Enumerating the k closest pairs
optimally

Hans-Peter Lenhof Michiel Smid

MPI-I-92-118 May 1992
Enumerating the k closest pairs
optimally

Hans-Peter Lenhof Michiel Smid

MPI-I-92-118 May 1992
"Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministers für Forschung und Technologie (Betreuungskennzeichen ITS 9103) gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor."
Enumerating the k closest pairs optimally*

Hans-Peter Lenhof Michiel Smid
Max-Planck-Institut für Informatik
W-6600 Saarbrücken, Germany

May 12, 1992

Abstract

Let S be a set of n points in D-dimensional space, where D is a constant, and let k be an integer between 1 and n. An algorithm is given that computes the k closest pairs in the set S in $O(n \log n + k)$ time, using $O(n + k)$ space. The algorithm fits in the algebraic decision tree model and is, therefore, optimal.

1 Introduction

There has been a lot of interest in closest pair problems. In such problems, we are given a set of n points in D-dimensional space, and we want to compute the closest pair, all k closest pairs, or just the k-th closest pair. Distances are measured in an arbitrary L_t-metric, where $1 \leq t \leq \infty$. In this metric, the distance $d_t(p, q)$ between the points $p = (p_1, \ldots, p_D)$ and $q = (q_1, \ldots, q_D)$ is defined by

$$d_t(p, q) := \left(\sum_{i=1}^{D} |p_i - q_i|^t \right)^{1/t},$$

if $1 \leq t < \infty$, and for $t = \infty$, it is defined by

$$d_\infty(p, q) := \max_{1 \leq i \leq D} |p_i - q_i|.$$

The problem of finding the closest pair has been solved already for a long time. Shamos and Hoey [9] and Bentley and Shamos [2] solve this problem, for the case $D = 2$ and $D \geq 2$, respectively, in $O(n \log n)$ time, which is optimal in the algebraic decision tree model. Recently, an optimal algorithm for the on-line version of this problem has been given by Schwarz et al. [11].

For the problem of computing the k-th closest pair, there are results by Agarwal et al. [1], who consider the L_t-metric for the planar case, and by Salowe [7], who shows

*This work was supported by the ESPRIT Basic Research Actions Program, under contract No. 7141 (project ALCOM II).
how to select the k-th closest pair in the L_∞-metric in $O(n(\log n)^D)$ time, for any fixed $D \geq 2$.

For the problem of enumerating the k closest pairs, the first result was by Smid [10], who shows how to compute the $n^{2/3}$ closest pairs in $O(n \log n)$ time. This result was extended in two directions. First, for the planar case, Dickerson and Drysdale [3] compute the k closest pairs—ordered by their distances—in $O(n \log n + k \log n)$ time. Second, Salowe [8] gives an algorithm that computes the n closest pairs in $O(n \log n)$ time. The latter result holds for an arbitrary, but fixed, dimension D.

Katoh and Iwano [5] give a technique for solving related problems such as finding the k furthest pairs or the k closest/furthest bichromatic pairs. Their technique can also be applied to the k closest pairs problem. The result is an algorithm with running time $O(n \log n + k \log n \log(n^2/k))$. (See [6].)

In this paper, we present a new algorithm for the k closest pairs problem: We show how to compute the k closest pairs in $O(n \log n + k)$ time. The algorithm works for any $1 \leq t \leq \infty$, any fixed dimension D and any $1 \leq k \leq \binom{n}{2}$. The algorithm fits in the algebraic decision tree model and is, therefore, optimal. (The constant factor is of the form $c^D \log D$, for some c.) We remark that our algorithm does not enumerate the k closest pairs in sorted order; the order can be arbitrary.

The algorithm is based on the fact that once the k-th smallest L_t-distance is known, we can easily enumerate the k closest pairs: Consider a grid with cells of length d_k and distribute the points over the cells. Then, compare each point with all points that are contained in one of the 3^D neighboring cells. Of course, this algorithm compares too many pairs. All pairs that are compared, however, have L_t-distance at most $2Dd_k$. (Equality can occur in the L_1-metric.) By a result of Salowe [8], see Lemma 2, the number of pairs considered is $O(k + n)$. Therefore, we find the k closest pairs in $O(n \log n + k)$ time.

Of course, the k-th smallest L_t-distance is not known at the start of the algorithm. We could approximate it by running Salowe's algorithm that finds the k-th smallest L_∞-distance. This takes, however, $O(n(\log n)^D)$ time. As we shall see, for our application, it suffices to approximate the k-th L_∞-distance.

In Section 2, we prove some combinatorial results that are needed in the analysis of the algorithm. In Section 3, we give this algorithm, which consists of two phases. First, in Subsection 3.1, we compute an L_∞-distance with rank $\Theta(k + n)$. (Here, the term n appears because of a technical reason that will become clear later.) The algorithm implicitly manipulates all possible differences $|p_i - q_i|$, where $1 \leq i \leq D$ and p and q are points of the set. It makes a binary search on these differences. (The way in which the binary search is controlled is due to Johnson and Mizoguchi [4], who use it to find the k-th element in the Cartesian sum $X + Y$.) After a presorting step, which takes $O(n \log n)$ time, we can test in $O(n)$ time, if a difference $|p_i - q_i|$ approximates the desired L_∞-distance. The approximation is found within $O(\log n)$ iterations. In Subsection 3.2, this approximation is used to find the k closest pairs w.r.t. the L_t-metric. Of course, we can use the above sketched algorithm that uses a grid. Then, however, in order to distribute the points over the cells, we need the non-algebraic floor-function. Instead, we use a slightly degenerate grid that can be constructed without the floor-function. We finish the paper in Section 4 with some
open problems.

In Subsection 3.1, we need to compute \([(l + h)/2]\) for integers \(l\) and \(h\) in the range from 1 to \(n\). At the start of the algorithm, we build an array

\[
F[1 : 2n] = [0, 1, 1, 2, 2, 3, 3, \ldots, n - 1, n - 1, n].
\]

Clearly, \(F\) can be constructed in \(O(n)\) time using only algebraic functions. Then, the value of \([(l + h)/2]\) is stored in \(F[l + h]\) and, hence, can be retrieved in \(O(1)\) time, without actually using the floor-function.

2 Some combinatorial results

We recall the notion of weighted medians. Let \(x_1, x_2, \ldots, x_n\) be a sequence of real numbers such that every element \(x_i\) has a weight \(w_i\), which is a positive real number. Let

\[
W := \sum_{j=1}^n w_j.
\]

Element \(x_i\) is called a weighted median if

\[
\sum_{j:x_j < x_i} w_j < W/2 \quad \text{and} \quad \sum_{j:x_j \leq x_i} w_j \geq W/2. \tag{1}
\]

The following lemma appears already in [4]. For completeness, we give a proof.

Lemma 1 The weighted median of a set of \(n\) weighted real numbers can be computed in \(O(n)\) time.

Proof: The following algorithm finds the weighted median. In \(O(n)\) time, compute the standard median, say \(x_i\), and relabel the elements such that \(x_j \leq x_i\) for \(j \leq i\), and \(x_j \geq x_i\) for \(j \geq i\). Then compute the sums in (1). Using these sums we check if \(x_i\) is a weighted median. If so, we are finished. Otherwise, we know which half of the sequence contains the weighted median. We proceed recursively in this subsequence, which has length at most \(n/2\). In this subsequence, we find an element with the appropriate weighted rank. \(\blacksquare\)

We define a \(D\)-dimensional \(\delta\)-cube as a hypercube of the form

\[
[a_1 : a_1 + \delta) \times [a_2 : a_2 + \delta) \times \ldots \times [a_D : a_D + \delta),
\]

where \(a_1, a_2, \ldots, a_D\) are real numbers.

Definition 1 Let \(S\) be a set of \(n\) points in \(D\)-space and let \(\delta\) be a positive real number. A collection \(R\) of \(D\)-dimensional \(\delta\)-cubes is called a \(\delta\)-covering of \(S\), if

1. the cubes are pairwise disjoint,
2. each cube contains at least one point of \(S\),
3. each point in \(S\) is contained in one cube.
Let R be a δ-covering of S. Label the cubes (arbitrarily) $1, 2, \ldots, r := |R|$ and define n_i to be the number of points of S that are contained in the i-th cube of R. We define

$$\Sigma(S, R) := \sum_{i=1}^{r} \binom{n_i}{2}.$$

If δ is a real number, then we denote by $r_{\infty}(\delta)$ the number of L_∞-distances in S that are less than δ.

The following lemmas will be used throughout the rest of the paper.

Lemma 2 (Salowe [8]) Let S be a set of n points in D-space and let δ be a positive real number. Then,

$$r_{\infty}(2\delta) \leq 5^D (r_{\infty}(\delta) + n).$$

Remark: Salowe has a constant of 5^2D instead of 5^D. Lemma 2 can be proved in a similar way as Lemma 3 below, by taking for R the non-empty δ-cubes of a grid with cells of length δ, and taking for h' in (2) a 5δ-cube. Counting all pairs with L_∞-distance less than 2δ gives the bound in Lemma 2. In fact, Lemma 3 and its proof are basically the same as Salowe’s proof of Lemma 2, see [8].

Lemma 3 Let S be a set of n points in D-space, let δ be a positive real number, and let R be a δ-covering of S. Then,

$$\Sigma(S, R) \leq r_{\infty}(\delta) \leq 4^D (\Sigma(S, R) + n).$$

Proof: Clearly, $\left(\begin{array}{c} n_i \\ 2 \end{array}\right)$ counts the number of pairs of points that are contained in the i-th cube of R. Each such pair has L_∞-distance less than δ. This proves the left inequality. To prove the other inequality, consider a cube h in R:

$$h = [a_1 : a_1 + \delta] \times \ldots \times [a_D : a_D + \delta].$$

Let h' be the 3δ-cube

$$h' = [a_1 - \delta : a_1 + 2\delta] \times \ldots \times [a_D - \delta : a_D + 2\delta],$$

i.e., the cube with sides of length 3δ that contains h in its center. This cube h' intersects at most 4^D cubes of R: This follows from the fact that an interval of length 3δ can intersect at most 4 intervals from a set of pairwise disjoint intervals of length δ.

We call the cubes of R that intersect h' the neighboring cubes of h. Let C_i denote the set of labels of the neighboring cubes of the i-th cube in R. Note that the relation “neighboring cube” is reflexive and symmetric, i.e.,

$$i \in C_i \text{ and } i \in C_j \text{ iff } j \in C_i.$$

Now consider two points $p \neq q$ in S having L_∞-distance less than δ. Then either p and q are contained in the same cube of R, or p is contained in a cube, say $h \in R$, and q is contained in a neighboring cube of h. It follows that

$$r_{\infty}(\delta) \leq \frac{1}{2} \sum_{i=1}^{r} n_i \sum_{j \in C_i} n_j.$$
To prove the right inequality, it suffices to show that this double summation is bounded above by $4^D \left(\Sigma(S, R) + n \right)$. This follows from some elementary calculations:

$$
\sum_{i=1}^{r} n_i \sum_{j \in C_i} n_j \leq \sum_{i=1}^{r} \sum_{j \in C_i} (\max(n_i, n_j))^2
$$

$$
= \sum_{v=1}^{r} \left| \{ v : u \in C_v, \max(n_u, n_v) = n_u \} \right| \times n_u^2
$$

$$
\leq \sum_{v=1}^{r} \left| \{ v : u \in C_v \} \right| \times n_u^2
$$

$$
= \sum_{v=1}^{r} \left| \{ v : v \in C_u \} \right| \times n_u^2
$$

$$
= \sum_{u=1}^{r} |C_u| \times n_u^2
$$

$$
\leq 4^D \sum_{u=1}^{r} n_u^2.
$$

Using the fact that $n_u^2 = n_u + 2\binom{n_u}{2}$, the proof can easily be completed. ■

We give two corollaries. The constants that appear are rather large. By a more careful analysis, however, they can be decreased, but they remain exponential in D. Since such an analysis does not give more insight into our algorithm, we do not give it here.

Corollary 1 Let S be a set of n points in D-space and let δ be a positive real number. Let R be any δ-covering of S, such that $k \leq \Sigma(S, R) \leq 20^D(k + 2n)$. Then,

$$
k \leq r_\infty(\delta) \leq 80^D(k + 3n).
$$

Proof: This follows immediately from Lemma 3. ■

Corollary 2 Let S be a set of n points in D-space and let δ^* be the $20^D(k + 2n)$-th smallest L_∞-distance in S. Let R be any δ^*-covering of S. Then,

$$
k \leq \Sigma(S, R) \leq 20^D(k + 2n).
$$

Proof: We know from Lemma 3 that

$$
\Sigma(S, R) \leq r_\infty(\delta^*) \leq 4^D(\Sigma(S, R) + n).
$$

Since $r_\infty(\delta^*) < 20^D(k + 2n)$, it follows that $\Sigma(S, R) \leq 20^D(k + 2n)$. By Lemma 2, we know that $r_\infty(2\delta^*) \leq 5^D(r_\infty(\delta^*) + n)$. Since $r_\infty(2\delta^*) \geq 20^D(k + 2n)$, we get

$$
20^D(k + 2n) \leq 5^D(r_\infty(\delta^*) + n) \leq 20^D(\Sigma(S, R) + 2n). \quad (3)
$$

Therefore, $\Sigma(S, R) \geq k$. ■

Remark: In this proof, we need a lower bound on $r_\infty(\delta^*)$. Since many L_∞-distances might be equal, the definition of δ^* does not immediately give us such a lower bound. We derive it using $r_\infty(2\delta^*)$.

3 The k closest pairs algorithm

Throughout this section, S is a set of n points in D-space. We assume that k is such that $20^D(k + 2n) \leq \binom{n}{2}$. If this is not the case, we can find the k closest pairs, by considering all pairs of points and selecting the k that are closest. This takes $O(n^2) = O(k)$ time, which is clearly optimal.

The algorithm consists of two phases. In the first phase, we search for a real number δ for which the condition of Corollary 1 holds. (By Corollary 2, such a δ exists.) Then, in the second phase, we use this δ to enumerate all L_∞-distances that are less than $D\delta$. There are $O(k + n)$ such distances. We extract from them the k smallest L_δ-distances.

3.1 The approximation phase

We want to find an L_∞-distance δ, such that $r_\infty(\delta)$ lies in between k and $80^D(k + 3n)$. There are two points $p = (p_1, \ldots, p_D)$ and $q = (q_1, \ldots, q_D)$ in S, and an i, such that $|p_i - q_i| = \delta$. In order to find this δ, we do a binary search on all possible differences $|p_i - q_i|$. Of course, we maintain the candidate differences in an implicit way. (This technique appears already in [4].) Note that we do not search for the difference $|p_i - q_i|$ with a certain rank; we search for the L_∞-distance with this rank.

We maintain the following information:

1. Arrays A_1, \ldots, A_D of length n, where A_i contains the points of S sorted w.r.t. their i-th coordinates. For each $1 < i \leq D$, each point in A_i contains a pointer to its copy in A_{i-1}.

2. For each $1 \leq i \leq D$ and $1 \leq j < n$, we store with $A_i[j]$ an interval $[l_{ij} : h_{ij}]$, where l_{ij} and h_{ij} are integers, such that $j < l_{ij} \leq h_{ij} + 1 \leq n + 1$.

We define the set of candidate differences as follows. Let $p = (p_1, \ldots, p_D)$ and $q = (q_1, \ldots, q_D)$ be two distinct points in S, and let $1 \leq i \leq D$. Moreover, let j and j' be such that $A_i[j] = p$ and $A_i[j'] = q$. Assume w.l.o.g. that $j < j'$. Then $|q_j - p_i|$ is a candidate difference iff $l_{ij} \leq j' \leq h_{ij}$. Hence, the total number of candidate differences is equal to

$$\sum_{i=1}^{D} \sum_{j=1}^{n-1} (h_{ij} - l_{ij} + 1).$$

The algorithm makes a sequence of iterations. At each iteration, this summation is decreased by a factor of at least one fourth. We maintain the following

Invariant: At each moment, the $20^D(k + 2n)$-th smallest L_∞-distance δ^* is contained in the set of candidate differences.

Initialization: At the start of the algorithm, we build the arrays A_1, \ldots, A_D and add the pointers between them. Then, for each $1 \leq i \leq D$ and $1 \leq j < n$, we store with $A_i[j]$ the interval $[l_{ij} : h_{ij}] = [j + 1 : n]$.

6
Now, the algorithm starts with the

Iteration:

1. For each $1 \leq i \leq D$ and $1 \leq j < n$, such that $l_{ij} \leq h_{ij}$, take the pair $A_i[\lfloor (l_{ij} + h_{ij})/2 \rfloor]$ and $A_i[j]$ and take the (positive) difference of their i-th coordinates. Give this difference weight $h_{ij} - l_{ij} + 1$. This gives a sequence of at most $D(n - 1)$ weighted differences.

2. Compute a weighted median δ of these weighted differences.

3. Construct a δ-covering R of S, and compute $\Sigma(S, R)$. There are three possible cases.

 (a) If $k \leq \Sigma(S, R) \leq 20D(k + 2n)$, then output δ and stop.

 (b) If $\Sigma(S, R) < k$, then for each pair $A_i[\lfloor (l_{ij} + h_{ij})/2 \rfloor]$ and $A_i[j]$ selected in the first step such that the difference of their i-th coordinates is at most δ, set $l_{ij} := \lfloor (l_{ij} + h_{ij})/2 \rfloor + 1$. Go to Step 1.

 (c) If $\Sigma(S, R) > 20D(k + 2n)$, then for each pair $A_i[\lfloor (l_{ij} + h_{ij})/2 \rfloor]$ and $A_i[j]$ selected in the first step such that the difference of their i-th coordinates is at least δ, set $h_{ij} := \lfloor (l_{ij} + h_{ij})/2 \rfloor - 1$. Go to Step 1.

The construction of the δ-covering R will be described later. First we prove two lemmas.

Lemma 4 The algorithm correctly maintains the invariant.

Proof: After the initialization, the total number of candidate differences is equal to

$$
\sum_{i=1}^{D} \sum_{j=1}^{n-1} (n - j) = D \binom{n}{2},
$$

i.e., the set of candidate differences equals the set of all $\binom{n}{2}$ differences $|p_i - q_j|$. Therefore, the invariant holds initially. Consider one iteration. First assume that case (b) applies, i.e., $\Sigma(S, R) < k$. Then, by Lemma 3,

$$
r_\infty(\delta) \leq 4^D(\Sigma(S, R) + n) < 4^D(k + n).
$$

We know from (3) that

$$
r_\infty(\delta^*) \geq 4^D(k + 2n) - n > 4^D(k + n).
$$
Therefore, \(r_\infty(\delta) < r_\infty(\delta^*) \) and, hence, \(\delta < \delta^* \). The algorithm only removes differences \(|p_u - q_u| \) from the set of candidate differences that are at most equal to \(\delta \). Hence, at the end of the iteration, the invariant still holds.

If case (c) applies, then we know from Lemma 3 that

\[
 r_\infty(\delta) \geq \Sigma(S, R) > 20D(k + 2n).
\]

Since \(r_\infty(\delta^*) < 20D(k + 2n) \), we infer that \(\delta > \delta^* \). Hence, we can remove differences \(|p_u - q_u| \) from the set of candidate differences that are at least equal to \(\delta \), without destroying the invariant.

Lemma 5 The algorithm makes at most \(\log_{4/3}(D n^2) = O(\log n) \) iterations.

Proof: Let \(W \) (resp. \(W' \)) be the total number of candidate differences at the start of (resp. immediately after) an iteration. Moreover, let \(l_{ij} \) and \(h_{ij} \) (resp. \(l'_{ij} \) and \(h'_{ij} \)) denote the endpoints of the intervals at the start of (resp. immediately after) this iteration.

Suppose that case (b) applies. If \(l'_{ij} \neq l_{ij} \), then \(l'_{ij} = [(l_{ij} + h_{ij})/2] + 1 \) and \(h'_{ij} = h_{ij} \). Since \(l_{ij} \) and \(h_{ij} \) are integers, we have \(l'_{ij} \geq (l_{ij} + h_{ij} + 1)/2 \). Therefore,

\[
 W = W' + \sum_{i,j: l'_{ij} \neq l_{ij}} (l'_{ij} - l_{ij}) \\
 \geq W' + \frac{1}{2} \sum_{i,j: l'_{ij} \neq l_{ij}} (h_{ij} - l_{ij} + 1) \\
 \geq W' + \frac{1}{2} \frac{W}{2},
\]

where the last inequality follows from the fact that \(\delta \) is a weighted median. Hence,

\[
 W' \leq \frac{3}{4} W. \quad (4)
\]

The same bound can be proved if case (c) applies.

The algorithm terminates as soon as it finds a real number \(\delta \) such that \(k \leq \Sigma(S, R) \leq 20D(k + 2n) \) holds for the corresponding \(\delta \)-covering \(R \). By the invariant and Corollary 2, such a \(\delta \) is always contained in the set of candidate differences. Since this set gets smaller in each iteration, the algorithm must find such a \(\delta \). This proves that the algorithm terminates.

Let \(z \) be the number of iterations made by the algorithm. It follows from the invariant that the set of candidate differences is never empty. Hence, if we denote the number of candidate differences after \(z \) iterations by \(W_z \), then \(W_z \geq 1 \). Since there are \(D\binom{n}{2} \) candidate differences before the first iteration, it follows from (4) that

\[
 W_z \leq \left(\frac{3}{4}\right)^z D\binom{n}{2}.
\]
Therefore,
\[z \log(4/3) \leq \log \left(\binom{n}{2} \right). \]

This proves the lemma.

It remains to give an algorithm that constructs a \(\delta \)-covering \(R \). Of course, we can take a \(D \)-dimensional grid of side lengths \(\delta \) and distribute the points over the cells. Then, however, we must use the floor-function and, hence, the algorithm falls outside the algebraic decision tree model. We give a recursive algorithm that computes a \(\delta \)-covering using only algebraic functions.

Constructing a \(\delta \)-covering: The algorithm walks along the array \(A_1 \). Let \(p := A_1[1] \) be the first element in this array and set \(a_i \) to the first coordinate of \(p \). Let \(i \geq 1 \), and assume that \(a_1, \ldots, a_i \) have a value already.

If there is a point in \(S \) having a first coordinate lying in the half-open interval \([a_i : a_i + \delta)\), then we set \(a_{i+1} := a_i + \delta \). Otherwise, we set \(a_{i+1} \) to the value of the first coordinate of the first point in \(A_1 \) that lies “to the right” of \(a_i \). If we have reached the end of the array \(A_1 \), we set \(a_{i+1} := a_i + \delta \) and the construction of the \(a_j \)'s stops.

This gives a sequence of \(\delta \)-intervals \([a_1 : a_1 + \delta), [a_2 : a_2 + \delta), \ldots, [a_l : a_l + \delta), \) for some \(l \). During the walk along \(A_1 \), we give each point a pointer to the \(\delta \)-interval to which its first coordinate belongs.

If \(D = 1 \), the algorithm is finished. So assume that \(D > 1 \). We partition \(S \) into subsets \(S_1, \ldots, S_l \), as follows: Walk along the array \(A_2 \). For each point \(p \) encountered, follow the pointer to its copy in \(A_1 \), and follow the pointer stored there to the interval, say \([a_i : a_i + \delta), \) to which the first coordinate of \(p \) belongs. We add point \(p \) to subset \(S_i; \) more precisely, we store \(p \) at the end of a list representing \(S_i \). At the end, we have \(l \) lists, where the \(i \)-th one stores the points of \(S_i \) sorted by their 2-nd coordinates.

For \(i = 1, \ldots, l, \) do the following. Use the same algorithm recursively to compute a \(\delta \)-covering for the set \(S_i \), where we take only the last \(D - 1 \) coordinates into account. This gives a collection of \((D - 1) \)-dimensional \(\delta \)-cubes of the form

\[[b_2 : b_2 + \delta) \times [b_3 : b_3 + \delta) \times \ldots \times [b_D : b_D + \delta), \]

together with a corresponding partition of \(S_i \). Replace each such cube by the \(D \)-dimensional \(\delta \)-cube

\[[a_i : a_i + \delta) \times [b_2 : b_2 + \delta) \times [b_3 : b_3 + \delta) \times \ldots \times [b_D : b_D + \delta). \]

The resulting cubes—for all \(i \) together—for the desired \(\delta \)-covering \(R \) of \(S \).

It is clear that once the \(\delta \)-covering \(R \) has been constructed, we can compute \(\Sigma(S, R) \) in \(O(n) \) time. In fact, this value can be computed during the construction of \(R \).

Lemma 6 Let \(R \) be the set of hypercubes that are computed by the above algorithm. Then, \(R \) is a \(\delta \)-covering of \(S \). Moreover, the algorithm computes \(R \) and \(\Sigma(S, R) \) in \(O(n) \) time.
Proof: It is clear that R is a δ-covering of S. Let $T(n, D)$ denote the running time of the algorithm. Since at the start of a recursive call, the points are sorted already by the appropriate coordinates, we have

$$T(n, 1) = O(n),$$

$$T(n, D) = O(n) + \sum_{i=1}^{l} T(n_i, D - 1), \text{ if } D \geq 2,$$

for integers $n_i \geq 1$ such that $\sum_{i=1}^{l} n_i = n$. Using induction, it follows that $T(n, D) = O(n)$, because D is a constant. \square

Theorem 1 In $O(n \log n)$ time and using $O(n)$ space, we can compute a real number δ, such that $k \leq r_\infty(\delta) \leq 80^D(k + 3n)$.

Proof: The algorithm outputs a real number δ such that $k \leq \Sigma(S, R) \leq 20^D(k + 2n)$ holds for the corresponding δ-covering R. Then, Corollary 1 implies the bounds on $r_\infty(\delta)$.

The initialization of the algorithm takes $O(n \log n)$ time. Moreover, by Lemmas 1, 5 and 6, $O(\log n)$ iterations are made, each taking $O(n)$ time. This proves that the entire algorithm has running time $O(n \log n)$. Finally, it is clear that the algorithm uses only linear space. \square

3.2 The enumeration phase

At this moment, we have found a real number δ, such that $k \leq r_\infty(\delta) \leq 80^D(k + 3n)$. That is, the number of L_∞-distances in S that are less than δ lies in between k and $80^D(k + 3n)$.

In the enumeration phase, we find all L_∞-distances that are less than $D\delta$. From these distances, we extract the k smallest ones. The details are as follows. (We use the notion of neighboring cube, which was defined in the proof of Lemma 3.)

1. Construct a $D\delta$-covering R of S. Note that the algorithm outputs the cubes of R in lexicographical order.

2. Build a list storing the following pairs of points of S: For each $D\delta$-cube h in R all pairs (p, q), $p \neq q$, where $p \in h$ and q is contained in some neighboring cube of h that is (lexicographically) at least equal to h. (In this way, we get each pair only once.) These neighboring cubes can be found as follows. Let

$$h = [a_1 : a_1 + D\delta] \times \ldots \times [a_D : a_D + D\delta].$$

Search for all cubes in R that contain any of the 4^D points

$$(a_1 + \epsilon_1 D\delta, \ldots, a_D + \epsilon_D D\delta),$$

where $\epsilon_1, \ldots, \epsilon_D \in \{-1, 0, 1, 2\}$, and that are lexicographically at least equal to h.

3. Take the list of pairs that results from the previous step and find the k closest pairs w.r.t. the L_t-distance.

Lemma 7 Given δ, the algorithm finds the k closest pairs in the set S in $O(n \log n + k)$ time, using $O(n + k)$ space.

Proof: Let d_{∞}^k (resp. d_{∞}^k) denote the k-th smallest L_t-distance (resp. L_∞-distance) in S. Since $r_{\infty}(\delta) \geq k$, we have $d_{\infty}^k < \delta$. Moreover, since $d_t(p, q) \leq D d_\infty(p, q)$ for $1 \leq t \leq \infty$, we have $d_t^k \leq D d_{\infty}^k$. Hence, $d_t^k < D\delta$. In Step 2, all pairs $(p, q), p \neq q$, such that $d_t(p, q) < D\delta$, are found. Hence, in Step 2, all k L_t-closest pairs are added to the list. This proves the correctness of the algorithm.

Concerning the time complexity, Step 1 takes $O(n)$ time. All pairs that are found in Step 2 have L_∞-distance less than $3D\delta$. By repeated application of Lemma 2, it follows that the number of pairs found in this step is at most

$$r_{\infty}(3D\delta) \leq 5D^{\log 3D} r_{\infty}(\delta) + \frac{5D^{(1+\log 3D)} - 5D}{5D - 1} n = O(k + n).$$

Moreover, in the second step, we make at most $4Dn$ point location queries. Each query can be solved in $O(\log n)$ time by a binary search. Hence, the total time for Step 2 is bounded by $O(n \log n + r_{\infty}(3D\delta)) = O(n \log n + k)$.

For the third step, we use a linear time algorithm to find the k-th smallest L_t-distance d_t^k. Then, by making one scan over the list, we extract all L_t-distances that are less than or equal to d_t^k. The total time for Step 3 is bounded by the size of the list, i.e., $O(r_{\infty}(3D\delta)) = O(k + n)$.

The algorithm uses an amount of space that is bounded by $O(n + r_{\infty}(3D\delta)) = O(n + k)$. $lacksquare$

This completes the description of the algorithm and its analysis. Combining Theorem 1 and Lemma 7, we get the main result of this paper:

Theorem 2 Let S be a set of n points in D-space and let $1 \leq k \leq \binom{n}{2}$. We can find the k closest pairs (w.r.t. the L_t-metric) in the set S in $O(n \log n + k)$ time, using $O(n + k)$ space, which is optimal.

4 Concluding remarks

We have given an optimal algorithm for the k closest pairs problem. As mentioned already, the constants that appear are rather high. They are valid, however, for any $1 \leq t \leq \infty$. By a more careful analysis, the constants can be improved. In particular, by taking a specific t, e.g. $t = 2$, in which case we consider the Euclidean metric, it is easy to improve them. They remain, however, of the form $c^{D \log D}$.

There remain some interesting problems that need more attention. Our algorithm approximates the L_∞-distance with a certain rank r. Can it be modified to find the exact L_∞-distance with rank r? Note that Salowe [7] solves this problem in $O(n(\log n)^D)$ time. Another problem is to find the L_t-distance with rank r for other values of t.

The algorithm presented here finds the \(k \) smallest distances, but it does not output this sequence in sorted order. Of course, we can solve the "sorted \(k \) closest pairs problem" in \(O((n+k)\log n) \) time. It is an open problem if the time complexity can be improved to \(O(n\log n + k) \). In particular, it is an open problem if we can sort all \(\binom{n}{2} \) distances in \(O(n^2) \) time.

Finally, can we use the techniques of this paper to improve the time bounds in [5] for the \(k \) furthest pairs problem, or for the \(k \) closest/furthest bichromatic pairs problem? (Note that the results in [5] only hold for the planar case.)

References

