日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Gogo Receptor Contributes to Retinotopic Map Formation and Prevents R1-6 Photoreceptor Axon Bundling

MPS-Authors
/persons/resource/persons38883

Hein,  Irina
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38867

Kadow,  Ilona C. Grunwald
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

pone.0066868.pdf
(全文テキスト(全般)), 21MB

付随資料 (公開)
There is no public supplementary material available
引用

Hein, I., Suzuki, T., & Kadow, I. C. G. (2013). Gogo Receptor Contributes to Retinotopic Map Formation and Prevents R1-6 Photoreceptor Axon Bundling. PLOS ONE, 8(6):. doi:10.1371/journal.pone.0066868.


引用: https://hdl.handle.net/11858/00-001M-0000-0014-52BD-5
要旨
Background: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. Results: Here, we show that the receptor Golden goal (Gogo) is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. Conclusion: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.