
Randomized Data Structures for the Dynamic Closest�Pair Problem�

Mordecai Goliny Rajeev Ramanz Christian Schwarzx Michiel Smid�

Abstract

We describe a new randomized data structure� the sparse partition� for solving the dynamic closest�
pair problem� Using this data structure the closest pair of a set of n points in D�dimensional space� for
any �xed D� can be found in constant time� If a frame containing all the points is known in advance�
and if the �oor function is available at unit�cost� then the data structure supports insertions into and
deletions from the set in expected O�log n� time and requires expected O�n� space� Here� it is assumed
that the updates are chosen by an adversary who does not know the random choices made by the data
structure� This method is more e	cient than any deterministic algorithm for solving the problem in
dimension D �
� The data structure can be modi�ed to run in O�log� n� expected time per update
in the algebraic computation tree model of computation� Even this version is more e	cient than the
currently best known deterministic algorithm for D � ��

� Introduction

We consider the dynamic closest�pair problem� We are given a set S of n points in D�dimensional space �we
assume D is an arbitrary constant� and want to keep track of the closest pair of points in S as S is being
modi�ed by insertions and deletions� Distances are measured in the Lt�metric� where 	 � t � ��

In the Lt�metric� the distance dt�p� q� between two points p
 �p���� � � � � p�D�� and q
 �q���� � � � � q�D�� in
D�dimensional space is de�ned by

dt�p� q� �

�
kX
i��

jp�i� � q�i�jt
���t

�

if 	 � t ��� and for t
 �� it is de�ned by

d��p� q� �
 max
��i�D

jp�i� � q�i�j�

Throughout this paper� we �x t and measure all distances in the Lt�metric� We write d�p� q� for dt�p� q��
The precursor to this problem is the classical closest�pair problem which is to compute the closest pair of

points in a static set S� jSj
 n� Shamos and Hoey �SH�
� and Bentley and Shamos �BS��� gave O�n logn�
time algorithms for solving the closest�pair problem in the plane and in arbitrary but �xed dimension�
respectively� This running time is optimal in the algebraic computation tree model of computation �Ben���� If
we allow randomization as well as the use of the �non�algebraic� �oor function� we �nd algorithms with better
�expected� running times for the closest�pair problem� Rabin� in his seminal paper �Rab��� on randomized
algorithms� gave an O�n� expected time algorithm for this problem� Since then� simpler methods with

�This research was supported by the European Community� Esprit Basic Research Action Number ���� �ALCOM II�� A
preliminary version appears in the Proceedings of the Fourth Annual ACM	SIAM Symposium on Discrete Algorithms �SODA��
�

�� The work was partly done while the �rst author was employed at INRIA Rocquencourt� France� and visiting Max	Planck	
Institut f
ur Informatik� Germany� and the second and the third author were employed at Max	Planck	Institut f
ur Informatik�

yHongkong UST� Clear Water Bay� Kowloon� Hongkong� email� golin�cs�ust�hk� This author was also supported by NSF
grant CCR	�
������

zUMIACS� University of Maryland� College Park� MD ������ USA� email� raman�umiacs�umd�edu�
xInternational Computer Science Institute� Berkeley� CA
����� USA� email� schwarz�icsi�berkeley�edu�
�Max	Planck	Institut f
ur Informatik� D	����� Saarbr
ucken� Germany� email� michiel�mpi�sb�mpg�de�

	

the same running time have been discovered� Besides the randomized incremental algorithm presented in
�GRSS���� there is a di�erent approach� described by Khuller and Matias �KM�	�� which uses a randomized
��ltering� procedure� This method is at the heart of our dynamic algorithm�

There has been a lot of work on maintaining the closest pair of a dynamically changing set of points�
When restricted to the case where only insertions of points are allowed �sometimes known as the on�line
closest�pair problem� a series of papers culminated in an optimal data structure due to Schwarz� Smid and
Snoeyink �SSS���� Their data structure required O�n� space and supported insertions in O�logn� time�

The existing results are not as satisfactory when deletions must be performed� If only deletions are
to be performed� Supowit �Sup��� gave a data structure with O�logD n� amortized update time that uses
O�n logD�� n� space� When both insertions and deletions are allowed� Smid �Smi��� described a data struc�
ture that uses O�n logD n� space and runs in O�logD n log logn� amortized time per update� Another data
structure due to Smid �Smi�	�� with improvements stemming from results of Salowe �Sal��� and Dickerson
and Drysdale �DD�	�� uses O�n� space and requires O�

p
n log n� time for updates� Very recently� after a pre�

liminary version of this paper was presented� Kapoor and Smid �KS��� devised a deterministic data structure
of linear size that achieves polylogarithmic amortized update time� namely O�logD�� n log log n� for D � �
and O�log� n��log log n��� for the planar case D
 �� where � is an arbitrary non�negative integer constant�

In this paper we discuss a randomized data structure� the sparse partition� which solves the dynamic
closest pair problem in arbitrary �xed dimension using O�logn� expected time per update� The data structure
needs O�n� expected space� We assume that the updates are generated by an adversary who can insert or
delete arbitrary points but has no knowledge of the random choices that the algorithm makes� It is also
assumed that the adversary has no clock to time the algorithm� �This means that� while the adversary knows
the algorithm and can choose the input arbitrarily� it cannot derive any information from the performance
of the algorithm� See �LN��� for a discussion of clocked adversaries�� We can� however� allow a clocked
adversary at the cost of making the updating time bound amortized�

The O�log n� time bound is obtained assuming the use of the �oor function and assuming that there
is some prior bound on the size of the points �in order to make possible the use of hashing�� If we want
to dispense with hashing� we can use ordinary balanced search trees instead� and the update algorithms
run in O�log� n� expected time� If we remove both assumptions� we can modify the algorithm to obtain an
O�log� n� expected update time in the algebraic computation tree model� Even this version of the randomized
algorithm is more e�cient than the currently best known deterministic algorithms for solving the problem for
D � �� and almost matches the running time of the recently developed method of Kapoor and Smid �KS���
in the planar case D
 �� and indeed our algorithm is the �rst to obtain polylogarithmic update time using
linear space for the dynamic closest�pair problem�

The sparse partition is a random structure� given a set S of points� the structure that stores S will be
a randomly chosen one from many possible structures� In one version of the data structure� the probability
that a particular structure is the one that is being used will depend only on the set S that is being stored
and not upon the sequence of insertions and deletions that were used to construct S� In this sense� the data
structure is reminiscent of skip�lists or randomized search trees�

The paper is organized as follows� In Section �� we de�ne the sparse partition� give a static algorithm to
build it� and show how to augment this data structure to �nd the closest pair in constant time�

Then� in Section �� we show how to implement the sparse partition using a grid data structure� In
Section �� we give the update algorithms and their analysis� In Section
� we show how to modify the grid
data structure in order to obtain an algorithm that �ts in the algebraic computation tree model�

In Section �� we give extensions of the method� We show how to modify the data structure such that
we achieve O�n� worst case space rather that only expected� at the cost of making the update time bound
amortized� We also give high probability bounds for the running time of a sequence of update operations�

In Section �� we give some concluding remarks�

� Sparse partitions

We start with some notation� Let S be a set of n points in D�dimensional space� Let 	 � t � �� We denote
the Lt�distance between the points p and q by d�p� q�� The minimal distance of S is ��S� �
 minfd�p� q� �
p� q � S� p �
 qg� A closest pair in S is a pair p� q � S such that d�p� q�
 ��S�� The distance of p to its

�

nearest neighbor in S is denoted by d�p� S� �
 minfd�p� q� � q � S n fpgg� Note that� for convenience� we
often speak of the closest pair although there might be more than one� This causes no problems since� as
we shall see� our data structure not only allows to �nd a single closest pair� but also to report all pairs of
points attaining the minimal distance in time proportional to their number�

As mentioned earlier� the sparse partition is based on the �ltering algorithm in �KM�	�� In this section�
we present an abstract framework that captures all the properties that were needed for that algorithm� along
with some modi�cations that we use for our dynamic data structure� It is convenient to prove a number of
results in this framework�

De�nition � Let S be a set of points in D�space� A sparse partition for the set S is a sequence of
�tuples
�Si� S�i� pi� qi� �i�� 	 � i � L� where L is a positive integer� such that�

�a� For i
 	� � � � � L�

�a�	� Si �
 ��
�a��� S�i � Si � S�

�a��� pi� qi � Si and pi �
 qi if jSij � 	�

�a��� �i
 d�pi� qi�
 d�pi� Si��

�b� For all 	 � i � L� and for all p � Si�

�b�	� If d�p� Si� � �i�� then p � S�i�

�b��� If d�p� Si� � �i��D then p �� S�i�

�c� For all 	 � i � L� and for all p � Si�

If p � Si��� then there is a point q � Si such that d�p� q� � �i�� and q � Si���

�d� S�
 S and for 	 � i � L� 	� Si��
 Si n S�i�
For each i� we call the points of S�i the sparse points in Si� and the set S�i the sparse set� Each
�tuple itself
is also called a level of the partition�

Conditions �b�	� and �b��� govern the decision on whether a point of Si is in the sparse set S�i or not� The
threshold values given in �b�	� and �b��� depend on the nearest neighbor distance d�pi� Si� of the point pi � Si�
which will be called the pivot in the following� For a point p � Si such that d�pi� Si���D � d�p� Si� � d�pi� Si��
the decision may be arbitrary as long as the results of this section are concerned and will be made precise
by the implementation later�

De�nition � Let �Si� S�i� pi� qi� �i�� 	 � i � L� be a sparse partition for the set S� A
�tuple �Si� S�i� pi� qi� �i�
is called uniform if� for all p � Si� Pr�p
 pi�
 	�jSij� The set S is said to be uniformly stored by the sparse
partition if all its
�tuples are uniform�

Lemma � Any sparse partition for S satis�es the following properties�

�	� The sets S�i� for 	 � i � L� are non�empty and pairwise disjoint� For any 	 � i � L� Si

S
j�i S

�
j � In

particular� S�� 	 S�� 	 � � �	 S�L is a partition of S�

��� For any 	 � i � L� �i�� � �i��� Moreover� �L��D � ��S� � �L�

Proof� For �	�� we only need to prove that S�i �
 � for all i� �The other claims are clear�� Since pi � Si and
d�pi� Si�
 �i � �i��� it follows from Condition �b�	� in De�nition 	 that pi � S�i�

To prove the �rst part of ���� let 	 � i � L� Since pi�� � Si��� we know from Condition �c� in De�nition 	
that there is a point q � Si such that d�pi��� q� � �i�� and q � Si��� Therefore�

�i��
 d�pi��� Si��� � d�pi��� q� � �i���

To prove the second part of ���� let p� q be a closest pair in S� Let i and j be such that p � S�i and q � S�j�
Assume w�l�o�g� that i � j� Then it follows from �	� that p and q are both contained in Si� It is clear that

�

��S�
 d�p� q�
 d�p� Si�� Condition �b��� in De�nition 	 implies that d�p� Si� � �i��D� and from the �rst
part of ���� we conclude that ��S� � di��D � �L��D� The inequality ��S� � �L obviously holds� because �L
is a distance between two points of S�

We now give an algorithm that� given an input set S� stores it uniformly as a sparse partition�

Algorithm Sparse Partition�S��

�i� S� �
 S� i �
 	�

�ii� Choose a random point pi � Si� Calculate �i
 d�pi� Si�� Let qi � Si be such that d�pi� qi�
 �i�

�iii� Choose S�i to satisfy �b�	�� �b��� and �c� in De�nition 	�

�iv� If Si
 S�i stop� otherwise set Si�� �
 Si n S�i� set i �
 i� 	 and goto �ii��

Lemma � Let S be a set of n points in IRD� Run Sparse Partition�S� and let �Si� S
�
i� pi� qi� �i�� 	 � i � L�

be the ��tuples constructed by the algorithm� Then this set of ��tuples is a uniform sparse partition for S�
and we have E�

PL
i�� jSij� � �n�

Proof� The output generated by algorithm Sparse Partition�S� obviously ful�lls the requirements of Def�
initions 	 and �� To prove the bound on the size of the structure� we �rst note that L � n by Lemma 	�
De�ne SL�� �
 SL�� �
 � � � �
 Sn �
 �� Let si �
 E�jSij� for 	 � i � n� We will show that si�� � si��� from

which it follows that si � n��i��� By the linearity of expectation� we get E�
PL

i�� jSij� �
Pn

i�� n��
i�� � �n�

It remains to prove that si�� � si��� If si
 �� then si��
 � and the claim holds� So assume si � �� We
consider the conditional expectation E�jSi��j

�� jSij
 l�� Let r � Si such that d�r� Si� � �i� Then� Condition
�b�	� of De�nition 	 implies that r � S�i� i�e�� r �� Si���

Take the points in Si and label them r�� r�� � � � � rl such that d�r�� Si� � d�r�� Si� � � � � � d�rl� Si�� The
point pi is chosen randomly from the set Si� so it can be any of the rj�s with equal probability� Thus
E�jSi��j

�� jSij
 l� � l��� from which it follows that si��

P

l E�jSi��j
�� jSij
 l�
 Pr�jSij
 l� � si���

Let us remark here that the algorithm Sparse Partition is essentially the randomized static closest pair
algorithm in �KM�	�� That algorithm was only concerned with �nding �L since with it� one can �nd the closest
pair in O�n� time �see �KM�	� for details�� Thus� the above algorithm was used as a �ltering procedure� it
did not have to save the sets Si and S�i at all the levels� Our dynamic algorithm will use this information�
Particularly� we will now show how the sparse sets S�i� i�e� the points that were thrown away in each step
of the iteration in �KM�	�� are related to the minimal distance ��S�� This relation will help us to use the
sparse partition to �nd ��S� quickly� and will be the core of our dynamic data structure for maintaining the
closest pair�

De�nition � Let S��� S
�
�� � � � � S

�
L be the sparse sets of a sparse partition for S� For any p � IRD and 	 � i � L�

de�ne the restricted distance
d�i �p� �
 min

�
�i� d

�
p�

�
��j�i

S�j
��
�

i�e�� the smaller of �i and the minimal distance between p and all points in S�� 	 S�� 	 � � �	 S�i�

For convenience� we de�ne� for all i � �� S�i �
 �� �i �
�� and d�i �p� �
 � for any point p�

Lemma � Let p � S and let i be the index such that p � S�i�

�	� d�i �p� � �i��D�

��� If q � S�j � where 	 � j � i�D� then d�p� q� � �i�

��� d�i �p�
 min
�
�i� d�p� S

�
i�D 	 S�i�D�� 	 � � �	 S�i�

�
�

�

Proof� �	� Let 	 � j � i and let q � S�j � Since p � Sj � it follows from Condition �b��� of De�nition 	 that
d�p� q� � d�q� Sj� � �j��D � �i��D�

��� Let q � S�j � where 	 � j � i�D� As in �	�� we get d�p� q� � �j��D� Then� Lemma 	 implies that

d�p� q� �
�j
�D

� �i�D��
�D

� �D���i
�D

� �i�

��� follows immediately from ����

Lemma �

��S�
 min
��i�L

min
p�S�

i

d�i �p�
 min
L�D�i�L

min
p�S�

i

d�i �p��

Proof� The value d�i �p� is always the distance between two points in S� Therefore� ��S� �
min��i�Lminp�S�

i
d�i �p�� Let p� q be a closest pair with p � S�i and q � S�j � Assume w�l�o�g� that j � i�

Clearly� d�p� q�
 d�p�
S
��i S

�
�� � d�i �p�� This implies that ��S� � min��i�Lminp�S�

i
d�i �p�� proving the �rst

equality�
It remains to prove that we can restrict the value of i to L � D�L � D � 	� � � � � L� We know from

Lemma � �	� that minp�S�

i
d�i �p� � �i��D� Moreover� we know from Lemma 	 ���� that for i � L � D�

�i��D � �L�D����D � ��D����D�
 �L � �L � ��S��

Now we are ready to describe how to �nd the closest pair using the sparse partition� According to the
characterization of ��S� in Lemma �� we will augment the sparse partition with a data structure that stores�
for each level i � f	� � � � � Lg� the set of restricted distances fd�i �p� � p � S�ig�

The data structure that we use for this purpose is called heap� Heaps are described� for example� in
�CLR��� Chapter ��� A heap is a data structure that stores a set of items� ordered by a real�valued key� The
items are stored in a binary tree that satis�es the following partial ordering� the keys of the children of a
node are not smaller than the key of the node itself� It follows that the minimum key is stored at the root of
the tree� This heap variant is called min�heap� The operations that can be carried out on a heap� together
with their running times� are summarized in the following lemma�

Lemma � Let I be a set of n items� Then a heap H storing these n items can be built in linear time� and
the following operations are supported in O�logn� time�

� insert�item� and delete�item��

� change key�item� key�� changing the key of the item item in H to the value key�

For the operations dealing with an item in the heap H� namely delete and change key� access to this item is
assumed to be available by a pointer�

Operation �nd min�H�� returning an item with minimum key in H� can be performed in O�	� time� and
�nd all min�H�� which returns all A items with minimum key in H� can be performed in time O�A��

Proof� For building of the heap and the operations insert and delete� see �CLR���� Change key can be
implemented by insert and delete� Operation �nd min�H� simply returns the item stored at the root of the
tree that represents the heap H� as mentioned above�

Moreover� we can �nd all items whose key is equal to the minimum key in time proportional to their
number� by performing a depth �rst search in the binary tree� stopping when a node containing a key that
is larger than the minimum key is encountered� Thus� the total number of nodes inspected is at most twice
the number of items reported�

So� for each i � f	� � � � � Lg� we maintain a min�heap Hi that stores items having the restricted distances
fd�i �p� � p � S�ig as their keys� How we compute these values depends on the way we implement the sparse
partition� which will be described in the next sections� There� we also describe the exact contents of our
heap items�

Lemma 	 Let S��� S
�
�� � � � � S

�
L be the sparse sets of a sparse partition for S� and for each 	 � i � L� let the

set fd�i �p� � p � S�ig of restricted distances be stored in a min�heap Hi� Then the minimum distance ��S�
can be found in constant time� Moreover� all point pairs attaining this minimum distance can be reported in
time proportional to their number�

Proof� For i � �� de�ne Hi as the empty heap� Lemma � characterizes ��S� as a minimum of cer�
tain restricted distances� In particular� Lemma � says that ��S� can only be stored in one of the heaps
HL�D�HL�D��� � � � �HL� To �nd ��S� it is therefore enough to take the minima of these D � 	 heaps and
then to take the minimum of these D�	 values� Moreover� we can report all closest pairs in time proportional
to their number� as follows� in all of the at most D � 	 heaps whose minimum key is ��S�� we report all
items whose key is equal to ��S�� From the discussion of heaps above� this can be done in time proportional
to the number of items that are reported�

We close this section with an abstract description of our data structure�

The closest
pair data structure for set S�

� A data structure storing S uniformly as a sparse partition according to De�nitions 	 and ��

� The heaps H�� H�� � � � � HL� where Hi stores the set of restricted distances d�i �p�� cf� De�nition �� for
all points p in the sparse set S�i�

In the rest of the paper�we discuss two di�erent ways to implement the data structure� First� we describe
a grid based implementation� Since this data structure is the most intuitive one� we describe the update
algorithms for this structure� Then� we de�ne the other variant of the data structure� Concerning implemen�
tation details and update algorithms� we then only mention the changes that have to be made in comparison
to the grid based implementation in order to establish the results�

� Implementation of the sparse partition

Let S be a set of n points in D�space� To give a concrete implementation of a sparse partition for S� we only
have to de�ne the set S�i� i�e� the subset of sparse points in Si� for each i�

��� The notion of neighborhood in grids

We start with some de�nitions� Let � � �� We use G� to denote the grid with mesh size � and a lattice point
at ��� �� � � � � ��� Hypercubes of the grid are called boxes� More precisely� a box has the form

�i�� � �i� � 	���� �i�� � �i� � 	���� � � �� �ik� � �ik � 	����

for integers i�� � � � � ik� We call �i�� � � � � ik� the index of the box� Note that with this de�nition of a box as
the product of half�open intervals� every point in IRD is contained in exactly one grid box�

The neighborhood of a box b in the grid G�� denoted by N �b�� consists of b itself plus the collection of
�D � 	 boxes bordering on it�

Let p be any point in IRD and let b��p� denote the box of G� that contains p� The neighborhood of p in
G�� denoted by N��p�� is de�ned as the neighborhood of b��p�� i�e� N��p� �
 N �b��p���

Now we consider the neighborhood of a point p � IRD restricted to a set of points� Let G� be a grid� Let
V be a set of points in IRD� The neighborhood of p in G� relative to V � is de�ned as

N��p� V � �
 N��p�
 �V n fpg��
We say that p is sparse in G� relative to V if N��p� V �
 �� i�e� if� besides p� there are no points of V in
N��p�� In cases that V and � are understood from the context we will simply say that p is sparse�

Using these notations� we immediately get

Fact � Let V be a set of points in IRD� and let p and q be arbitrary points in IRD�

�

�N�	� If N��p� V �
 �� then d�p� V � � ��

�N��� If q � N��p� V �� then d�p� q� � �D�

�N��� q � N��p��� p � N��q��

We are now in a position to de�ne the sets S�i precisely� For i � 	� let

S�i �
 fp � Si � p sparse in G�i��D relative to Sig� �	�

For convenience� let us rewrite the abstract de�nition of the sparse partition given in De�nition 	� We
simply replace the conditions that concern S�i in De�nition 	� namely �b�	�� �b��� and �c�� with the de�nition
of Equation �	�� With the new de�nition� we will be able to specify and analyze our update algorithms in
Section ��

De�nition � A sparse partition for the set S is a sequence of
�tuples �Si� S�i� pi� qi� �i�� 	 � i � L� where L
is a positive integer� such that�

	� For i
 	� � � � � L�

�a� � �
 Si � S�

�b� pi� qi � Si and pi �
 qi if jSij � 	�

�c� �i
 d�pi� qi�
 d�pi� Si��

�d� S�i
 fp � Si � N�i��D�p� Si�
 �g�
�� S�
 S and for 	 � i � L� 	� Si��
 Si n S�i�

Lemma � Let �Si� S�i� pi� qi� �i�� 	 � i � L� be a set of ��tuples satisfying De�nition �� Then this set of
��tuples also satis�es De�nition 	�

Proof� We only have to prove Conditions �b� and �c� of De�nition 	� Let 	 � i � L and let p � Si�
First assume that p �� S�i� Then� there is a point q � Si that is in the neighborhood of p� By �N����
d�p� Si� � d�p� q� � �D
 �i��D
 �i��� This proves Condition �b�	�� To prove �b���� assume that p � S�i�
Then� the neighborhood of p relative to Si is empty� Hence� by �N�	�� d�p� Si� � �i��D�

To prove �c�� let 	 � i � L and let p � Si��
 Si n S�i� It follows that there is a point q � Si such that
q � N�i��D�p�� By the symmetry property �N���� this is equivalent to p � N�i��D�q� and therefore q � Si���
From Condition �b�	�� we also have d�p� q� � �i���

We now come to some additional properties of the sparse partition as de�ned in De�nition � that will
be used for the dynamic maintenance of the data structure� For this purpose� we give some additional facts
about neighborhoods�

We start with some notation� Let p be a point in IRD� We number the �D boxes in the neighborhood of
p as follows� The number of a box is a D�tuple over f�	� �� 	g� The j�th component of the D�tuple is �	�
�� or 	� depending on whether the j�th coordinate of the box �i�e� its lower left coordinate� is smaller than�
equal to or greater than the corresponding coordinate of b��p�� We call this D�tuple the signature of a box�
We denote by b�� �p� the box with signature � in N��p��

We are now going to de�ne the notion of partial neighborhood of a point p� See Figure 	� For any signature
�� we denote by N�

� �p� the part of p�s neighborhood that is in the neighborhood of b�� �p�� Note that N�
� �p�

contains all the boxes b�
�

� �p� of N��p� whose signature �� di�ers from � by at most 	 for each coordinate�

these are exactly the boxes bordering on b�� �p� including b�� �p� itself� Particularly� N	�����	
� �p�
 N��p�� i�e�

the partial neighborhood with signature �� � � � � � is the whole neighborhood of p�

The following properties relate the neighborhoods of di�erent grids�

Lemma
 Let � � �� � ����� be real numbers and let p � IRD� Then

�N��� N�� �p� � N��� �p��

�

�� 	 	� 	

	� ��	� �

�	��	 	��	���	

�� �

�	� 	

p

b���� �p�

N���
� �p�

Figure 	� The neighborhood of a point p in G�� The dark shaded area denotes the box b���� �p� in the upper

right corner of p�s neighborhood� This box also belongs to N���
� �p�� the partial neighborhood of p with

signature 	� 	� The light shaded area shows the other three boxes of N���
� �p��

�N�
� For any signature � � f�	� �� 	gD� b����p� � N�
��� �p��

Proof� For any grid size � and 	 � j � D� denote by hL�j� � hl�j� � hr�j� � hR�j� the j�th coordinates of the four
hyperplanes bounding the grid boxes of p�s neighborhood in the j�direction� ordered from �left� to �right��
See Figure ��

Let q
 �q���� q���� � � � � q�D�� � IRD� and let �
 �	�� � � � � 	D� � f�	� �� 	gD be a signature� Then
q � b�� �p� in G� if and only if� for all 	 � j � D�

hl�j� � q�j��hr�j� if 	j
 �

hr�j� � q�j��hR�j� if 	j
 	

hL�j� � q�j��hl�j� if 	j
 �	

Also� q � N�
� �p� if and only if� for all 	 � j � D�

hL�j� � q�j��hR�j� if 	j
 �

hl�j� � q�j��hR�j� if 	j
 	

hL�j� � q�j��hr�j� if 	j
 �	

Figure � shows the neighborhoods of p in the two grids G�� and G��� �
Now observe that� since �� � ������

hL�j�� � hL�j��� ���

hR�j�� � hR�j��� ���

for 	 � j � D�

These facts are equivalent to N���p� � N��� �p�� which is claim �N����

�

���

hL�����

hl�����

hr�����

hR�����

hR����

hr����

hl����

hL����

��

hR����hr����hl����hL����

hR�����hr�����hl�����hL�����

p

b����� �p�

N���
��� �p�

Figure �� The neighborhoods of a point p in grids G�� and G��� where �� � ������

Furthermore� by the de�nition of the hyperplanes w�r�t� p�

hr�j�� � hl�j��� ���

hl�j�� � hr�j��� �
�

for 	 � j � D�

This proves claim �N�
�� b����p� � N�
��� �p��

Notation� Consider a set S that is stored in a set of
�tuples �Si� S�i� pi� qi� �i�� 	 � i � L� according to
De�nition �� Since we will only use grids G�i��D for the data structures that store level i of the partition� we
will use the short notations Gi �
 G�i��D and Ni�p� �
 N�i��D�p� from now on� We use the same convention
for the neighborhood relative to a set�

Corollary � Let p be an arbitrary point of IRD� and let �Si� S
�
i� pi� qi� �i�� 	 � i � L� be a sparse partition�

Then� for any 	 � i � j � L�
Nj�p� � Ni�p��

Proof� Apply �N��� from Lemma � with ���
 �i��D� ��
 �j��D� noting that �� � ����� by Lemma 	�

Particularly� if Ni�p� Si�
 � for a point p � IRD� i�e� if p is sparse in Gi relative to Si� then� since Si�� � Si�
Corollary 	 implies Ni���p� Si���
 �� which means that p is also sparse in Gi�� relative to Si��� This
property will be crucial to our update algorithms� The following lemma will also be useful later on�

Lemma �� Let �Si� S�i� pi� qi� �i�� 	 � i � L� be a sparse partition� Then� for any p � S n Si��� 	 � i � L�

Ni�p� S�
 ��

�

Operation Time

V
 b
 � O�	�

report V
 b O�jV
 bj�
q sparse in G� relative to V O�	�

Table 	� V is stored according to G�� b is a box of G�� and q is an arbitrary point�

Proof� We use induction on i� If i
 	� then for any p � S n S�
 S��� N��p� S�
 N��p� S��
 � by
de�nition� Now let i � 	 and assume that� for any p � S n Si� we have Ni���p� S�
 ��

	� If p � S nSi� then Ni�p� S� � Ni���p� S�
 � by Corollary 	 and our induction hypothesis� respectively�

�� If p � S�i� then Ni�p� Si�
 � by de�nition� It remains to show that Ni�p� S n Si�
 �� This is true
because if there were a point q � S nSi such that q � Ni�p�� then by the symmetry property �N���� we
had p � Ni�q�� contradicting Ni�q� S�
 �� which was shown in item 	 above�

We have thus shown that Ni�p� S�
 � for any p � S n Si��
 �S n Si� 	 S�i�

��� Storing a point set according to a grid

Having de�ned the grid based implementation by specifying the sets S�i� we can now explain how to store
the point sets involved in the sparse partition of our input set S� Let d be a grid size and V � S a subset
of S� Then we use perfect hashing �see �DM��� FKS���� to store the points of V �

Particularly� the dynamic hashing scheme of �DM��� allows to store a set of integer�valued keys� for which
a bound on their size is known in advance� in linear space such that the information stored at a given key
can be accessed in O�	� worst case time� and a key can be inserted or deleted in O�	� expected time� �The
time bound is even attained with high probability� but we do not need this in our application��

For each point� we take as a key the index of the box in G� that contains it� We store the keys of the
non�empty boxes in a hash table� With each box b� we store a list containing the points in V
b� in arbitrary
order� We call this storing V according to G�� and the data structure itself is called the box dictionary� Note
that the size of the box indices must be bounded to make possible the use of hashing� As mentioned earlier�
we assume the prior knowledge of a frame containing all the points for this version of the algorithm� This
bound� together with a given �� gives a bound on the size of the box indices before we build a data structure
for G��

If V is stored according to G�� then we can answer the question
are any points of V in box b�� in O�	�
worst case time� Moreover� if the answer is yes� we can report all points in V
 b in time proportional to
their number� By checking all boxes in the neighborhood of an arbitrary point q� we can check in O�	� time
if q is sparse in the grid G� relative to V � Therefore� by doing this for each point in V we can� in linear time�
�nd the subset V � � V of sparse points in V�

Table 	 summarizes the basic operations on a �not necessarily sparse� point set V stored according to a
grid G��

��� The complete data structure

Recall that� when discussing a sparse partition� we use Gi as a short form for the grid of mesh size �i��D�
Our data structure now consists of the following�

For each 	 � i � L�

� the pivot pi � Si� its nearest neighbor qi in Si and �i
 d�pi� qi��

� Si stored according to Gi�

	�

� S�i stored according to Gi�
� the heap Hi�

Note that this means that Si and S�i are kept in two separate grid data structures de�ned on Gi� We now
add some more details to the description� Let b be a box of Gi that is non�empty w�r�t� to Si or S�i� The list
of points in Si
 b will be called L�b�� and the list of points in S�i
 b will be called L��b�� Each element of
L�b� is a record containing the following information�

p � L�b�� record point� p upper��p in Si�� lower � �p in Si��

Here� �� p in V � means a pointer to the representation of point p in the data structure storing V � The
pointers are nil if the corresponding representation of the point does not exist�

Each element of L��b� is a record with the following information�

p � L��b�� record point� p it � � it�p� in Hi left � �p in Si

Here� �� it�p� in Hi� means a pointer to the heap item it�p� with key d�i �p�� see below� Note that each list
L��b� actually contains at most one point� by the sparseness property of the set S�i� We use this general
data structure in order to have a simple description and because� during the update operations� we will face
intermediate stages where we temporarily insert points into the data structure of a sparse set that make the
set non�sparse�

Now let us turn to the heaps� The heaps contain items� ordered by a real�valued key� For each key� there
is some associated information� The key of an item in heap Hi is the value d�i �p� for some p � S�i� Let q be
such that d�i �p�
 d�p� q� � �i� and let l be such that � � l � D and q � S�i�l� Then the heap item it�p� of
Hi contains the following information�

item it�p� � Hi � record key� d�i �p� point� �p in S�i point�� �q in S�i�l

If the point q does not exist� i�e� if d�i �p�
 �i� then the pointer point� is nil�

Remark� The pointers described above have the following reason� the elements in the data structures for
the non�sparse sets Si are linked to facilitate the deletion of a point from the data structure� The other
pointers are connecting the heaps with the data structures that store the sparse partition� They will be
needed when we maintain the heaps during update operations�

We can now give the algorithm to build the complete data structure� We �ll in the implementation details
of the algorithm Sparse Partition given in Section �� and we also construct the heaps�

Algorithm Build�S�

	� S� �
 S� i �
 	�

�� Choose a random point pi � Si� Calculate �i �
 d�pi� Si�� Let qi � Si be such that d�pi� qi�
 �i�

�� Store Si according to Gi�
�� Compute S�i �
 fp � Si � p sparse in Gi relative to Sig�

� Store S�i according to Gi�
�� Compute the restricted distances fd�i �p� � p � S�ig and� using a linear time algorithm� construct a heap

Hi containing these values with the minimal value at the top�

�� If Si
 S�i stop� otherwise set Si�� �
 Si n S�i� set i �
 i � 	 and goto ��

		

For the sake of simplicity� we did not mention in this algorithm how to establish the above described links
between the various parts of the data structure� The links between heap items and points in a list L��b�� i�e�
points stored in a sparse set S�i� can be installed during the construction of the heaps� The pointers between
representations of a point p in subsequent non�sparse sets Si� Si�� can be easily established in step �� when
Si�� is obtained by stripping o� the sparse set S�i from Si�

Lemma �� Let �Si� S�i� pi� qi� �i�� 	 � i � L� be a sparse partition� and let p � S�i for some i � f	� � � � � Lg� If
we have the data structures storing the sets S�j according to Gj available for 	 � j � i� then the value d�i �p�
can be computed in O�	� time�

Proof� We know from Lemma � ��� that if d�i �p�
 d�p� q� with d�p� q� � �i then q must be in one of the sets
S�i� S

�
i��� � � � � S

�
i�D� Furthermore� there are only a constant number of boxes in the grids Gj� i �D � j � i�

where the point q can possibly appear in� since the boxes in the grids Gj have side length �j��D � �i��D�
these are the grid boxes that are within �D boxes of the box that p is located in� Finally� because of the
sparseness of the sets S�j � there can be at most one point found in each grid box� Therefore� using the hash
tables storing S�j � i �D � j � i� we can �nd all points contained in these boxes and compute d�i �p� in O�	�
time�

Lemma �� Given a set S of n points in D�space� a sparse partition for S according to De�nition � can be
built in O�n� expected time and has O�n� expected size�

Proof� Consider the i�th iteration of algorithm Build �S�� Step � can be performed in O�jSij� deterministic
time by calculating the distance between pi and all other points in Si� Steps � and
 build the grid data
structures for Si and S�i and take O�jSij� and O�jS�ij� expected time� respectively� By the discussion at the
end of Subsection ���� step �� which computes S�i from Si� can be performed in O�jSij� deterministic time�
This implicitly includes the work of step ��

Since we have the data structures for S�j � 	 � j � i� available in the i�th iteration of the algorithm� we
can apply Lemma 		 to conclude that computing the restricted distances fd�i �p� � p � S�ig in step � takes
O�jS�ij� worst case time� The heap Hi can be constructed within the same time bound�

Therefore the expected running time of the algorithm is bounded by O�E�
P

i�jSij��� which is also the
amount of space used� Lemma � shows that this quantity is O�n��

Recall that given this data structure� we can �nd the closest pair in S in O�	� time by Lemma ��

� Dynamic maintenance of the data structure

In this section� we show how to maintain the sparse partition when the input set S is modi�ed by insertions
and deletions of points� The algorithms for insertions and deletions turn out to be very similar� We will
demonstrate the ideas that are common to both update operations when we treat insertions� Next� we give
the deletion algorithm�

��� The insertion algorithm

We �rst give an intuitive description of the insertion algorithm� Let S be the current set of points� and
assume we want to insert the point q� Assume that S is uniformly stored in the sparse partition� We want
to store S 	fqg uniformly in a sparse partition� By assumption� p� �the pivot of S�� is a random element of
S�
 S� Now� to generate a pivot for S� 	fqg it su�ces to retain p� as pivot with probability jS�j��jS�j�	�
and to choose q instead with probability 	��jS�j � 	�� If q is chosen� then we discard everything and run
Build�S� 	 fqg�� terminating the procedure� This happens� however� only with probability 	��jS�j� 	� and
so the expected cost is O�	��

Assume now that p� remains unchanged as the pivot� We now check to see if q��the nearest neighbor of
p��and� hence� �� have to be changed� First note that q can be the nearest neighbor of at most �D�	 � �D

points in S�� �See �DE����� This means that �� changes only if p� is one of these points� Since we assumed
that the adversary cannot see the coin �ips of the algorithm� and since p� is chosen uniformly from S�� it
follows that the probability of �� changing is at most �D�jS�j� If �� changes� we run Build�S� 	 fqg� and

	�

terminate the procedure� The expected cost of this is O�	�� The previous two steps are called �check for
rebuild� in the later part of this section�

Assume now that p�� q� and �� remain unchanged� Let us denote S	fqg by eS� We now need to determine

the set eS�� which contains the non�sparse points in eS�
 eS� If q is sparse in S�� it will go into eS��� and nothing

further needs to be done� that is� the tuples �Si� S
�
i� pi� qi� �i� and �eSi� eS�i� epi� eqi� e�i� are identical for � � i � L�

So� in this case� we can terminate the procedure� Otherwise� eS� contains q and possibly some points from
S��� The set of points which are deleted from S�� due to the insertion of q is called down�� This completes
the construction of the �rst
�tuple� Now we need to insert q and down� into S�� i�e�� we have to construct
the
�tuple for eS��

Let us now describe the algorithm to construct the new
�tuple for eSi� i � 	� In this process� we will
extend the notion of the set down� from the �rst level to the other levels of the sparse partition�

We de�ne down	 �
 �� Let i � 	� The following invariant holds if the algorithm attempts to construct
the
�tuple for eSi without having made a rebuilding yet�

Invariant INS�i� �

�a� For 	 � j � i�

�a�	� q � eSj and the
�tuple �eSj � eS�j� epj� eqj� e�j�� satis�es De�nitions � �sparse partition� and � �uniform�

ness�� where epj
 pj� eqj
 qj� e�j
 �j �

�a��� eSj��
 eSj n eS�j �
�b� The sets downj� � � j � i� have been computed and eSi
 Si 	 down i�� 	 fqg�

Note that at the start of the algorithm� INS�	� holds because down	
 �� We will show later that �D is an
upper bound on the size of the union of all the down sets� In particular� each single down set has size at
most �D�

Now let us construct the
�tuple for eSi� From invariant INS�i� �b�� we have eSi
 Si 	 downi�� 	 fqg�
As discussed above� to construct the �rst
�tuple we had to consider the new point q as new pivot with
probability 	�jS�j� In general� constructing �eSi� eS�i� epi� eqi� e�i� from �Si� S�i� pi� qi� �i� requires that� instead of
one� up to �D �	 points �q as well as the points in down i��� be considered as new pivots� and also increases
the chance of one of these points being closer to the old pivot than the pivot�s previous nearest neighbor�
but this only increases the probabilities by a constant factor�

If no rebuilding takes place� we determine eS�i� the set of sparse points in eSi� In order to do this� we de�ne
the set down i� In this set� we want to collect the points of S that were already sparse at some level j � i�
but that will not be sparse at level i due to the insertion of q� We do this as follows� Let Di �
 S�i	downi���
Then

down i �
 Ni�q�Di�
 fx � Di � x � Ni�q�g � ���

The set Di is called the �candidate set� for down i� We can compute eS�i as follows� throw out from Di all

elements that belong to downi and add q� if it is sparse in eSi� �We shall prove later that the set eS�i computed

in this way actually is the set of sparse points in eSi��
We have constructed the
�tuple �eSi� eS�i� epi� eqi� e�i� and can now compute eSi��
 eSi n eS�i� the next subset of

our new sparse partition for eS� If q � eS�i then� by the de�nition of the down sets� down i
 � and Si��
 eSi���
This means that the levels i � 	� � � � � L of the sparse partition remain unchanged� and we are �nished with
the construction of the sparse partition for eS� Otherwise� q � eSi��� So� q and the points in down i are not

sparse in eSi and we can add q and downi to Si��� giving the set eSi��� The invariant INS�i� 	� holds� as we
will prove later� We then continue with level i� 	�

After the sparse partition has been updated� it remains to update the heaps� It is clear that the new point
q has to be inserted into the heap structure appropriately� To see what kind of changes will be performed
for the points of S� let us examine the point movements between the di�erent levels of the sparse partition

	�

due to the insertion of q more closely� Let us look at level i� where i � 	� From invariants INS�i� �b�
resp� INS�i � 	� �b�� the points in down i�� resp� downi move at least down to level i resp� level i � 	� The

construction rule for eS�i now implies eS�i n fqg
 �S�i 	 downi��� n downi� Thus� we have the following

Fact �� Let p be a point in S�

�i� p � down i n downi�� �� p � S�i and p �� eS�i�
�ii� p � down i�� n down i �� p �� S�i and p � eS�i�
�iii� p � down i��
 down i �� p �� S�i and p �� eS�i�

That is� the points in �i� start moving at level i� the points in �ii� stop moving at level i� and the points in
�iii� move through level i� For all the points satisfying �i� or �ii�� we have to update the heaps where values
associated with these points disappear �i� or enter �ii��

The complete insertion algorithm is given in Figure �� It remains to describe the procedures that actually
perform the heap updates� Before we do this� however� we will show that steps ��� in lines ������	� of the

algorithm actually produce a sparse partition for the new set eS�
Lemma �� Assume that algorithm Insert�q� has constructed ��tuples �eSj � eS�j� epj� eqj� edj�� 	 � j � i� and a

set eSi� that satisfy INS�i�� Then� if no rebuilding is made� the i�th iteration of the algorithm constructs the

��tuple �eSi� eS�i� epi� eqi� e�i� and the set eSi��� which satisfy INS�i � 	� �a�	���a���� Furthermore� if q �� eS�i� then
INS�i � 	� �b� also holds�

Proof� Let us �rst prove �a�	�� saying that the
�tuple �eSi� eS�i� epi� eqi� e�i� satis�es De�nitions � and �� withepi
 pi� eqi
 qi and e�i
 �i� The
�tuple is certainly uniform� and it retains the pivot as well as the
pivot�s nearest neighbor when the algorithm has passed step � �check for rebuild� of the algorithm without
a rebuilding� cf� the discussion at the beginning of this section�

The fact that the new
�tuple is still uniform holds because we assume that the adversary has no clock�
Note that the uniformness condition Pr�p
 pi�
 	�jSij in De�nition �� concerning the knowledge of the
adversary� means that the adversary must consider each element of Si as possible pivot with equal probability�
If we would allow the adversary to time the algorithm� then she could distinguish the events �rebuilding� and
�no rebuilding� by their di�erent running times� at least as long as the subset Si is large enough� From the
former event� no information can be gained� In the latter case� however� the adversary would know that all
points of eSi that are nearest neighbor of one of the new points at that level� i�e� the points in down i��	fqg�
cannot be the pivot pi� and so the
�tuple is no longer uniform�

Returning to our assumption that the adversary has no clock� it is clear from the above discussion that
in this case� the adversary does not notice and hence� cannot derive any information from the event that the
insertion algorithm did not rebuild�

It remains to show that Ni�p� eSi�
 � �� p � eS�i for any p � eSi� see De�nition �� 	�d�� We haveeSi
 Si�� 	 S�i 	 downi�� 	 fqg from invariant INS�i� �b�� Since Ni�p� eSi� �
 � for p � Si��� it remains to
prove the claim for p � Di
 S�i 	 down i�� and p
 q� Note that� since Di � S n Si��� we have Ni�p� S�
 �
by Lemma 	� and therefore� for any p � Di�

Ni�p� eSi�
 � �� q �� Ni�p�

�� p �� Ni�q� by symmetry �N���

�� p �� down i by de�nition of downi

�� p � eS�i by de�nition of eS�i�
If p
 q� then Ni�p� eSi�
 � �� q � eS�i by lines �	����	���

Next� we show that eSi��
 eSi n eS�i� After line �	��� we have eSi��
 Si�� 	 down i and eS�i
 �S�i 	
down i��� n down i� and at the end of step �� q has been added to exactly one of these sets� Thus eSi�� 	 eS�i

	�

��� Algorithm Insert �q��
��� begin
��� �� initialize � i �
 	� down	 �
 �� h �
�

�� From invariant INS�i� �b�� we know that eSi
 Si 	 down i�� 	 fqg� We want to

determine eS�i� Before that� we check if the data structure has to be rebuilt� ��
�� check for rebuild�

��� �ip an jeSij�sided coin� giving pivot epi of eSi �
��� if epi �� Si then

��� Build�eSi�� h �
 i � 	� goto ��
��� else

��� the old pivot pi of Si is also the pivot for eSi
�
� � �
���� if d�pi� p� � �i for some p � downi�� 	 fqg then

���� Build�eSi�� h �
 i � 	� goto ��
���� else

���� do nothing �� di
 d�pi� Si�
 d�pi� eSi� ��
���� � �

�� Determine eS�i �
���� compute the set downi from its candidate set Di
 S�i 	 downi��� see Eq� ����

���� eS�i �
 Di n downi� eSi�� �
 Si�� 	 downi� �� now eSi��
 �eSi n eS�i� n fqg ��
���� if Ni�q� eSi�
 � then

���� add q to eS�i� goto �� �� q is sparse in eSi� and so eSi��
 Si�� ��
��
� � � �� q is not sparse in eSi ��
���� add q to eSi�� �
���� i �
 i � 	� goto ��

�� Update heaps �

�� Invariant� q �� eS�� for � � i�
Also minfi� hg is h
 i � 	� if a rebuilding was made�
Otherwise� h
� and so minfi� hg
 i� ��

���� for � �
 	 to minfi� hg do
���� forall p � down� n down��� do
���� removefromheap�p� ��
���� od
���� forall p � down��� n down� do
���� addtoheap�p� ��
���� od �
��
� od �

���� if q � eS�minfi�hg then

���� addtoheap�q�minfi� hg�
���� � �
���� end�

Figure �� Algorithm Insert�q�� The heap update procedures addtoheap and removefromheap called in step
� will be given later�

	

�Si�� 	 S�i� 	 downi�� 	 fqg
 Si 	 down i�� 	 fqg which equals eSi by INS�i� �b�� Since eSi�� and eS�i are

disjoint� it follows that eSi��
 eSi n eS�i�
Finally� if q �� eS�i� INS�i � 	� �b� holds because� eSi��
 Si�� 	 down i 	 fqg by lines �	�� and �����

Corollary � At the end of step � of algorithm Insert� we have computed a uniform sparse partition for eS
according to De�nitions � and
�

Proof� Refer to Figure �� Let !
 denote the value of i after the last completion of step �� This particularly
means that for each level 	 � j � !
� no rebuilding has been made and q �� eS�j � By induction on the number
of levels� INS�!
� �a���b� hold� �We have already seen that INS�	� vacuously holds� forming the base of the
induction� The induction step is established by Lemma 	���

Invariant INS�!
� �a� implies that the
�tuples at levels 	� � � � �!
 � 	 satisfy De�nitions � and �� Now� the

last iteration at level !
 is either a rebuilding or produces a
�tuple such that q � eS�
��
In the former case� algorithm Build�eS
�� computes a uniform sparse partition for eS
�� and the result is a

uniform sparse partition for the set eS�
In the latter case� another application of Lemma 	� establishes INS�!
� 	� �a�� Let eL denote the number

of levels of the partition at the end of step �� If eL
 !
� then all the levels have been reconstructed and satisfy
De�nitions � and �� Otherwise� if eL � !
� then some levels of the partition have not been reconstructed and
thus eL
 L� In this case� the
�tuples for eSj are the old
�tuples for Sj � !
 � j � L� which ful�ll the desired

property anyway� Therefore all the
�tuples �eSi� eS�i� epi� eqi� e�i�� 	 � i � eL� are uniform and eSi��
 eSi n eS�i for
	 � i � eL� It follows that this set of
�tuples is a uniform sparse partition for eS�

Having established the correctness of the algorithm� we now go into the implementation details in order
to establish the running time� First� as already promised� we examine the sizes of the down sets� The crucial
fact which enables us to estimate the total size of the down sets is that at any level of the partition� the new
point q is the only one that can make a previously sparse point non�sparse� We express this in the following
lemma�

Lemma �� Let the sets downj� 	 � j � i� be de�ned� and let p � downj for a level j � f	� � � � � ig� Then
�	� p � Nj�q� and

��� Nj�p� S�
 ��

Proof� The �rst claim is obvious from the de�nition of downj � cf� Equation ���� The second claim is true
because p � downj implies p � S n Sj��� and by Lemma 	�� Nj�p� S�
 � for each p � S n Sj���

Lemma �	 Let the sets down	� � � � � downi be as de�ned in Equation ���� Then��� �
��j�i

downj

��� � �D�

Proof� Assume that p � downj for some j � i� Then p � Nj�q� and Nj�p� S�
 � by Lemma 	
� Moreover�
let � � f�	� �� 	gD be such that p � b�j �q�� The partial neighborhood N�

j �q� is the intersection of q�s
neighborhood with the neighborhood of p in the grid Gj� Refer to Figures 	 and �� Since Nj�p� S�
 ��
N�
j �q� contains no point of S n fpg�
Now� consider a point p� � down� for any � � j� From Lemma 	
� we know that p� � N��q�� Furthermore�

assume that p� is in the box of q�s neighborhood with signature �� i�e� p� � b�� �q�� Since �� � �j�� � �j�� by
Lemma 	 ���� Lemma � �property �N�
�� gives p� � N�

j �q�� from which it follows that p� must be identical
to p�

This means that at levels j � 	 � � � i� there cannot be any point in down� with signature � except p
itself� �Note that a point can be in several down sets�� It follows that for each � � f�	� �� 	gD� the set of
points p in S such that there exists a j � f	� � � � � ig satisfying p � downj � p � b�j �q� contains at most one
element�

	�

Computing the down sets in constant time

We just proved that the total complexity of the down sets is constant� In particular� each single down
set has constant size� Now we show that� given the candidate set Di
 S�i 	 down i��� where S�i is stored
according to grid Gi� we can compute down i in constant time� According to Equation ���� we want to �nd
all p � S�i 	 down i�� such that p � Ni�q� S�i 	 down i���� How do we �nd these points The elements in
S�i are already stored at that level� whereas the elements in down i�� 	 fqg are not� We tentatively insert
these points into the data structure storing the sparse set S�i and then search in the neighborhood of q� This
proves that we can �nd downi in constant time�

Performing the changes in the data structures storing the sparse partition

Of course� the changes from the
�tuple �Si� S
�
i� pi� qi� �i� to the
�tuple �eSi� eS�i� epi� eqi� e�i� also have to be

performed in the data structures that actually store the
�tuple� We will now �ll in these details�
The operations that we have to care for are computing the new sparse set eS�i in line �	�� and �	��� and

computing the new set eSi�� in lines �	�� and ���� of algorithm Insert�

To compute eS�i
 �S�i 	 down i��� n down i� we just have to insert resp� delete a constant number of points

in the data structure storing the sparse set S�i� To insert a point p into eS�i resp� eSi��� we add p to the list
L��b� resp� to the list L�b� where b is the box containing p� We also have to insert the box b into the box
dictionary of the grid data structure� if it was not there before� This takes O�	� expected time� see the
discussion of the grid data structure in Subsection ���� �The same holds for the deletion of a box from the
box dictionary��

Now let us turn to the deletion of points� Note that during the insertion algorithm� deletions are performed
in the sparse sets S�i� more speci�cally there may be points that are in S�i but are not in eS�i� We can easily
delete those points because we know that the lists L��b� can only contain a constant number of points� at
most one point at the start of the operation by the sparseness property� plus the points in down i�� that
might have been tentatively inserted into the list� We remark here that instead of actually deleting the
points of down i from the data structure storing the sparse set� we only mark them as deleted� The reason
for this is that in step �� when we update the heaps� we need to access both the old set S�i and the new seteS�i� The actual deletions will be performed after step � has been completed�

The lists L�b� for the non�sparse set Si�� can contain more than a constant number of points� However�
observe that no point is ever deleted from a non�sparse set Si�� during the insertion algorithm if no rebuilding
is made�

To sum up� performing the changes from the old
�tuple �Si� S�i� pi� qi� �i� to the new
�tuple

�eSi� eS�i� epi� eqi� e�i� of the sparse partition takes O�	 � jdowni��j� jdownij� expected time�

Lemma �� Steps �
� of algorithm Insert�q� take expected time O�log n��

Proof� Consider one iteration of the steps � and �� If no rebuilding is made� the running time of step � is
constant� �Recall that we assume that we can obtain a random number of O�log n� bits in constant time��
By the discussion in the two paragraphs before the lemma� the expected running time of step � at level i is
O�	 � jdown i��j� jdownij�
 O�	��

We now give a probabilistic analysis for the insertion time� taking rebuildings into account� We show
that the expected running time over all iterations of steps �
� is O�log n�� The expectation is taken both
over the new random choices and over the expected state of the old data structure�

Let the initial set of tuples be �Si� S�i� pi� qi� �i�� 	 � i � n� padding the sequence out with empty tuples

if necessary� Let Ti be the time to construct eSi from Si assuming no rebuilding has taken place while
constructing eS�� � � � � eSi��� Clearly� the overall running time X satis�es X � Pn

i�� Ti� For 	 � i � n� we
have the following� with probability at most min�	� c�jSij� for some constant c� a rebuilding happens at level
i and therefore Ti
 O�jSij� expected in this case� Otherwise� Ti
 O�	� expected� These expected time
bounds stem from the running times of the hashing algorithms that are used to rebuild or to update the
structure� respectively� Since the random choices made by the hashing algorithms are independent of the
coin �ips made by our algorithms Insert and Build to choose the pivots� we can multiply the probabilities of

	�

the events with the expected running times that are valid for the event and obtain an expected update time
E�Ti�
 O�	�� independently of the previous state of the data structure�

Moreover� for any 	 � N � n�
Pn

i�N�� Ti is bounded by the running time of the procedure Build�SN����
Hence� the expected value of this summation is bounded by c�
 jSN��j for some constant c�� Choosing
N
 dlog ne� we obtain

E�X� �
NX
i��

E�Ti� � E�c�
 jSN��j�
 O�log n�

since E�jSN��j� is O�	��

Remark� Note that not only the running time at each level of the sparse partition� but also the number
of levels is a random variable� and its value can be as high as n� This means in particular that the running
times of consecutive update operations are not independent� In Section �� we shall give a variant of the data
structure which guarantees that the number of levels in the partition is O�logn� in the worst case� In this
case� the probabilistic analysis will only be concerned with the probabilities of rebuildings�

Discussion of the heap updates

We are now ready to discuss step � of the insertion algorithm� Heap updates are necessary when points
move to a di�erent level due to the insertion of q�

Assume point p moves to a di�erent level� Then heap updates are necessary �i� when p starts moving
at level i and �ii� when p stops moving at some level j� where i � j� In the �rst case� we basically perform
a deletion of the heap values associated with p� while in the second case� we perform the corresponding
reinsertions into the heap structure� Note that the latter case does not occur if the data structure has been
rebuilt at some level i � l � j� In this case� the rebuilding algorithm inserts the values associated with p
into the heap structure�

Note that� at each level i� a point can be associated with only a constant number of heap val�
ues� which are located in the heaps H�� i � � � i � D� From Lemma � ���� we know that d�i �p�

min

�
�i� d�p� S�i�D 	 � � �	 S�i�

�
� Thus� a point p � S�i can be associated with a heap in two di�erent ways�

First� there is a value d�i �p� in Hi� Furthermore� for each i � � � i � D� there may be points r � S�� such
that d�r� p� gives rise to d�� �r� in H��

Recall that eL denotes the last level of the sparse partition after the update� In our heap update procedures
given below� we want to rearrange the heaps such that heap Hj� 	 � j � eL� contains the valuesn

d�j �p�
 min
�e�j � d�p� eS�j�D 	 � � �	 eS�j�� � p � eS�jo �

At the moment� the heaps contain the restricted distances w�r�t� the old sparse partition� except for the
levels that have been rebuilt� We therefore take care that we only rearrange heaps at levels that have not
been rebuilt� In step �� a parameter h occurs� It denotes the last level that has not been rebuilt if such a
rebuilding has taken place� Otherwise� h
 �� The heap update procedures are shown in Figures � and
�

We have given simple procedures that do not use all the properties of the problem� since this gives a
simpler proof and we are mainly interested in asymptotic complexity here� For example� one could check if
the restricted distance stored at a heap item it�r� changes because of removing resp� introducing the distance
d�r� p�� Since recomputing all restricted distances in a small area around p takes only constant time� this
would only save a constant factor� however�

Lemma �� After step � of algorithm Insert�q�� the heap Hi stores the set fd�i �p� � p � eS�ig� for all levels

	 � i � eL� Also� the running time of the procedures addtoheap and removefromheap is O�	� plus the time
spent on the heap operations� The number of heap operations that are performed in step � is constant�

Proof� First note that at the beginning of step �� the new sparse partition is computed� and since the
elements of S�i that are not in eS�i have only been marked deleted� we have both sparse sets at hand at each
level�

	�

��� proc removefromheap �p� h��
��� begin

��� �� p starts moving at level i� i�e� p � S�i� but p �� eS�i ��
��� Delete�Hi� it�p���
��� for � �
 i to minfi�D�hg do

��� forall r � S��
 eS�� such that d�r� p� � �� do
��� Change key�it�r�� d�� �r��
��� od
�
� od �
���� end�

Figure �� Procedure removefromheap�p� h��

��� proc addtoheap �p� h��
��� begin

��� �� p stops moving at level j� i�e� p �� S�j � but p � eS�j ��
��� compute d�j �p�� let r be such that d�j �p�
 d�r� p� if it exists �
��� it�p� �
 new item� it�p��key �
 d�j �p�� it�p��point �
 p� it�p��point
 �
 r �
��� Insert�Hj� it�p���
��� for � �
 j to minfj �D�hg do

��� forall r � S��
 eS�� such that d�r� p� � �� do
�
� Change key�it�r�� d�� �r��
���� od
���� od �
���� end�

Figure
� Procedure addtoheap�p� h��

	�

Notation� For each level i� we call points that remain sparse� i�e� the points in S�i
 eS�i� the passive points�

and the points that cease or start being sparse� i�e� the points in �S�i n eS�i� 	 �eS�i n S�i�� the active points�

Claim� Exactly the restricted distances that can change due to the change of the sparse partition and
that have not been handled by rebuilding have been treated by the procedures shown in Figures � and
�

Proof of Claim� At the beginning of step �� we know h� the index of the last level for which heap Hh

has to be reconstructed� if a rebuilding has taken place� In this case� the data structure has been rebuilt at
level h� 	� �Otherwise h
 ��� We can therefore guarantee that our heap update procedures do not treat
levels whose heaps have already been correctly computed by a rebuilding�

Now consider the levels where the heaps have to be rearranged� Heap Hi contains the restricted distances
of points p � S�i to points in S�i�D 	 � � �	S�i� For the active points� the claim is clear� These are the points in

the symmetric di�erence of S�i and
eS�i� By Fact 	�� these are exactly the points in the symmetric di�erence

of down i�� and down i� Our heap update procedures are called exactly for these points and the restricted
distances of these points are deleted in line ��� of removefromheap and inserted in line ��� of addtoheap�
respectively�

For a passive point p� we only have to examine� at levels j
 i� � � � � i�D� the points that are

	� active at level j and

�� closer to p than the threshold distance �i�

These are exactly the points that are treated in lines �
����� of removefromheap and in lines �����		� of
addtoheap� �Claim�

Also note that for every point that is treated by the heap update procedures� either the corresponding heap
item is deleted� if it belongs to the set of points that ceases being sparse at that level� or its restricted
distance according to the new sparse partition is computed �and inserted if it is a point that starts being
sparse�� This establishes the correctness of the heap update procedures and step � of algorithm Insert�

Now let us look at the running time of the heap update procedures� Each restricted distance can be
computed in O�	� time by Lemma 		� Moreover� from the proof of Lemma 		 we know that the restricted
distances are computed by searching the area of at most �D boxes away from p in the grids that store
the sparse sets S�i�l� � � l � D� Outside this area� the restricted distance of a point r cannot be a�ected
by removal or insertion of p� Since we assume that the dimension D is �xed� the total number of heap
operations carried out by the procedure is constant� and the time spent by the procedure not counting the
heap operations is also constant�

Theorem � Algorithm Insert�q� correctly maintains the data structure and takes expected time O�log n��

Proof� From Lemma 	�� steps �
� establish that S 	 fqg is stored uniformly as a sparse partition� Also�
from Lemma 	�� the heaps are maintained correctly by step �� This proves the correctness of the algorithm�

As shown in Lemma 	�� steps �
� have expected cost O�logn�� Now consider step �� From Lemma 	� we
know that the heap update procedures are only called for a constant number of points� Since� by Lemma 	��
one procedure call only performs O�	� heap operations and� apart from these operations� performs only O�	�
additional work� the total time for step � is O�log n��

��� The deletion algorithm

Now we come to the algorithm that deletes a point q from the data structure� Let eS denote S nfqg� Deletion
is basically the reverse of insertion� In particular� the points that move to lower levels during an insertion of
q move back to their previous locations when q is deleted directly afterwards�

An insertion ends at the level where the new point q is sparse� Therefore� assuming that q � S��� we have
to delete q from S�� and also from all the sets Si� 	 � i � ��

Note that in order to be able to delete q e�ciently from the non�sparse sets Si containing it� we linked
the occurrence of a point in Si to its occurrence in Si�� and vice versa� if the corresponding level exists�

��

��� Algorithm Delete �q��
��� begin
��� �� initialize � i �
 	� up	 �
 �� h �
 �

�� From invariant DEL�i� �b�� we know that eSi
 �Si n upi��� n fqg� ��
�� check for rebuild�

��� �� we do not need to �ip a coin for a new pivot ��
��� if q or an element of upi�� is the pivot pi or the nearest neighbor of pi then

��� Build�eSi�� h �
 i � 	� goto ��

��� � � �� di
 d�pi� Si�
 d�pi� eSi� ��
�� Determine eS�i �

��� compute upi

n
p � Si � Ni�p� Si�
 fqg

o
�

�
� eS�i �
 �S�i 	 upi� n upi��� eSi�� �
 Si�� n up i� �� now eSi�� 	 eS�i
 eSi 	 fqg ��
���� if q � eS�i then

���� delete q from eS�i� goto �� �� q is sparse in eSi� and so eSi��
 Si�� ��
���� � � �� q is not sparse in eSi ��
���� delete q from eSi�� �
���� i �
 i � 	� goto ��

�� Update heaps �
Completely analogous to algorithm Insert� At levels 	 � � � minfi� hg�
we execute the heap update procedures for the points in the
symmetric di�erence of up i�� and up i� and for the deleted point q�
if we are on a level where q contributes a heap value�

���� end�

Figure �� Algorithm Delete�q��

Although it looks natural to implement a deletion starting at the level � where q is sparse� and then
walking up the levels� it is much easier to implement the deletion algorithm in a top�down fashion� completely
analogous to the insertion algorithm�

As already mentioned� points may move up some levels due to the deletion of q� analogous to the downward
movement of points during an insertion� In the insertion algorithm� we collected in down i the points that
were sparse at some level j � i but that were no longer sparse at level i due to the insertion of q� That is�
cf� invariant INS�i� �b� of the insertion algorithm�

down i
 fp � S n Si�� � p � eSi��g� ���

Now� we want to collect in up i the points that are non�sparse at level i but will be sparse there after a
deletion� We de�ne up	 �
 � and for i � 	� if no rebuilding has been performed at levels 	� � � � � i� 	�

upi �
 fx � Si�� n fqg � x �� eSi��g� ���

Note that the deleted point q is not counted in this set� analogously to the treatment of the new point q in
the insertion algorithm�

The deletion algorithm starts at the top level and moves downward� as algorithm Insert� See Figure ��
Let i � 	 and assume the deletion algorithm attempts to construct the
�tuple for eSi without having made
a rebuilding yet� Analogously to invariant INS�i� in algorithm Insert� we have

Invariant DEL�i� �

�a� Identical to INS�i�� saying that the new
�tuples at the levels 	� � � � � i� 	 satisfy De�nitions � and ��

�b� The sets upj � � � j � i� have been computed and eSi
 �Si n upi��� n fqg�

�	

Note that at the start of the algorithm� DEL�	� holds because up	
 ��
To construct the
�tuple for eSi� the deletion algorithm �rst checks if a rebuilding has to be made� as

does the insertion algorithm� Having done that� it constructs the new sparse set eS�i and� along with it� the

non�sparse set eSi��� eS�i is computed from the previous sparse set S�i by adding the points of upi and deleting

the points of upi��� Also� we obtain eSi�� by deleting the points of upi from Si��� Now� q is still in eS�i oreSi��� depending on whether it was in S�i or Si�� before� respectively� Deleting q from the set containing it

�nishes the computation of eS�i and eSi��� If q was sparse at level i� then Si��
 eSi�� and the construction
of the new sparse partition is complete� �Note that upi must be empty in this case�� Otherwise� we go into

the next iteration and construct the
�tuple for eSi���
When the new sparse partition is computed� the heaps have to be updated� Analogously to the insertion

algorithm� �i� p � upi�� n upi means p starts moving at level i� i�e� p � S�i and p �� eS�i� �ii� p � upi n upi��
means p stops moving at level i� i�e� p �� S�i and p � eS�i� and �iii� p � upi��
 upi means that p moves through

level i� i�e� p �� S�i and p �� eS�i� As before� the points that start or stop moving are causing heap updates�

From the similarity of the Equations ��� and ���� the arguments used to derive the bound on the size of
the down sets carry over to the up sets� and thus we obtain jS��i�L upij � �D� see Lemma 	��

The computation of the up sets is slightly di�erent from the computation of the down sets� Note that the
initial de�nition of the down sets in Section � was a little bit di�erent to ��� because we wanted to obtain a
procedure to compute the down sets directly from the de�nition� Since examining the whole set that could
possibly contain points of downi� namely S n Si��
 S�� 	 � � �	 S�i� could not be done e�ciently� we de�ned
down i recursively in terms of a �candidate set� S�i 	 downi�� containing the points in S�� 	 � � �	 S�i that are
eligible for being in down i� From this candidate set� we were able to compute downi e�ciently�

In contrast to the insertion case� the points that are non�sparse at level i but will be sparse there after a
deletion� are all contained in Si� We can compute the set upi in constant time as follows� From Equation ����
it follows that p � upi if and only if Ni�p� Si�
 fqg� Checking this condition means �nding all points in Si
having only q in their neighborhood� Using the symmetry property �N���� this can be done in O�	� time�

Theorem � Algorithm Delete�q� correctly maintains the data structure and takes expected time O�logn��

Proof� The proofs of correctness and running time are analogous to those for the insertion algorithm and
are therefore omitted�

We summarize the results of this section in the following theorem�

Theorem � There exists a data structure that stores a set S of n points in IRD such that the minimal
distance ��S� can be found in O�	� time� and all point pairs attaining ��S� can be reported in time proportional
to their number� The expected size of the structure is O�n�� and we can maintain the data structure as S is
modi�ed by insertions or deletions of arbitrary points� in O�log n� expected time per update� The algorithms
run on a RAM and uses randomization� The bounds are obtained under the assumption that we know a
frame that contains all the points that are in the set S at any time�

Until now� the box dictionary� which stores the non�empty grid boxes� was implemented using perfect
hashing� We needed to know a frame containing all the points in advance in order to employ this method�
Clearly� we can also store these indices in a balanced binary search tree� Given a point p� we use the �oor
function to �nd the box that contains this point� Then� we search for this box in logarithmic time� Similarly�
we can insert and delete points� If a new point is contained in a new box� we insert the box� together with
the point� otherwise� we add the point to the box that is stored in the tree already�

As a consequence� query and update operations on the box dictionary now take O�log n� deterministic
time for a structure of size n� The requirement to know a frame containing all points in advance is not
needed any more�

To update the entire data structure� we make an expected number of O�logn� dictionary operations plus
a constant number of heap operations� Now� each dictionary operation takes O�logn� time� Hence� the
expected update time is increased to O�log� n��

��

a
���
� a

���
� a

���
� a

���
� a

���
� a

���

 a

���
�

a
���
�

a
���
�

a
���
�

a
���
�

�

�

� �� � ��

� �

� �

Figure �� Example of a degraded ��grid� It is dependent on the set stored in it�

Theorem � For the dynamic closest pair problem� with arbitrary point sets� there exists a randomized data
structure of expected size O�n�� that maintains the closest pair in O�log� n� expected time per insertion and
deletion� The algorithms on this data structure use the �oor function�

� An algebraic computation tree implementation

The solutions seen so far still use the �oor function� It is well known that this function is very powerful� For
the maximum�gap problem� there is an "�n log n� lower bound for the algebraic computation tree model�
Adding the �oor function� however� leads to an O�n� complexity�

Therefore� we want an algorithm that does not use the �oor function� Note that this function was only
used to compute the grid box containing a given point� Therefore� we will modify the algorithm of Theorem �
by using a degraded grid for which we only need algebraic functions� The method we use already appears
in �DLSS��� and �GRSS���� We sketch the structure here and refer to these papers or �Sch��� for details�

Consider a standard grid of mesh size �� Fixing the origin as a lattice point� we divide the space into
slabs of width � in each dimension� Since we can identify a slab using the �oor function� this gives rise to an
implicit storage of the slabs� To avoid the use of the �oor function� we store these slabs explictly� by keeping
a dictionary for the coordinates of its endpoints in each dimension�

In contrast to the standard grid� a degraded grid is de�ned in terms of the point set stored in it� To
emphasize this� we use the notation DG��V for a degraded ��grid de�ned by the points of a set V � IRD in
comparison to the grid G�� In a degraded ��grid DG��V � all boxes have sides of length at least �� and the
boxes that contain a point of V have sides of length at most ��� See Figure ��

The degraded grid can be maintained under insertions and deletions of points in logarithmic time� This
increases the time bound for identifying the box containing a point from O�	� to O�logn�� However� this
operation is always followed by a search in the box dictionary� which already takes logarithmic time in the
tree implementation�

In order to implement our data structure� we only have to de�ne the sparse sets S�i� The alignment of
boxes in slabs enables us to transfer the notion of neighborhood directly from standard grids to degraded
grids� The neighborhood of a box consists of the box itself plus the �D � 	 boxes bordering on it�

Consider a degraded ��grid DG��V � As in the grid case� the neighborhood of a point p � IRD is de�ned
as the neighborhood of the box b��V �p� that contains p� i�e� N��V �p� �
 N �b��V �p��� The notion of partial

��

neighborhood is also de�ned analogously� See Figure 	� We number the �D boxes in the neighborhood of
a point p as described there� giving each box a signature � � f�	� �� 	gD� The box with signature � is
denoted by b���V �p�� The boxes of p�s neighborhood that are adjacent to b���V �p� form the partial neighborhood

of p with signature �� denoted by N�
��V �p��

We now de�ne the neighborhood of a point relative to a set of points� For any set bV � the neighborhood
of p in DG��V relative to bV � denoted by N��V �p� bV �� is de�ned as N��V �p� bV � �
 N��V �p�
 �bV n fpg�� Note

that in this de�nition� the set bV need not be identical to the de�ning set V of the degraded grid� As before�
we say that a point p is sparse in the degraded grid relative to bV if N��V �p� bV �
 ��

The basis of correctness and running time of the grid algorithms were the neighborhood properties �N�	��
�N�
�� We now adapt these to handle degraded grids� Two changes are needed� First� we change the constants
in response to the fact that a non�empty box might now have side length up to ��� Second� although we
de�ned the neighborhood relative to a set bV independently of the de�ning set V of the degraded ��grid� a
lot of properties will only continue to hold if bV � V � The reason for this is the fact that boxes of a degraded
��grid DG��V that do not contain a point of the de�ning set V may be unbounded� For example� this may

cause a point q � bV to be in the neighborhood N��V �p� of a point p � IRD even if it is arbitrarily far away
from p�

Fact �
 Let V be a set of points in IRD� and let p� q � V � Consider a degraded ��grid DG��V �

�N�	�� If q �� N��V �p�� then d�p� q� � ��

�N���� If q � N��V �p�� then d�p� q� � �D��

�N���� q � N��V �p� �� p � N��V �q��

Lemma �� Let � � �� � ����� be real numbers� Consider a degraded ���grid DG���V � and a degraded ����grid
DG����V �� � and let p� q � V �� Then

�N���� q � N���V ��p�
� q � N����V ���p��

�N�
�� For any signature � � f�	� �� 	gD� let q � b����V � �p�� Then q � N�
����V �� �p��

Proof� Refer to the proof of �N��� and �N�
�� By the organization of the degraded grid boxes in slabs� the
argument carries over directly� except that we have to care about the width of the slabs� Since p� q � V ��
the slabs containing p and q w�r�t� each coordinate have width at most ���� Since �� � ������ equations ���
and ��� hold� which proves �N����� Once �N���� is proved� stating that the neighborhood in the smaller
grid is contained in the neighborhood of the larger grid� �N�
�� follows completely analogous to �N�
� by
equations ��� and �
�� because these equations hold by the de�nition of the hyperplanes employed in the
proof� See Figure ��

Now we are ready to de�ne our degraded grid based sparse partition� Let gi �
 �i�	�D� We store the set Si
in a degraded gi�grid DGgi�Si

� Analogously to Equation �	� for standard grids� we de�ne

S�i �
 fp � Si � p sparse in DGgi�Si
relative to Sig� ���

The sparse set S�i will also be stored in a degraded gi�grid DGgi�Si
� De�ning the sets S�i for each i by

Equation ��� yields a de�nition of a sparse partition analogous to the one given in De�nition � for the grid
case�

We adapt the abstract de�nition of the sparse partition �De�nition 	� to degraded grids by changing
��i��� to ��i��� and ��i��D� to �i�	�D�� The bounds in Lemma 	 then become �i � �i���� and �L�	�D �
��S� � �L� respectively� The constants in the other lemmas of Section � are changed analogously� Using a
proof completely analogous to the one of Lemma �� using �N�	����N���� instead of �N�	���N���� we get

Lemma �� Using the de�nition for S�i given in Equation ���� we get a sparse partition according to De��
nition 	� with the constants changed as outlined above�

��

The degraded grid based data structure�

For each 	 � i � L�

� the pivot pi � Si� its nearest neighbor qi in Si� and �i
 d�pi� qi��

� Si stored in a degraded gi�grid DGgi�Si
�

� S�i stored in a degraded gi�grid DGgi�Si
�

� the heap Hi�

Now let us examine the update algorithms� In Section �� we de�ned the sets down i� The de�nition remains
the same here� with the notion of neighborhood in degraded grids� The down sets describe the point
movements between the levels of the sparse partition during an insertion� Similarly� the up sets contain the
points that move to a di�erent level during a deletion�

Due to the point movements between the levels� the de�ning set of the degraded grid at level i may
contain extra points additional to the ones of Si� We therefore use a distinguished name for the de�ning set
of the degraded grid at level i� we call it Vi�

When the insertion algorithm reaches level i without having made a rebuilding before� it brings along the
points of downi�� and the new point q� see Section �� Therefore� Vi
 Si 	 downi�� 	 fqg� It is important
to see that� as for the sets Si� we have

V� � V� � � � � � VL� �	��

In the deletion algorithm� no additional point is introduced at any level� except in the sparse sets S�i� We
therefore have Vi
 Si� �Points that vanish from level i because they move upward may be deleted from the
de�ning set Vi at the end of the deletion algorithm��

Remark� The de�ning set Vi may di�er from the non�sparse set at level i only during an update algorithm�
After completion of an update operation� these sets are equal� Particularly� the update algorithms maintain
the degraded grid DG��Si

for both Si and S�i� That is� a point p that is new in Si due to an update is also
added to the degraded ��grid storing the sparse set S�i� even if it is not contained in S�i�

In the remainder of this section� we discuss the analysis of the insertion algorithm� The crucial point is
the estimate on the size of the down sets� We transfer the relevant results to the degraded grid case� using the
adapted neighborhood properties �N����� �N�
�� given in Lemma ��� These properties hold with a restriction
to the de�ning set of the degraded grid� whereas the original properties �N���� �N�
� were valid without
restriction to any point set� The nesting property �	�� allows us to carry over the results nevertheless�

Analogously to the grid case� we use the following convention to describe neighborhoods in the sparse
partition� For any point p� we let Ni�p� �
 Ngi�Vi

�p�� We use the analogous notation for the neighborhood
relative to a set�

For the following statements� let �Si� S�i� pi� qi� �i�� 	 � i � L� be a sparse partition as de�ned above� where
Vi denotes the de�ning set of the degraded grid at level i�

The corresponding results to Corollary 	 and Lemma 	�� obtained using �N����� are

� For any 	 � i � j � L and any p � Vj � Nj�p� Vj� � Ni�p� Vi��

� For any p � �S n Si���
 Vi� 	 � i � L� Ni�p� S
 Vi�
 ��

Now assume that algorithm Insert�q� processes the levels 	� � � � � i without a rebuilding� and the sets
downj� 	 � j � i� are de�ned according to Equation ���� The corresponding statement to Lemma 	
�
which is obtained by using the above two statements� is

Let p � downj for a level j � f	� � � � � ig� Then p � Nj�q� and Nj�p� S
 Vj�
 �� �		�

With these preparations� we can prove that Lemma 	� remains valid� i�e�
���S��j�i downj

��� � �D�

�

We recall the proof of Lemma 	� together with the changes that are needed� The proof is now done with
�		� and �N�
�� replacing Lemma 	
 and �N�
�� respectively�

Assume that p � downj for some j � i� Then p � Nj�q� and Nj�p� S
Vj�
 � by �		�� Let � � f�	� �� 	gD
be a signature such that p � b�j �q�� Refer to Figures 	 and �� Note that the boxes b�j �q� and bj�q� have side
lengths between gj and �gj in the degraded gj�grid� because both p and q are in Vj � The partial neighborhood
N�
j �q� is equal to Nj�q�
Nj�p�� Since Nj�p� S
Vj�
 � by �		�� N�

j �q� contains no point of �S
Vj� n fpg�
Now� consider a point p� � down� for any � � j� Then p�� q � V�� and we have p� � N��q� by �		�� Assume

that p� � b�� �q�� Since �� � �j�� � �j��� �N�
�� gives p� � N�
j �q�� We also have p� � Vj� because p

� � V� and

V� � Vj by the nesting property �	��� However� we know from above that N�
j �q� contains no point of S
Vj

except p� Therefore� p�
 p�
This shows that� for each signature � � f�	� �� 	gD� all boxes b�j �q�� 	 � j � i� together contribute at

most one element to the union
S
��j�i downj � which completes the proof�

Now let us turn to the running time of the algorithm� Note that� when using a degraded grid data
structure� the only di�erence in performance to the tree based grid structure employed at the end of Section �
is that identifying the box containing a given point now takes O�logn� time on a structure of size n� This
is irrelevant here since searching for that box in the box dictionary takes O�log n� time for both structures�
The running time of the algorithm is therefore the same as in Theorem ��

Theorem � Let S be a set of n points in IRD� There exists a randomized data structure of expected size O�n�
that maintains the closest pair in S in O�log� n� expected time per insertion and deletion� The algorithms
on this data structure �t in the algebraic decision tree model�

Note that the degraded grid not only depends on gi� as in the grid case� but also on the set Si stored
in it �resp� on the set Vi � Si during the insertion algorithm�� Actually� it even depends on the way Si
has developed by updates� This means that this data structure does no longer have the property that its
distribution is independent of the history of updates� This does not a�ect the analysis of the algorithms�
however�

� Extensions

In this section� we give a variant of the data structure that achieves linear space in the worst case� The
update time bounds on this structure are amortized� i�e� we have a bound on the expected running time of
the whole update sequence� We also show that the algorithm executes an update sequence quickly with high
probability�

We use the terms �hashing based implementation� and �tree based implementation� for the data struc�
tures of Theorem � and of Theorems � and
� respectively�

��� A data structure with linear space in the worst case

Recall that the source of the expected space bound was the sum of the sizes of the non�sparse sets S�� � � � � SL of
the sparse partition� To turn this into a worst case bound� we have to look at the algorithm Sparse Partition
given in Section �� The data structures that we used to implement the sparse partition remain the same�

The idea to construct a sparse partition of linear size is simple� Refer to the description of the algorithm
Sparse Partition in Section �� After picking the pivot randomly� we determine the set of sparse points
induced by this random choice� If at least half of the points are sparse� we call the pivot good and take it�
Otherwise� we discard it and make a new random choice� continuing this process until a good pivot is found�
Note that this way of pivot selection resembles the iteration to �nd what was called a good hash function in
the static hashing algorithm of �FKS����

We make the following observations�

	� At least half of the elements of the set are good pivots� and so at most two trials are needed on average
until a good pivot is found�

��

�� We can make the algorithm terminating in all cases by removing rejected pivot candidates from the
set of eligible points� We can� on the other hand� analyze this as if we would consider all elements in
each iteration� thereby only overestimating the cost�

�� The uniformness property �De�nition �� is lost� However� since at least half of the elements are good
pivots� the probability of an element being the pivot right after the construction of a new sparse
partition is at most ��n for a set of size n�

�� Updates can gradually unbalance the data structure in the sense that more than half of the elements can
become non�sparse� Unlike before� where this situation was controlled completely by the probabilistic
analysis� we now enforce the essence of the balance condition �by hand� to ensure that the data
structure uses linear space� That is� we count the number of update operations that a�ect a level of
the data structure and rebuild after this count has reached a suitable constant fraction of the cardinality
of the set at that level at the time of the last rebuilding�

We now make this precise� For convenience� we repeat the algorithm Sparse Partition with the above
described modi�cation� We keep two global variables last i and count i to keep track of the sizes of the sets
Si of the partition during the update algorithms�

lasti denotes jSij after the last rebuilding that a�ected Si� i�e� a rebuilding called at a level j � i�

counti denotes the number of update operations since the last rebuilding that a�ected level i�

Algorithm Sparse Partition�S��

�i� S� �
 S� i �
 	�

�ii� Vi �
 Si� last i �
 jSij� count i �
 ��

�iii� Pick pi � Vi at random� Calculate �i
 d�pi� Si��

�iv� Compute S�i using one of the de�nitions of sparseness discussed before�

�v� If jS�ij � jSij�� then Vi �
 Vi n fpig� goto �iii��

�vi� Si�� �
 Si n S�i�
�vii� If Si�� �
 � then set i �
 i � 	 and goto �ii��

Notation� An element p � Si is good if� when picked in line �iii� of the above algorithm� jS�ij � jSij�� holds
after line �iv��

Observation� At least half of the elements of Si are good� �This can be seen by considering the sequence
of nearest neighbor distances of the points in Si that was employed in the proof of Lemma ��� The elements
of Si that are not good are called bad elements�

Lemma �� For each i� let pi be the pivot of the set Si chosen by algorithm Sparse Partition above� Then�
for any point p � Si� Pr�p
 pi� � ��jSij�

Proof� The probability to be the pivot is zero for a bad element� Otherwise� its probability is reciprocal
to the number of good elements in the set�

Lemma �� Let S be a set of n points in D�space� The modi�ed algorithm Sparse Partition produces a
sparse partition of size O�n�� The hashing based implementation runs in O�n� expected time� and the tree
based implementation runs in O�n logn� expected time�

��

Proof� The space bound is obvious� since the sizes of the sets Si are geometrically decreasing� Each
execution of the inner loop of the algorithm at level i runs in O�jSij� expected time in the hashing based
implementation and in O�jSij log jSij� deterministic time in the tree based implementation� Note that the
logarithmic factor stems from the queries that are needed to �nd the sparse set S�i� See the analysis of
algorithm Build� which includes the construction of the sparse partition� in Lemma 	��

Since the expected number of executions of the inner loop is at most two at each level� the expected time
at level i is O�jSij� resp� O�jSij log jSij�� Recall that the expected running time of the hashing algorithm is
O�jSij� independently of the coin �ips made by algorithm Sparse Partition�

The overall running time now follows� like the space bound� from the fact that the sizes of the sets Si are
geometrically decreasing�

Note that the above lemma only concerns the building of the sparse partition itself� and not the complete
algorithm Build� which also constructs the heaps for the sparse sets� This additional work can however be
completed within the same bound� We need to distinguish between constructing the sparse partition itself
on the one hand and the complete data structure on the other in the next subsection�

We can now turn to the update algorithms� First� we recall an assumption that we used for the main
result in Section �� In the update algorithms given there� the adversary has no clock to time the algorithm�

Let us remark here that allowing such an adversary does not destroy the update time bound� It only
forces an amortized rebuild of the structure from time to time� If no rebuild occurs in an update operation�
the adversary has revealed a constant number of points of the set not to be the pivot� These are the elements
which are involved in the decision on whether a rebuilding is made or not� see step � of the update algorithms
in Section �� �Let the number of these elements be one for simplicity�� Then� after n�� updates without
rebuilding� the adversary would still not know which out of n�� elements is the pivot� On the other hand�
enough updates have taken place such that the data structure can be rebuilt and the costs are amortized in
the update sequence�

Note that the probability of such an event is still high enough that we cannot make a purely probabilistic
rebuilding� To see this� let 	�n be the probability of a rebuild in a set of size n� �We know that the actual
probability is O�	�n��� The probability that n�� successive updates do not cause a rebuilding of the data
structure is proportional to �	 � 	�n�n��
 #�	�� That is� the probability that no rebuilding occurs in n��
updates is still constant� so the expected running time of the operation that performs the rebuilding which
is needed to prevent the adversary from getting too much knowledge is at least linear�

Now let us return to the discussion of our modi�ed data structure� We already mentioned that we need
an amortized rebuilding anyway to retain the size of the sets of the sparse partition such that the total space
used is linear� Therefore� taking the above discussion into account� we now allow a clocked adversary� This
will not a�ect the running time�

We now discuss the insertion algorithm� We only sketch the modi�cations to the detailed description in
Section �� Refer to that section for notation� During the algorithm� c is a �xed constant� Step � �check for
rebuild� is the only part that is changed�

Assume we insert the point q� We are at level i� down i�� has been computed� and eSi
 Si	downi��	fqg�
Now

	� count i �
 count i � 	� if count i � lasti�c then Build�eSi�� stop�

�� if q or an element of down i�� is closer to the pivot pi than its previous nearest neighbor

then Build�eSi�� stop�

The �rst item is the amortized rebuilding� and item � is the second part of the probabilistic rebuilding in the
original algorithm� Note that the �rst part of that rebuild step��ipping a coin for a new pivot and rebuilding
if the coin �ip hits one of the elements in downi�� 	 fqg�does not appear here� In the original algorithm�
we needed this to ensure the uniformness of the pivots� Since we do not have a complete uniformness here
anyway �the bad elements cannot be pivots�� we can treat a newly inserted element as if it were a bad
element�

The deletion algorithm is completely analogous to the description in Section �� When the algorithm
reaches level i� upi�� has been computed and we have eSi
 �Si n upi��� n fqg�

��

	� count i �
 count i � 	� if count i � lasti�c then Build�eSi�� stop�

�� if q or an element of upi�� is either the pivot pi or its nearest neighbor qi
then Build�eSi�� stop�

Here� the probabilistic rebuilding is exactly the same as in Section �� The amortized rebuilding is analogous
to that of the modi�ed insertion algorithm�

It is clear that the above modi�cations do not a�ect the correctness of the update algorithms� The
probabilistic rebuildings of the update algorithms ensure that the pivot condition is ful�lled� As long as
no rebuilding is made� the algorithm uses a constant number of dictionary operations at each level� These
cost O�	� expected and O�log n� deterministic time in the hashing and the tree based implementation�
respectively� The heap updates cost O�logn� time as before� for both implementations�

It remains to analyze the rebuildings� It is clear that the amortized rebuilding does not increase the
running time� since rebuilding of a set of size m takes time O�m� resp� O�m logm� and the number of
updates until the next rebuilding occurs is #�m�� Furthermore� by the estimate on the number of points
that can move between the levels during an update operation� the balance condition that at least half of
the elements are sparse at each level can be disturbed only by a constant amount of elements� Thus� with a
suitable constant c� after m�c updates at a level of initial� size m� there are still #�m� sparse elements at
that level� This ensures the property that �i� the data structure has O�logn� levels and �ii� the size of the
structure is O�n��

For the probabilistic rebuildings� we have to show that for each update that a�ects a level of size m� the
probability of a rebuilding is c��m for some �xed constant c�� It is clear that this is true directly after a
rebuilding� with c�
 �� After that� the adversary gains knowledge about the possible pivots if no rebuilding
is made� However� we have already seen that the adversary can exclude at most a constant number of points
from being pivot in each update operation� Thus� similarly to the control over the sizes of the sets� after m�c
updates at a level of initial size m� the adversary still has to consider #�m� possible pivots� which means
that the probability of a rebuilding in item � of the above modi�cations is still O�	�m�� This means that
the expected number of probabilistic rebuildings at a level of size m is only constant between two successive
amortized rebuildings�

This proves the following theorem�

Theorem 	 Let S be a set of n points in IRD� There exists a randomized data structure for the dynamic
closest pair problem that uses space O�n� in the worst case and can maintained in O�log n� �for the hashing
based implementation� under the assumption that we know a frame that contains all the points of S in
advance� or O�log� n� �for the tree based implementation� expected amortized time per insertion and deletion�

��� High probability bounds

The previous theorem yields the expected running time of the dynamic closest pair algorithm on a sequence
of updates� We now discuss the reliability of the algorithm for such an update sequence�

By our modi�cations that lead to Theorem �� the only random variable that has to be studied is the
rebuilding cost� The rest of the update consists of O�	� heap operations� which cost O�log n�� and of O�log n�
dictionary operations� �Recall that our data structure now has O�log n� levels in the worst case for a set of
size n�� Hence� if no rebuilding occurs� we need O�log� n� worst case time in tree based implementation� In
the hashing based implementation� we need O�logn� time with high probability� by using reliable dictionaries�
see �DM��� DGMP����

These hashing methods implement a dictionary with constant query and update time and linear building
time� where the time bound for query is worst case and the time bounds for update and construction hold
with high probability� More speci�cally� for a dictionary of size n� they hold with probability O�	� n�s� for
any �xed integer s� We shall call such a probability n�polynomial probability in the following�

As long the set sizes in the sparse partition are "�n�� for some � � �� the bounds for reliable dictionaries
stated above can be directly applied� In �Sch���� it is shown how to obtain an O�logn� time bound� with
n�polynomial probability� to update the whole sparse partition in the case that no rebuilding occurs�

�i�e�� after the last rebuilding

��

We now analyze the rebuilding cost� To make our task easier� let us assume that the data structure has
exactly log n levels� of size n��i� � � i � log n� �This can only�at least asymptotically�overestimate the
cost�� For each level� we associate the running time of a rebuilding called at that level with it� Note that
although this rebuilding also reconstructs the levels below� we charge the cost only to the calling level� We
analyze each level separately� Recall that from time to time� we have to make an amortized rebuilding�not
under probabilistic control�to enforce that the levels of the partition store sets of geometrically decreasing
size� We call the time between two amortized rebuildings at a level a phase� We have seen before that the
length of a phase� i�e� the number of updates� at a level storing a set of size m is m�c for some constant c�
For simplicity� let us assume that a phase has length m� Then� for any data structure of size n� we analyze
an update sequence that is divided into �i phases of length n��i at level i� for � � i � log n�

Note that the amortized rebuildings that divide the phases are subsumed in the total cost of the opera�
tions� We therefore concentrate on the probabilistic rebuilding� We start by assuming a linear deterministic
rebuilding cost and plug in the actual rebuilding cost afterwards� At a level of size m� we de�ne the rebuild�
ing cost to be m with probability 	�m� and � with probability 	 � 	�m� Recall that the actual rebuilding
probability was O�	�m�� so the following analysis re�ects the situation of our algorithm correctly� At level
i� the rebuilding cost is then n��i� with probability �i�n� Taking the �i phases at level i together� we make
n updates� and with each update operation $j� 	 � j � n� we associate a random variable

Xi
j �

	
n��i � with probability �i�n
� � with probability 	� �i�n�

�	��

The variables Xi
j � � � i � logn� 	 � j � n� are independent� Each variable bounds a rebuilding cost� up to

a certain factor� So� even if there is a dependency between the actual rebuilding costs that give rise to the
variables Xi

j � these costs are independently bounded by the above described values�

Fact �� Let Xi
j � � � i � log n� 	 � j � n� be as de�ned above� Then

Xi
j � n��i and E

h nX
j��

Xi
j

i

 n�

The expectation E�
Pn

j��X
i
j �� taken for all levels � � i � log n� describes the rebuilding cost which is

relevant for the expected running time of a sequence of update operations� analyzed in Theorem �� We are
now heading for a tail estimate� The kind of estimate that we use is known under the name Cherno� bounds�

Lemma �� ��HR
��� Let X�� � � � � Xn be independent random variables such that � � Xi �M� 	 � i � n�
Let E
 E�

Pn
j��Xj �� Then� for any t � 	�

Pr
h nX
j��

Xj � t
E
i
�

et��

tt

�E�M

�

Corollary � Let the variables X�� � � � � Xn be as in Lemma
�� and let E
 E�
Pn

j��Xj�
 n� Let s be a �xed
integer� We examine the cases M � n and M � n� logn� choosing t
 #�log n� log log n� and t
 #�	��
respectively�

	� Let M � n� There exists a constant c� such that Pr
h nX
j��

Xi
j � c�
 n log n� log logn

i

 O�n�s��

� Let M � n� logn� There exists a constant c� such that Pr
h nX
j��

Xj � c�
 n
i

 O�n�s��

We now return to the analysis of the random variables
Pn

j��X
i
j � � � i � log n� By Fact ��� we have

M �
 maxXi
j
 n��i � n for any level � � i � logn of the data structure�

��

We divide the levels into two ranges� the levels � � i � log log n are called the coarse levels and the
levels log log n � i � logn are called the �ne levels� For the analysis of the coarse levels� we use item 	 of
the above corollary and get that� with n�polynomial probability�

X
	�i	log logn

nX
j��

Xi
j
 O�n logn��

For the �ne levels� note that M �
 maxXi
j
 n��i � n� logn� We can therefore apply item � of Corollary �

and get that� with n�polynomial probability�

X
log logn�i	logn

nX
j��

Xi
j
 O�n logn��

Taking these estimates together� we obtain a rebuilding cost for a sequence of #�n� updates that is bounded
by O�n logn� with n�polynomial probability� under the assumption that rebuilding takes linear deterministic
time�

We now consider the actual rebuilding cost� Let us start with the hashing based implementation� By
Lemma ��� the modi�ed algorithm Sparse Partition runs in O�n� expected time on a set of size n� Particu�
larly� for each i� � � i � logn� the expected running time to construct the
�tuple at level i� for the subset
Si � S of size at most n��i� is O�n��i��

This is because� for each i� the number of executions of the inner loop� testing pivots until a good one is
found� is bounded by the number of independent coin �ips�with success probability 	���that are needed
until a success occurs� This random variable� call it X� is geometrically distributed� and its expected value
is two� which gives rise to the bound of Lemma ���

The probability that X exceeds t� for any integer t� is ��t� Thus� the number of iterations of the pivot
selection procedure is O�logn� with n�polynomial probability at each level � � i � logn constructed by the
algorithm�

In the hashing based implementation� the running time of one iteration of the pivot selection procedure
�lines �iii���v� of the modi�ed algorithm Sparse Partition� is dominated by the time to build a grid data
structure for the point set� Using a reliable dictionary� this can be done in time O�n��i� at level i� with full
n�polynomial probability� See �Sch��� for details�

Now� since the linear time bound for each execution of the inner loop as well as the logarithmic bound
on the number of executions hold with n�polynomial probability� the running time of the whole algorithm�
when called at level i for a set of size n��i� is O�

Pi
j�	�n��

j� logn�
 O��n��i� log n�� with n�polynomial
probability�

By now� we have analyzed the part of the rebuilding algorithm that constructs the sparse partition� The
other part� namely computing the heaps for the sparse partition� can be done within the same time bound�
in fact� in O�n��i� deterministic time�

Now� by adding up the failure probabilities for all possible rebuildings that occur at level i during the
update sequence� we infer that�also with n�polynomial probability�all rebuildings at this level have the
claimed running time� Hence� we can use the previous high probability analysis� see Corollary � and below�
only multiplying the bounds by log n�

We obtain the following theorem�

Theorem � Let S be a set of n points in IRD� The hashing based implementation of the closest pair
algorithm of Theorem � performs a sequence of #�n� updates on S� starting with a set of size n� in O�n log� n�
time with n�polynomial probability� under the assumption that we know a frame that contains all the points
that are in the set S at any time�

Now let us turn to the tree based implementation� Since we have to do much more than just build a grid
data structure the cost of the tree implementation� as described up to now� is a factor log n higher than for
the hashing implementation� See Theorem �� The expensive parts are query operations that cost O�log n�
in the tree implementation compared to O�	� if we use hashing�

�	

There were two parts where we used queries in algorithm Build� First� in the construction of the sparse
partition� we use queries to �nd the sparse points in a set� Second� when we build the heaps for the sparse
partition computed before� we use queries to compute restricted distances� See Section �� Actually� there
is a way to get rid of the �rst part� by the following idea� During the building of the grid or degraded grid
data structure� one can link each non�empty box with the non�empty boxes in its neighborhood� where we
mean the occurrences of the boxes in the box dictionary �not only in the geometric representation� which is
trivial�� We can use these pointers to �nd the sparse points of the point set which is being stored in linear
time� as follows� Walk through the list of non�empty boxes of the grid� With the help of the above described
pointers� we can access the point lists associated with the neighboring boxes in constant time� replacing the
queries in the box dictionary�

Note that we do not need to maintain these pointers dynamically under update operations� They are
only used directly after the grid data structure has been built� We did not mention this point up to now
because it cannot reduce the running time of the original algorithm Build of Section �� the computation of
restricted distances still blows up the running time by a logarithmic factor� For the grid algorithms given in
the previous chapters� this feature was not needed either�

Now� however� let us return to the modi�ed building algorithm that employs the computation of the
sparse partition as described in the previous subsection� The algorithm that constructs the sparse partition
repeatedly checks pivots until a good one is found� Recall that we do this O�log n� times in order to
achieve n�polynomial reliability� However� computing the restricted distances has nothing to do with the
construction of the sparse partition itself� We need to do this only for the �nal result that is returned by the
algorithm Sparse Partition� Hence� we now need O�log n� iterations of linear time work� plus one execution
of an O�n log n� time procedure� It follows that the running time for algorithm Build on a set of size n
is O�n logn� with n�polynomial probability in the tree implementation� as it was the case for the hashing
implementation�

Using the analysis made before� we get that the total rebuilding time in the update sequence is O�n log� n�
with high probability� This matches the running time of the other parts of the algorithm in the tree based
implementation� We therefore have

Theorem � Let S be a set of n points in IRD� The tree based implementation of the closest pair algorithm
of Theorem � performs a sequence of #�n� updates on S� starting with a set of size n� in O�n log� n� time
with n�polynomial probability�

� Concluding remarks

In this paper� we have given the �rst solution to the fully�dynamic closest pair problem that achieves
linear space and polylogarithmic update time simultaneously� leaving the question whether this goal can
also be achieved by a deterministic algorithm� After a preliminary version of this paper was published�
Kapoor and Smid �KS��� answered this question a�rmatively with a method that has amortized update
time O�logD�� n log log n� for D � � and O�log� n��log log n��� for the planar case D
 �� where � is an
arbitrary non�negative integer constant� It remains open whether the dynamic closest pair problem can be
solved with O�log n� update time by a deterministic algorithm�

We have given several variants for our randomized data structure� Besides the variants that arise from
the possible implementations of a grid data structure� we can implement the data structure such that it uses
O�n� expected space or O�n� space in the worst case� For the latter variant� we gave high probability bounds
for the running time of an update sequence� Note that we achieved the O�n� worst case space solution at
the cost of making the update time bounds amortized� It is open whether one can achieve the worst case
space bound without sacri�cing the bound on each single update operation�

Furthermore� note that the high probability bound on the update time is the same for the tree and the
hashing implementation� Thus� this bound matches the expected time bound for trees� while there is an
extra logarithmic factor for the hashing based implementation� The source of this slowdown is the rebuilding
algorithm� the cost of which is crucial for the high probability running time of an update sequence�

��

Particularly� the main bottleneck that makes the rebuilding algorithm more expensive�in comparison to
the variant that gives the expected time bound�is the pivot selection� Recall that� in order to �nd a good
pivot� we needed only an expected constant number of tests� but a logarithmic number of tests was made to
have this property with high probability� Each such test took linear time�

It is therefore interesting to �nd a way to make the pivot selection reliable without paying an extra loga�
rithmic factor� This would improve the high probability running time of the hashing based implementation�

Finally� it is interesting to study applications of dynamic closest pair algorithms and to evaluate the
practical performance of the techniques presented in this paper� These issues are addressed in a current
project �Sch����

References

�Ben��� M� Ben�Or� Lower bounds for algebraic computation trees� In Proc� 	�th Annu� ACM Sympos�
Theory Comput�� pages ��%��� 	����

�BS��� J� L� Bentley and M� I� Shamos� Divide�and�conquer in multidimensional space� In Proc� �th
Annu� ACM Sympos� Theory Comput�� pages ���%���� 	����

�CLR��� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algorithms� McGraw�Hill� New
York� NY� 	����

�DD�	� M� T� Dickerson and R� L� Drysdale� Enumerating k distances for n points in the plane� In Proc�
�th Annu� ACM Sympos� Comput� Geom�� pages ���%���� 	��	�

�DE��� W� H� E� Day and H� Edelsbrunner� E�cient algorithms for agglomerative hierarchical clustering
methods� J� Classif�� 	��%��� 	����

�DGMP��� M� Dietzfelbinger� J� Gil� Y� Matias� and N� Pippenger� Polynomial hash functions are reliable�
In Proc� 	�th Internat� Colloq� Autom� Lang� Prog�� volume ��� of Lecture Notes in Computer
Science� pages ��
%���� Springer�Verlag� 	����

�DLSS��� A� Datta� H��P� Lenhof� C� Schwarz� and M� Smid� Static and dynamic algorithms for k�point
clustering problems� In Proc� �rd Workshop on Algorithms and Data Structures� volume ��� of
Lecture Notes in Computer Science� pages ��
%���� Springer�Verlag� 	����

�DM��� M� Dietzfelbinger and F� Meyer auf der Heide� A new universal class of hash functions and
dynamic hashing in real time� In Proc� 	�th Internat� Colloq� Autom� Lang� Prog�� volume ���
of Lecture Notes in Computer Science� pages �%	�� Springer�Verlag� 	����

�FKS��� M� Fredman� F� Komlos� and E� Szemeredi� Storing a sparse table with O�	� worst case access
time� Journal of the ACM� 	��
��%
��� 	����

�GRSS��� M� J� Golin� R� Raman� C� Schwarz� and M� Smid� Simple randomized algorithms for closest
pair problems� In Proc� �th Canad� Conf� Comput� Geom�� pages ���%�
	� 	����

�HR��� T� Hagerup and C� R&ub� A guided tour of Cherno� bounds� Information Processing Letters� ���
	����

�KM�	� S� Khuller and Y� Matias� A simple randomized sieve algorithm for the closest�pair problem� In
Proc� �rd Canad� Conf� Comput� Geom�� pages 	��%	��� 	��	�

�KS��� S� Kapoor and M� Smid� New techniques for the dynamic closest pair problem� In Proc� 	�th
Annu� ACM Sympos� Comput� Geom�� pages 	�
%	��� 	����

�LN��� R� J� Lipton and J� G� Naughton� Clocked adversaries for hashing� Technical Report CS�TR�
������� Princeton Univ�� 	����

��

�Rab��� M� O� Rabin� Probabilistic algorithms� In J� F� Traub� editor� Algorithms and Complexity� pages
�	%��� Academic Press� New York� NY� 	����

�Sal��� J� S� Salowe� Enumerating interdistances in space� Internat� J� Comput� Geom� Appl�� ����%
��
	����

�Sch��� C� Schwarz� Data structures and algorithms for the dynamic closest pair problem� PhD thesis�
Universit&at des Saarlandes� Saarbr&ucken� Germany� 	����

�Sch��� C� Schwarz� Dynamic closest pair algorithms� implementation and application� Unpublished
manuscript� 	����

�SH�
� M� I� Shamos and D� Hoey� Closest�point problems� In Proc� 	�th Annu� IEEE Sympos� Found�
Comput� Sci�� pages 	
	%	��� 	��
�

�Smi�	� M� Smid� Maintaining the minimal distance of a point set in less than linear time� Algorithms
Rev�� ����%��� 	��	�

�Smi��� M� Smid� Maintaining the minimal distance of a point set in polylogarithmic time� Discrete
Comput� Geom�� ���	
%��	� 	����

�SSS��� C� Schwarz� M� Smid� and J� Snoeyink� An optimal algorithm for the on�line closest�pair problem�
Algorithmica� 	��	�%��� 	����

�Sup��� K� J� Supowit� New techniques for some dynamic closest�point and farthest�point problems� In
Proc� 	st ACM�SIAM Sympos� Discrete Algorithms� pages ��%��� 	����

��

