The Journal of Neuroscience, October 16, 2013 - 33(42):16657—16665 * 16657

Behavioral/Cognitive

Medial and Lateral Networks in Anterior Prefrontal Cortex
Support Metacognitive Ability for Memory and Perception

Benjamin Baird,' Jonathan Smallwood,? Krzysztof J. Gorgolewski,’ and Daniel S. Margulies®

'Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, 2Department of Psychology, University of York,
North Yorkshire YO10 5DD, United Kingdom, and *Max Planck Research Group: Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive
and Brain Sciences, 04103, Leipzig, Germany

Convergent evidence indicates that frontopolar Brodmann area 10, and more generally the anterior prefrontal cortex (aPFC), supports the
human capacity to monitor and reflect on cognition and experience. An important unanswered question, however, is whether aPFC is a homo-
geneous region that supports a general-purpose metacognitive ability or whether there could be regional specialization within aPFC with respect
to specific types of metacognitive processes. Previous studies suggest that the lateral and medial subdivisions within aPFC may support meta-
cognitive judgments of moment-to-moment perceptual processes and assessments of information from memory stored over longer time scales,
respectively. Here we directly compared intraindividual variability in metacognitive capacity for perceptual decisions and memorial judgments
and used resting-state functional connectivity (rs-fcMRI) to relate this variability to the connectivity of the medial and lateral regions of aPFC. We
found a behavioral dissociation in metacognitive ability for perceptual and memorial judgments. Furthermore, functional connectivity analysis
revealed distinct patterns of connectivity that correlated with individual differences in each domain. Metacognitive ability for perceptual deci-
sions was associated with greater connectivity between lateral regions of aPFC and right dorsal anterior cingulate cortex, bilateral putamen, right
caudate, and thalamus, whereas metacognitive ability for memory retrieval predicted greater connectivity between medial aPFC and the right
central precuneus and intraparietal sulcus/inferior parietal lobule. Together, these results suggest that an individual’s capacity for accurate
introspection in the domains of perception and memory is related to the functional integrity of unique neural networks anchored in the medial

and lateral regions of the aPFC.

Introduction

Successful decision-making and action depend on accurately
evaluating the success of basic cognitive processes that contribute
to thought and behavior, a capacity known as “metacognition”
(Metcalfe and Shimamura, 1994). Convergent evidence indicates
that the frontopolar cytoarchitectonically defined Brodmann
area 10 (BA 10), and more generally the anterior prefrontal cortex
(aPFC), is a critical part of the neuroanatomical basis of metacog-
nitive thought. Supporting a contribution to higher-level cognition,
aPFC has shown substantial expansion in humans compared with
nonhuman primates (Ongiir et al., 2003). Furthermore, aPFC is the
only prefrontal region that is almost exclusively connected to supra-
modal cortex, placing it at the nexus of an information processing
hierarchy in which the outputs of lower-level operations may be
integrated and evaluated (Christoff and Gabrieli, 2000; Ramnani
and Owen, 2004). Consistent with a role of aPFC in metacognition,
patients with traumatic injury to this region display a variety of
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metacognitive deficits, such as an inability to monitor disease symp-
toms or accurately appraise their own cognitive functioning (Belyi,
1987; Joseph, 1999). Furthermore, structural and functional varia-
tion in aPFC has been shown to predict variance in metacognitive
ability within the healthy adult population (Fleming et al., 2010,
2012).

In recent years, neuroimaging and cytoarchitectonic studies
have begun to establish the existence of functional subdivisions
within aPFC, with a primary differentiation between medial and
lateral regions (e.g., Gilbert et al., 2006). An important question is
whether these subdivisions of aPFC play differential roles in
specific types of metacognitive processes. One possibility is
that metacognitive evaluations of memorial or perceptual in-
formation involve medial and lateral aPFC, respectively. An
accumulating number of studies have linked lateral aPFC to
metacognitive evaluations of dynamic perceptual processes
(Fleming et al., 2010, 2012; Fleming and Dolan, 2012). In con-
trast, medial aPFC has been widely implicated in metacognitive
assessments of memory retrieval, particularly for prospective
“feeling-of-knowing” judgments (e.g., Schnyer et al., 2005), but
also for retrospective confidence ratings (e.g., Moritz et al., 20065
Modirrousta and Fellows, 2008; Chua et al., 2009), and “reality
monitoring” tasks (distinguishing whether a memory was inter-
nally or externally generated) (Simons et al., 2006, 2008). Fur-
thermore, a recent study (McCurdy et al., 2013) found that gray
matter volume in neuroanatomically distinct regions of the lat-
eral aPFC and precuneus covaried with metacognitive ability for
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perception and memory, respectively. Together, these results
raise the possibility that there could be distinct networks for
metacognition of memory and perception.

Here we assessed the covariance between metacognitive abil-
ity in the domains of perception and memory to understand
whether they reflect homogeneous or dissociable introspective
capacities. We then used resting-state functional connectivity (rs-
fcMRI) (Fox et al., 2005; Seeley et al., 2007) to assess the relation
between the functional architecture of aPFC and individual dif-
ferences in metacognitive ability for perceptual decisions and
memorial judgments. Based on previous studies, we evaluated
whether metacognitive ability for memory and perception would
be supported by differentiable functional networks associated
with a medial-lateral subdivision of aPFC.

Materials and Methods

Participants. Sixty participants were recruited from the database of the
Max Planck Institute for Human Cognitive and Brain Sciences and re-
ceived standard remuneration for participation in the experiment. From
this sample, eight participants were excluded from analysis: five partici-
pants had scanning parameters that did not match the others in the group
and three participants were excluded because of excessive motion in
resting state scans. The final sample consisted of 52 participants (21
males, age range 19—46 years, mean age 27 years). Signed informed
consent was obtained from all participants before completing the study.
All participants had normal or corrected to normal vision and had no
history of neurological or psychiatric disease.

Stimuli. Stimuli and tasks were programmed in MATLAB version 7.9
(MathWorks) using the Psychophysics Toolbox version 3.0 (Brainard,
1997; Kleiner et al., 2007).

Stimuli for the perceptual decision task consisted of visual displays
composed of six Gabor gratings arranged in a circle around a fixation
point at an eccentricity of 7.0 visual degrees (see Fig. 1A). Each grating
subtended 2.8 visual degrees and consisted of vertical alternating light
and dark bars modulated at a spatial frequency of 2.2 cycles per visual
degree at a contrast of 20%. Stimuli were presented on a CRT monitor in
a darkened room at a viewing distance of ~60 cm.

Stimuli for the memory retrieval task consisted of 290 neutral-valence
noncomposite nouns selected from the CELEX database for German
word norms (Baayen et al., 1995). All stimuli were 5 characters in length
and had a word frequency between 6 and 150 per million.

Tasks and procedure. Participants performed two experimental ses-
sions: a functional imaging session in which resting-state fMRI was ac-
quired and a subsequent behavioral session in which they were asked to
make metacognitive evaluations of perceptual and memorial decisions
(for a schematic outline of the metacognitive tasks, see Figure 1). Task
order was counterbalanced across participants.

The perceptual task was adapted from Fleming et al. (2010) and Song
etal. (2011). Each trial (of 360 trials total, divided evenly into 4 blocks)
consisted of a presentation of a 200 ms visual stimulus display consisting
of six Gabor gratings arranged around central fixation, followed by a
interstimulus interval (ISI) of 500 ms during which only the fixation
cross remained on the screen, followed by a second 200 ms stimulus
display consisting of 6 Gabors arranged around the fixation (see Fig. 1).
In one of the two stimulus displays, the orientation of one of the Gabor
patches was tilted slightly from the vertical axis. The display interval in
which this “pop-out” Gabor occurred as well as its spatial location on the
screen varied randomly across trials. The orientation of the pop-out
Gabor was adjusted using a 2-up 1-down adaptive staircase procedure
(Levitt, 1971; Fleming et al., 2010) designed to result in a convergence on
70% accuracy for individual performance. Two consecutive correct re-
sponses resulted in a reduction of the orientation parameter by one step,
whereas one incorrect response resulted in an increase of the orientation
parameter by one step. The orientation step size was 0.25 degree. After
the offset of the second stimulus presentation, participants made un-
speeded 2-choice discriminations as to whether the “pop-out” Gabor
occurred in either the first or second stimulus display. Participants then
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rated their confidence in the accuracy of their response on a scale of 1
(low confidence) to 6 (high confidence) (Fleming et al., 2010). All re-
sponses were made using the number pad on the keyboard.

The memory task consisted of two phases: encoding and recognition.
Before beginning the encoding phase, participants were informed that a
recognition phase would follow in which their memory for the presented
words would be tested. During encoding, participants viewed 145 words
randomly selected from the full set of 290 word stimuli. Words were
displayed sequentially in the center of the monitor for 1.5 s and were
separated by an ISI of 1 s in which a fixation cross was displayed. During
recognition, participants were presented with each word from the full list
of stimuli in a random order (half of which were presented during en-
coding and half of which were new), and were asked to make unspeeded
2-choice discriminations as to whether the stimulus was old or new.
Participants then rated their confidence in the accuracy of their response
on a scale of 1 (low confidence) to 6 (high confidence) (Fleming et al.,
2010). All responses were made using the number pad on the keyboard.

Quantification of metacognitive ability. Signal detection theory (SDT)
(Green and Swets, 1966) was used to compute estimates of metacognitive
accuracy, here quantified as the ability of an observer to discriminate
between their own correct and incorrect perceptual decisions or memo-
rial judgments with confidence ratings. A major concern in any metacog-
nitive (“type IT”) analysis is to separate estimates of type II sensitivity
from the potential confounding influences of type Il response bias as well
as sensitivity on the primary (“typeI”) task (e.g., Galvin et al., 2003). SDT
offers a model-based approach that can account for these influences to
quantify metacognitive accuracy independent of an observer’s decision
strategy or cognitive ability on the primary task.

Metacognitive accuracy on the perceptual task was quantified using
the computational methods outlined in detail by Fleming et al. (2010).
Because performance on the perceptual task is held constant with an
online thresholding procedure, it is possible to compute a measure of
metacognitive accuracy that is unconfounded by type I performance
directly from the empirical type II receiver operating characteristic
(ROC) curve. The type IROC curve reflects the relationship between the
accuracy of visual discriminations and the observer’s confidence rating.
For each level of confidence i, p(confidence = i | correct) and p(confi-
dence = 1 | incorrect) were calculated, transformed into cumulative
probabilities and used to construct each x,y point on the empirical ROC
curve (Galvin et al., 2003; Kornbrot, 2006; Fleming et al., 2010). The area
under the type II ROC curve (A,,.), when performance is held constant,
provides a robust estimate of metacognitive discrimination that is inde-
pendent of both type II response bias and type I sensitivity as follows:
Aroc = 02539 [(Y;ii, — X)* — (Y; — X;+1)*] + 0.5 (Kornbrot,
2006). Type I sensitivity (d") was calculated as d' = z(H) — z(FA),
where z represents the inverse of the cumulative normal distribution
and H = p(response = l|interval = 1) and FA = p(response = 1|in-
terval = 2)

Controlling for type I performance by experimental design in a recog-
nition memory paradigm poses serious methodological challenges;
therefore, quantification of metacognitive accuracy in the memory task
required a computational approach that explicitly accounts for type I
performance. A model-based SDT approach to account for variance in
primary task performance in the computation of type II sensitivity has
recently been described and validated (Maniscalco and Lau, 2012; Mc-
Curdy et al., 2013). This method has been discussed at length previously
(Rounis et al., 2010; Maniscalco and Lau, 2012). Briefly, the approach
exploits the link between type I and type II SDT models to express ob-
served type I sensitivity at the level of the type I SDT model (termed meta
d"). Maximum likelihood estimation is used to determine the parameter
values of the type I SDT model that provide the best fit to the observed
type II data. A measure of metacognitive ability that controls for differ-
ences in type I sensitivity is then calculated by taking the ratio of meta d’
and the type I sensitivity parameter d': M,,;, = meta d'/d’. The most
straightforward approach to computing M, ;, involves an equal variance
SDT model in which the variances of internal distributions of evidence
for “old” and “new” in the type I model are assumed to be equal. How-
ever, this assumption may often be violated for 2-choice old/new recog-
nition memory tasks (Swets, 1986; Mickes et al., 2007). We therefore also
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computed M,,;, under an unequal variance SDT model. This approach
uses the slope of the type I ZROC to infer the ratio of the SDs of the type
I distributions (s) underlying the two response categories (Macmillan
and Creelman, 2004), and then holds this parameter constant in the
estimation M, ;.. However, a significant limitation of this approach is
that the estimation of s is influenced by type II sensitivity, and estimates
of M,,;, under this approach may have reduced sensitivity because it
controls for a parameter that is influenced by metacognitive accuracy.
Type 1 sensitivity (d') was calculated as d’ = z(H) — z(FA), where z
represents the inverse of the cumulative normal distribution and H =
p(response = old|stimulus = old) and FA = p(response =
old|stimulus = new)

MRI acquisition and analysis. Resting-state fMRI scans were collected
on two scanners at the Max Planck Institute for Cognitive and Brain
Sciences: a 3.0 Tesla Siemens Tim Trio scanner and a 3.0 Tesla Siemens
Verio scanner. A T2*-weighted echo-planar imaging (EPI) sequence was
used (TR = 2000 ms; TE = 30 ms; flip angle = 90°; acquisition matrix =
64 X 64; FOV = 192 mm; acquisition voxel size = 3 X 3X4 mm; 30
interleaved slices). For reasons unrelated to the present investigation,
there was some variability in the duration of the resting-state scans
(number of volumes, 180-300). To control for any influence of scan
duration or scanner model, we included these variables as nuisance co-
variates in all statistical analyses. During the resting-state scan, partici-
pants were instructed to relax, to hold as still as possible, and to keep their
eyes open. Before the functional scan, high-resolution T1-weighted ana-
tomical scans were also acquired (MPRAGE, TR = 2300 ms; TE = 2.96
ms; TI = 900 ms; flip angle = 9°% FOV = 256 mm; acquisition voxel
size=1X1X 1 mm).

Structural (T1) data processing. Cortical surface reconstruction was
performed on T1 scans using FreeSurfer (Dale et al., 1999; Fischl et al.,
1999a, b, 2001, 2002, 2004a, b; Fischl and Dale, 2000; Ségonne et al., 2004;
Han et al., 2006; Jovicich et al., 2006). For each subject, nonlinear trans-
formation from T1 to the 2 mm MNI 152 template was calculated using
ANTs (Avants et al., 2011).

Resting state fMRI (EPI) data processing. Preprocessing was performed
with a workflow from Brain Imaging Pipelines (https://github.
com/INCF/BrainImagingPipelines) and all data processing integrated
using Nipype (Gorgolewski et al., 2011). Modified preprocessing scripts
may be found at https://github.com/NeuroanatomyAndConnectivity/
pipelines. The following specifications were used: To remove potential
scanner instability effects, the first four volumes of each EPI sequence
were removed. This was followed by simultaneous slice timing and mo-
tion correction using 4DRealign implemented in nipy (http://nipy.
org/nipy) (Roche, 2011). Affine transformation from mean EPI image to
T1 volume was calculated using BBRegister (Greve and Fischl, 2009).
Brain mask, CSF mask, and white matter (WM) mask were extracted
from FreeSurfer parcellation and transformed into EPI space (thresh-
olded at 0.5 after interpolation). Realigned time series were masked using
the brain mask. Principal components of physiological noise were esti-
mated using CompCor (Behzadi et al., 2007). The joined WM and CSF
masks and voxels of highest variance were used to extract two sets of
principal components (also known as aCompCor and tCompCor). Out-
liers in the EPI sequence were discovered based on intensity and motion
parameters (ArtDetect; http://www.nitrc.org/projects/artifact_detect).
This was followed by denoising of the time series using a GLM model
with motion parameters, CompCorr components, and outliers as regres-
sors (note that global signal was not regressed). Time series were also
smoothed using SUSAN with 5 mm full width half minimum kernel
(Smith, 1992). Finally, high-pass (0.01 Hz) and low-pass (0.1 Hz) filters
were applied using FSL. Quality of scans and preprocessing was assessed
visually by looking at EPI to T1 coregistration overlay, motion parameter
plots, and temporal signal-to-noise ratio volumes. Because of substan-
dard data quality (too high motion or signal dropouts), three partici-
pants were discarded from further analysis.

To estimate connectivity, two spherical ROIs of 6 mm diameter with
centers at 6, 58, 0 (medial aPFC) and 24, 58, 18 (lateral aPFC) were
defined in the MNI152 space (see Fig. 4A). The location of the lateral
aPFC seed region was based on the region described by Fleming et al.
(2010). Our central coordinate was derived by centering the spherical
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ROI on the peak voxel reported in Fleming et al. (2010) and then shifting
it posteriorly in the coronal axis to ensure that the sphere was securely
constrained within the pial surface of the cortex and remained within the
morphological feature of the Fleming et al. (2010) coordinate. The me-
dial aPFC seed region was based on the region described in a meta-
analysis (Gilbert et al., 2006), which partitioned aPFC according to a
classification algorithm. Because no strict stereotaxic definition of medial
aPFC was supplied, we derived our selection of related coordinates by
matching the prefrontal sulci of our template to the results of the classifica-
tion partition (z = 0), constraining the circumference of the seed region to
within a single hemisphere’s gray matter (x = 6), and matching both medial
and lateral seed regions in the coronal plane (y = 58). Although the two
regions were not precisely identical in stereotaxic space to the activation
peaks reported by Fleming et al. (2010) and Gilbert et al. (2006), they were
the only regions examined within these areas of the cortex, and were selected
to accommodate the constraints of the cortical structure while still assessing
the same cortical regions described in the respective studies. ROI masks were
transformed back to each subject EPI space using combined inverse nonlin-
ear MNI-152-to-T1 transform and affine T1-to-EPI (thresholded at 0.5 after
interpolation). Translated ROIs were restricted with the brain mask. ROI
time series were estimated by averaging voxels within each ROI. Full brain
connectivity (correlation) maps were calculated using AFNI (Cox, 2012).
Connectivity maps were z-transformed using Fisher’s r-to-z transform and
then spatially transformed into MNI152 space.

Statistical analyses. Group-level analysis was conducted using the GLM
framework implemented in SPM8 (Wellcome Trust Department of Im-
aging Neuroscience, University College London). For each individual
seed, voxelwise multiple regression analyses were performed with the
connectivity maps, metacognitive accuracy scores, and nuisance covari-
ates for age and gender. Additionally, to control for scan length and
scanner model (see MRI acquisition and analysis) these variables were
entered as simultaneous nuisance regressors. In addition to evaluating each
seed point individually, we examined how the differential connectivity be-
tween medial and lateral aPFC related to memorial and perceptual metacog-
nitive accuracy. For each individual, whole-brain connectivity maps of
medial and lateral aPFC were subtracted from each other and voxelwise
multiple regression was performed on the difference maps. Whole-brain
analyses were conducted, correcting for multiple comparisons using topo-
logical FDR (Chumbley et al., 2010). Cluster forming threshold was set at
p < 0.005, and cluster size threshold was set at p < 0.05 (FDR corrected).
Unthresholded statistical maps were uploaded to NeuroVault.org database
and are available at http://neurovault.org/collections/17/.

Results

Behavioral performance

In a counterbalanced design, participants (N = 52) completed a
perceptual discrimination task and verbal recognition memory task
in which they made 2-choice discriminations and then rated their
confidence in the accuracy of their responses on a trial-by-trial basis
(Fig. 1) (Fleming et al., 2010; McCurdy et al., 2013). The perceptual
task was performed at an individually determined threshold
using a 2-up 1-down adaptive staircase procedure that results
in a convergence on 70% accuracy at the limit for individual
performance (Levitt, 1971; Fleming et al., 2010). Analysis re-
vealed that performance accuracy was well controlled by the
staircase for all participants (mean 0.70, SD 0.01, range 0.66—
0.72). Overall, performance on the memory task was good and
had similar mean accuracy (mean 0.71, SD 0.09, range 0.57—
0.91).

A linear mixed model with participant included as a random
effect revealed that RT significantly predicted confidence at the
trial level in both the perceptual decision task (t = —48.03, p <
0.001; int = 3.48, estimate = —0.50) and memory retrieval task
(= —22.51,p <0.001; int = 4.14, estimate = —0.09), indicating
that more confident decisions were associated with faster re-
sponses. Overall, mean confidence was higher in the memory
retrieval task (mean 3.95, SD 0.77) compared with the perceptual
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A Perceptual Decision Task: Schematic of Single Trial (N=360)
Gabor Stimuli

Gabor Stimuli Fixation

200ms 500ms

B Memory Retrieval Task: Encoding Phase (N=145)

Word Stimuli Fixation

1500ms

1000ms

Figure 1.
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Until Response

Recognition Phase(N=290)
2-choice Decision Confidence
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Experimental paradigm. Participants completed 2 tasks in a counterbalanced order. A, Perceptual discrimination task. Each trial (N = 360) consisted of a visual display of 6 Gabor

gratings, followed by an 151 of 500 ms, followed by a second visual display of 6 Gabor gratings. In one of the two displays, the orientation of one randomly selected Gabor patch was tilted slightly from
the vertical axis. The orientation angle of this pop-out Gabor was adjusted using a 2-up 1-down adaptive staircase procedure. Participants made unspeeded 2-choice discrimination judgments as to
whether the “pop-out” Gabor occurredin either the first or second stimulus display, then rated their confidence in the accuracy of their response on ascale of 1 (low confidence) to 6 (high confidence).
B, Memory retrieval task. The memory task consisted of a classic verbal recognition memory paradigm. During encoding, participants viewed 145 words randomly selected from a set of 290 words.
During recognition, participants were presented with each word from the full list of stimuli in a random order (half of which were presented during encoding and half of which were new) and were
asked to make unspeeded 2-choice discrimination judgments as to whether the stimulus was old or new, and then rated their confidence in their response.

decision task (mean 2.80, SD 0.87) [f5,, = 9.74, p < 0.001],
which may be attributed to the relative difficulty of the perceptual
task that was performed at an individually determined perceptual
threshold. Mean confidence level also showed a significant correla-
tion within individuals across the two tasks (r(50) = 0.49, p <
0.001). Together, these results replicate previous findings (Song et
al., 2011; Fleming et al., 2012) and suggest that confidence level re-
flects both a task-independent general level of confidence particular
to an individual as well as a task-dependent level of confidence an
individual has toward performance on a particular cognitive task.
SDT (Green and Swets, 1966) was used to quantify individual
differences in metacognitive ability (“type II sensitivity”), here
quantified as the ability to accurately link confidence with per-
formance. SDT enables a model-based approach to the compu-
tation of type II sensitivity that is independent of response bias
and type I sensitivity (d") on the primary task. Analysis confirmed
that metacognitive ability in both the perceptual decision task
(A,.c) and recognition memory task (M,,,) were uncorrelated
with type I performance (A, 7(50) = 0.09, p = 0.51; M, 0
r(50) = 0.16, p = 0.22), or type II response bias (A,,.: 7(50) =
—0.03, p = 0.86; M,,,: 7(50) = 0.08, p = 0.57). Additionally,
orientation discrimination threshold in the perceptual task was
uncorrelated with perceptual A, . (r(50) = —0.02, p = 0.91),
indicating that A _ estimates were not confounded with variance
in perceptual acuity. SDT estimates of metacognitive ability were
thus confirmed to be independent of response bias and variance
in primary task performance, allowing a direct comparison of
metacognitive ability across process domains. Analysis revealed
that metacognitive accuracy for perceptual decisions (4,,.) and
memorial judgments (M,,;,) were uncorrelated across individu-
als (r(50) = 0.03, p = 0.81), indicating an intraindividual disso-
ciation in metacognitive ability across process domains (Fig. 2).
To ensure that this result was not an artifact of the fact that
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Figure2. Behavioral results. Scatterplot of zero-order correlation between metacogni-

tive accuracy for perceptual decisions (4,,.) and memorial judgments (M,,;,) [r(50) =
0.03,p =0.81].

metacognitive ability for memory and perception were in differ-
ent units (M., and A, .), we calculated M,,;, for the perceptual
discrimination task and correlated it with M_,;, for the memory
task. These measures were also uncorrelated across individuals
(r(50) = —0.13, p = 0.35), indicating that the lack of correlation
between perceptual and memorial metacognitive ability in our
data cannot be attributed to differences in the scale between M,

and A,

Functional connectivity of medial and lateral seed regions

Seed regions were chosen for intrinsic functional connectivity
analysis based on literature that localized medial and lateral aPFC
subregions. Two spherical ROIs of 6 mm diameter with centers at
6, 58, 0 (medial aPFC; reflecting the area described by Gilbert et
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A Lateral aPFC intrinsic connectivity

1
4"

Figure3. A, Lateral aPFC connectivity. Right lateral aPFC showed intrinsic connectivity with
a broad network, including bilateral regions of superior frontal gyrus, cingulate gyrus, inferior
frontal gyrus, precuneus, postcentral gyrus, inferior parietal lobule, lateral temporal cortex,
orbital frontal cortex, thalamus, basal ganglia, caudate, insula, and cerebellum. B, Medial aPFC
connectivity. Right medial aPFC displayed connectivity with bilateral regions of medial prefron-
tal cortex, orbital frontal cortex, precuneus, inferior parietal lobule, lateral temporal cortex,
precentral gyrus, posterior and anterior cingulate, hippocampal formation, insula, thalamus,
inferior occipital gyrus, and cerebellum.

al., 2006; meta-analysis) and 24, 58, 18 (lateral aPFC; reflecting
the area described by Fleming et al., 2010; see Resting state fMRI
(EPI) data processing) were defined in MNI152 space. Based on
previous studies showing right aPFC lateralization to metacogni-
tive processes (Schnyer et al., 2004; Schmitz et al., 2006; Fleming
etal., 2010, 2012; Yokoyama et al., 2010), our seed regions were
defined in medial and lateral divisions of right aPFC (see Fig. 4A).
Right lateral aPFC showed intrinsic connectivity with a broad
network, including bilateral regions of superior frontal gyrus,
cingulate gyrus, inferior frontal gyrus, precuneus, postcentral
gyrus, inferior parietal lobule, lateral temporal cortex, orbital
frontal cortex, thalamus, basal ganglia, caudate, insula, and
cerebellum (Fig. 3A). Right medial aPFC displayed connectiv-
ity with bilateral regions of medial prefrontal cortex, orbital
frontal cortex, precuneus, inferior parietal lobule, lateral tem-
poral cortex, precentral gyrus, posterior and anterior cingu-
late, hippocampal formation, insula, thalamus, inferior
occipital gyrus, and cerebellum (Fig. 3B).

Functional connectivity and metacognitive ability

As shown in Figure 4B (top two panels) and Table 1, metacogni-
tive accuracy for perceptual decisions (A, .) was significantly cor-
related with functional connectivity between the right lateral
aPFC seed region and three clusters: right dorsal anterior cingu-
late cortex (dACC), left putamen, and a cluster, including right
putamen, right caudate, and thalamus. Metacognitive accuracy
for memory retrieval (M,,,) did not significantly correlate with
functional connectivity from the lateral aPFC seed region.

By contrast, metacognitive accuracy for perceptual decisions
(A,.o) did not correlate with functional connectivity with the
medial aPFC seed region. As shown in Figure 4B (bottom two
panels) and Table 1, metacognitive accuracy on the memory re-
trieval task (M,,;,) was significantly correlated with functional
connectivity between the right medial aPFC seed region and two
clusters in the right parietal cortex: central precuneus and intra-
parietal sulcus (IPS)/inferior parietal lobule (IPL). We conducted
a follow-up analysis in which M,;, was estimated with an unequal

atio
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variance SDT model (M,,,,;, [uneq var]; see Quantification of meta-
cognitive ability). We found that M,,;, [uneq var] also significantly
predicted connectivity between medial aPFC and right central pre-
cuneus and right IPL/IPS (height threshold p < 0.005; cluster cor-
rected, p < 0.001; 1080 voxels; peak voxel (MNI): 32, —46, 34), as
well as a cluster in right middle frontal gyrus (height threshold p <
0.005; cluster corrected, p = 0.001; 445 voxels).

Finally, we conducted a whole-brain analysis examining how
the differential connectivity between medial and lateral aPFC re-
lated to memorial and perceptual metacognitive accuracy. We
subtracted whole-brain connectivity maps between medial and
lateral aPFC for each individual and performed voxelwise multi-
ple regression analyses on the difference maps. We found six
clusters where memorial metacognitive accuracy modulated the
relative connectivity with our medial and lateral aPFC seed re-
gions. These regions included the bilateral parahippocampal
gyrus, precentral gyrus, precuneus, fusiform gyrus, and lingual
gyrus (Fig. 5; Table 2). Higher metacognitive accuracy for mem-
ory was associated with a relative increase in the coupling of these
regions with medial aPFC compared with connectivity with lat-
eral aPFC. No significant regions were found where connectivity
with medial aPFC correlated more highly with perceptual meta-
cognitive accuracy compared to connectivity with lateral aPFC.
In the reverse contrast (lateral aPFC—medial aPFC), no regions
significantly correlated with either perceptual metacognitive ac-
curacy or memorial metacognitive accuracy.

Discussion

We found that the capacity of an individual to make metacogni-
tive evaluations of perceptual decisions and the ability to evaluate
the contents of memory were independent from one another,
indicating that metacognitive skill in one domain may not neces-
sarily translate to another. Furthermore, metacognitive accuracy
in each domain was related to distinct patterns of functional con-
nectivity involving the medial and lateral regions of aPFC. Meta-
cognitive ability for perceptual decisions was associated with
increased connectivity between lateral aPFC and a network of
regions involving right dACC, bilateral putamen, right caudate,
and thalamus. In contrast, the capacity for accurate metacogni-
tive assessments of memory was related to increased connectivity
between medial aPFC and a network of regions, including the
right central precuneus and IPS, spreading to the adjacent IPL.
An analysis of the differential connectivity between medial and
lateral seeds revealed that regions, including the hippocampal
formation, precuneus, fusiform gyrus, lingual gyrus, and precen-
tral gyrus, showed a relative increase in connectivity with medial
compared with lateral aPFC with greater memorial metacogni-
tive accuracy. Together, these results suggest that metacognitive
accuracy in the domains of perception and memory is related to
the functional integrity of unique neural networks anchored in
the medial and lateral regions of the aPFC.

Our finding that metacognitive accuracy for perceptual dis-
criminations was linked to connectivity with lateral aPFC is con-
sistent with the finding that gray matter volume in this area
correlates with the ability to link confidence with accurate
decision-making for perceptual decisions (Fleming et al., 2010;
McCurdy et al., 2013). Furthermore, the finding that metacogni-
tive ability for perceptual decisions was related to connectivity
between right lateral aPFC and dACC is consistent with the find-
ing that these regions show increased activation during metacog-
nitive assessments of visual discriminations and that the strength
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Figure4. A, Seed regions. To estimate connectivity, two spherical ROls of 6 mm diameter with centers at 6, 58, 0 (medial aPFC; reflecting the area described by Gilbert et al., 2006; meta-analysis)
and 24, 58, 18 (lateral aPFG; reflecting the area reported by Fleming et al. (2010)) were defined in MNI152 space. B, fMRI connectivity results. Top two panels, Metacognitive accuracy for perceptual
decisions is associated with increased connectivity between lateral aPFC seed region and right dACC, bilateral putamen, right caudate, and thalamus. Bottom two panels, Metacognitive accuracy for
memory is associated with increased connectivity between medial aPFC and right precuneus and right IPS/IPL. Al clusters are significant at p << 0.05, corrected for multiple comparisons using
topological FDR (cluster forming threshold, p < 0.005). (, Correlation between metacognitive accuracy scores and mean normalized correlation values of significant clusters.

Table 1. Functional connectivity of medial and lateral aPFC correlated with
metacognitive accuracy for memory and perception”

Volume Peak  p(cluster PeakL
Region (mm3)  z-value FDRq) X y z
Memory (Mra\io )
Medial aPFC
Right IPL/IPS 542 491 0.001 30 —48 36
Right precuneus 488 3.93 0.001 8 —48 52
Perception (4,,,)
Lateral aPFC
Right dACC 390 3.87 0.001 8 42 4
Right putamen, right caudate, 602 3.95 >0.001 12 —12 6
thalamus
Left putamen 245 4.05 0014 —24 14 8

“All clusters significant at p << 0.05, FDR corrected (height threshold, p << 0.005).

of activation in these regions during metacognitive judgments
correlates with reported confidence (Fleming et al., 2012).

In contrast, the ability to make accurate metacognitive assess-
ments of memory was associated with increased connectivity be-

tween medial aPFC, the right central precuneus, and IPL/IPS, a
pattern that is supported by previous literature. Functional data
suggest that monitoring the contents of memory is associated
with increased activity in medial prefrontal and lateral parietal
regions (Chua et al., 2006, 2009). IPL also shows greater activa-
tion for high confidence hits in meta-memory tasks (Wheeler and
Buckner, 2004; Kim and Cabeza, 2007) as well as strong “feeling-
of-knowing” judgments for semantic and episodic information
(Elman et al., 2012). Furthermore, patients with parietal lesions
produce fewer high confidence recognition responses during re-
trieval (Davidson et al., 2008; Simons et al., 2010) and lesions to
the medial prefrontal cortex lead to impairments in evaluating
memory (Pannu and Kaszniak, 2005; Modirrousta and Fellows,
2008). Finally, a recent voxel-based morphometry study by Mc-
Curdy et al. (2013) found that gray matter volume in the precu-
neus correlated with better metacognitive ability for memory.
Together our findings suggest that the accuracy with which an
individual is able to evaluate lower-level processes in part de-
pends on the domain of the metacognitive judgment. Metacog-
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Figure 5.  Differential functional connectivity between medial and lateral aPFC correlated
with metacognitive accuracy for memory. A, Medial aPF(—lateral aPFC connectivity correlated
with metacognitive accuracy for memory predicted 5 clusters, including the hippocampal for-
mation, precuneus, fusiform gyrus, lingual gyrus, and precentral gyrus (Table 2). All clusters are
significantatp << 0.05, corrected for multiple comparisons using topological FDR (cluster form-
ing threshold, p << 0.005). B, Correlation between metacognitive accuracy scores and mean
normalized correlation values of medial—lateral aPFC functional connectivity of all significant
clusters.

Table 2. Differential functional connectivity between medial and lateral aPFC
correlated with metacognitive accuracy for memory”

p (cluster Peak MNI

z-value  FDRc) X y z

<€0.001 34 —28 —16

Volume  Peak

Region (mm?)

Right parahippocampal gyrus, 913 496
right fusiform gyrus
Precentral/postcentral gyrus, 3445 4.69

MFG, precuneus
Right lingual gyrus, right MOG 1621 418

<<0.001 18 —22 68

<€0.001 28 —86 14

Left fusiform gyrus, left MOG 367 4.10 0003 —46 -—-72 -8
Left parahippocampal gyrus, 272 3.89 0012 —26 —38 —16
left fusiform gyrus, left

lingual gyrus

Left insula, left precentral 296 3.55 0009 —46 —12 22
gyrus

“All clusters significant at p << 0.05, FDR corrected (height threshold, p << 0.005).
MFG, Medial frontal gyrus; MOG, middle occipital gyrus.

nitive evaluations of perceptual discriminations may be best
conceived of as an online monitor that integrates information
over short time scales (Fleming and Dolan, 2012). Converging
evidence from primate, electrophysiological, and functional im-
aging studies implicates the ACC in monitoring task perfor-
mance (for review, see Ridderinkhof et al., 2004). For instance,
activity in dACC increases in response to errors compared with
correct responses (Ullsperger and von Cramon, 2004) and shows
increased activation in trials characterized by high response con-
flict (e.g., Kerns et al., 2004). Recent evidence also suggests that
the striatum, along with dACC and lateral PFC, contributes di-
rectly to monitoring and control over task performance (Balleine
et al., 2007; Holroyd and Yeung, 2012). For instance, a recent
study found that resting-state functional connectivity between
the dACC and ventral striatum correlates with the percentage of
times an individual “opts-out” of a perceptual decision under
ambiguous circumstances (Jung et al., 2013). As recognizing am-
biguity during decision-making depends on assessing confidence
of what the correct action would be, the role of striatal regions in
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opting out of perceptual decisions supports a role of these regions
in facilitating accurate metacognitive judgment, particularly
when decision conflict is high. Overall, these results support the
proposal by Fleming and Dolan (2012) that accurate metacogni-
tive judgments of performance depend on the integrity with
which lateral aPFC integrates performance-monitoring informa-
tion coded in ACC.

By contrast, accurate metacognitive judgments of memory
may be understood as a direct appraisal of memory contents or
assessment of the strength of a memory trace (Nelson and Na-
rens, 1990). It is well known, based on both functional imaging
and lesion studies, that the acquisition and long-term storage of
information depend on structures in the medial temporal lobe
(MTL) (Squire, 1992; Tulving, 2002). We found that a network of
regions that included the parahippocampal gyrus showed a rela-
tive increase in connectivity with medial compared with lateral
aPFC with increasing memorial metacognitive accuracy, provid-
ing support for a role of MTL structures in metacognitive assess-
ment of memory. Furthermore, MTL memory structures are
densely interconnected with both the central precuneus and the
adjacent IPL/IPS (Cavanna and Trimble, 2006; Rushworth et al.,
2006; Vincent et al., 2006; Margulies et al., 2009), suggesting that
the reciprocal anatomical connections between these regions en-
able them to cooperate in cognitive processes related to memory.
Indeed, our observation of the involvement of IPL in metacogni-
tive assessment of memory is consistent with a role for this region
either as an accumulator for the strength of evidence for or against a
memory decision (Wagner et al., 2005) or as an output buffer that
dynamically represents retrieved information (Baddeley, 20005
Vilberg and Rugg, 2008). More generally, the medial aPFC, the cen-
tral precuneus, the inferior parietal lobule, as well as the MTL, are all
implicated in the default mode network (Buckner et al., 2008;
Andrews-Hanna et al., 2010), a system that is important in range of
episodic simulations based on memory (Schacter et al., 2012) rather
than perception (Smallwood et al., 2013). One question that natu-
rally arises from our results, therefore, is what process, or processes,
are common to metacognitive assessments of memory and other
forms of memory-driven cognition, such as mind-wandering,
prospection, and metalizing that this network is thought to support
(for a meta-analysis, see Spreng et al., 2009).

To our knowledge, only one other study (McCurdy et al.,
2013) has compared metacognitive ability for perceptual and me-
morial judgments within individuals. The present connectivity
results and the voxel-based morphometry findings of McCurdy
etal. (2013) converge in suggesting that individual differences in
metacognitive ability for perception and memory relate to dis-
tinct features of brain architecture. Both studies suggest a pri-
mary role of lateral aPFC in metacognitive ability for perceptual
discriminations and a role of the precuneus in metacognitive
ability for memory. However, one difference between the present
findings and those of McCurdy et al. (2013) is that, despite the
dissociation at the neural level, McCurdy et al. (2013) found a
positive correlation between behavioral scores for perceptual and
memorial metacognitive ability. One possibility is that this dis-
crepancy could be attributed to differences between the tasks. For
example, our memory task required a longer retention interval
than the task used by McCurdy et al. (2013). Additionally, the
memory task used by McCurdy et al. (2013) was a two-alternative
forced choice task, whereas the present study used a two-choice
old/new discrimination task, and there are differences between
these two types of memory tests in the recruitment of recollection
(Cook et al., 2005). Although both studies differentiate metacog-
nitive ability at the neural level, larger-scale behavioral studies
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manipulating factors, such as retention interval length, as well as
the type and uncertainty of the type I discrimination, will be
necessary before firm conclusions can be drawn regarding the
behavioral stability of metacognitive capacity across domains.

In conclusion, our data demonstrate that accurate metacog-
nitive assessments of perception and memory relate to the
strength of functional coupling within distinct large-scale cortical
networks involving the medial and lateral regions of aPFC. Al-
though these findings call into question a strict homogeneity of
metacognition, it is important to note that the individual differ-
ences approach used here identifies cross-sectional differences
that underlie the capacity for accurate metacognitive assessment
rather than an exhaustive account of the neural processes that
contribute to metacognitive judgments in either domain. It re-
mains possible, therefore, that domain-general attentional or
cognitive processes could be involved in the evaluation of both
memorial and perceptual judgments, a possibility that is sup-
ported by task-based comparisons of confidence judgments in
memory and perception (Fleck et al., 2006). As it seems likely that
in many situations information from perceptual and memorial
sources is processed in tandem to maximize behavioral flexibility,
a challenge for future research is to understand how these differ-
ent sources of information can be integrated in order for an in-
dividual to navigate the complex, and often unpredictable,
environment in which they exist.
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