English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca2+-Calmodulin-Munc13-1 signaling.

MPS-Authors
/persons/resource/persons15740

Sakaba,  T.
Research Group of Biophysics of Synaptic Transmission, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons36552

Lin,  K. H.
Research Group of Activity-Dependent and Developmental Plasticity at the Calyx of Held, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15912

Taschenberger,  H.
Research Group of Activity-Dependent and Developmental Plasticity at the Calyx of Held, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15570

Neher,  E.
Emeritus Group of Membrane Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lipstein, N., Sakaba, T., Cooper, B. H., Lin, K. H., Strenzke, N., Ashery, U., et al. (2013). Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca2+-Calmodulin-Munc13-1 signaling. Neuron, 79(1), 82-96. doi:10.1016/j.neuron.2013.05.011.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-3EA3-1
Abstract
Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca2+-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca2+-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca2+-Calmodulin signaling and show that the Ca2+-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.