree of matching between axon terminals of receptor neurons and the dendritic branches of identified projection neurons that express similar physiological specificity is very low.