Neurophysiological evidence for morphological underspecification in German strong adjective inflection

Andreas Opitz, Stefanie Regel, Gereon Müller, Angela D. Friederici

Language, Volume 89, Number 2, June 2013, pp. 231-264 (Article)

Published by Linguistic Society of America
DOI: 10.1353/lan.2013.0033

For additional information about this article
http://muse.jhu.edu/journals/lan/summary/v089/89.2.opitz.html
In the present study we investigate the relevance of the concept of underspecified inflection markers for the processing of language in the human brain. Underspecification is recognized as the main source of syncretism in many current morphological theories. However, relatively little is known about its cognitive status. In underspecification-based theories, a competition among morphological exponents arises systematically. In order to win such a competition, an inflection marker has to meet two requirements: compatibility and specificity. If underspecification is real, these two principles should also be an inherent part of the language processing system. One should therefore be able to observe separable effects for the violation of each of the criteria. We used the event-related potential (ERP) violation paradigm to test this hypothesis in the domain of strong adjective inflection in German. We expected differences in brain potentials between two incorrect conditions whenever they represented different types of violation (of compatibility and specificity). Our findings strongly support underspecification: an ERP-component related to morphosyntactic integration (viz. left anterior negativity; LAN) was modulated by violations of specificity versus compatibility. Furthermore, the neurophysiological evidence helps to distinguish between two kinds of morphological underspecification that have been proposed: it argues for maximal rather than minimal underspecification. Finally, the observed brain responses indicate increased processing demands for highly specific markers, which suggests that LAN effects may be sensitive not only to morphosyntactic violations but also to the degree of processing effort.*

Keywords: underspecification, event-related potential (ERP), left anterior negativity (LAN), distributed morphology, syncretism, gender, subset (elsewhere, blocking, Pāṇini’s) principle

1. BACKGROUND.

1.1. SYNCRETISM AND ECONOMY.

The starting point of the present study is a very common morphological phenomenon: syncretism. Syncretic morphological marking is characterized by the use of one phonological form in different morphosyntactic contexts; thus, one morphological exponent appears in different cells of a paradigm. Consider, for instance, the examples of a small part of the system of Latin nominal declension given in Table 1.

<table>
<thead>
<tr>
<th>Case</th>
<th>oppidum ‘town’</th>
<th>dominus ‘master’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom.SG</td>
<td>oppidum</td>
<td>dominus</td>
</tr>
<tr>
<td>Gen.SG</td>
<td>oppidi</td>
<td>dominī</td>
</tr>
<tr>
<td>Dat.SG</td>
<td>oppidō</td>
<td>dominō</td>
</tr>
<tr>
<td>Acc.SG</td>
<td>oppidum</td>
<td>dominum</td>
</tr>
<tr>
<td>Abl.SG</td>
<td>oppidō</td>
<td>dominō</td>
</tr>
</tbody>
</table>

Table 1. Case syncretism in Latin.

* This research was supported by a DFG grant to the project ‘Experimental Investigations into the Fine Structure of Argument-Encoding Inflection Markers’, as part of Research Unit 742 (‘Grammar and Processing of Verbal Arguments’).
The phonological forms of neuter nouns like *oppidum* are identical in nominative and accusative contexts although these two cases encode different grammatical functions. In Latin, the contrast between nominative and accusative is both syntactically relevant and morphologically marked for other genders/inflection classes (compare a masculine noun like *dominus–dominum* in Table 1, which otherwise belongs to the same (*o-*) inflectional class).

The frequent occurrence of syncretism in the world’s languages is remarkable insofar as it leads to mismatches between syntax and morphology (see Baerman et al. 2005). Moreover, identical forms for distinct morphosyntactic configurations may generate severe ambiguity, as the German example in 1 illustrates.

(1) Die Frau sieht das Kind.

The morphological case marking of the two NPs in example 1 is ambiguous: both phrases are morphologically marked as nominative or accusative. Thus, when processing a sentence like 1, there are morphologically ambiguous cues for the assignment of case and theta-roles to the NPs.

In contrast, in a morphological system of argument encoding that does without syncretism, there are only one-to-one relations of form and function. A particular morphological exponent then represents exactly one specification of a syntactic context (and a particular specification of a syntactic context is unambiguously realized by exactly one morphological exponent, which, however, is also usually the case in morphological systems employing syncretism). It is clear that in fusional systems (where morphological exponents often encode more than one grammatical category—for example, case, number, and gender), a strict one-to-one mapping of morphological exponents and syntactic contexts will increase the number of inflection markers; and the more grammatical categories there are that are simultaneously encoded by an exponent, the more dramatic this increase will be. In view of this, the tendency of many morphological systems toward a reduced marker inventory and the concurrent emergence of syncretism may be assumed to be motivated by reasons of economy: the fewer exponents an inflectional system consists of, the fewer lexical (sub)items have to be stored.

It would seem, however, that this economy gain for the storing component of language can be achieved only at the cost of extra effort in the procedural component: when dealing with syncretism, the system has to cope with processing difficulties such as ambiguities in parsing (either of the local type—when they are eventually resolved by unambiguous morphological encoding—or of the global type—when they persist to the end, as in 1). Furthermore, as we see below, providing syncretic morphological exponents with a unique function presupposes underspecification; and underspecification in turn typically necessitates two further assumptions about the modeling of syncretism in morphological theory that would also seem to be demanding for processing capacities, viz., feature decomposition and competition resolution. We turn to this issue in the next section.

1 Since German is a verb-second language with variable placement of items in the pre-verb-second (‘Vorfeld’) position, there is no strict subject-verb-object surface word order. Hence, an object-verb-subject interpretation of the sentence is in principle possible, although this is typically not the canonical word order and it would often have to be prosodically marked. Moreover, there seem to be general parsing strategies such as a subject preference for the first argument that reduce the impact of such ambiguities (see Mecklinger et al. 1995, Schriefers et al. 1995, Bader & Meng 1999, Schlesewsky et al. 2000).
1.2. **Underspecification in Morphological Theory.** It is not a priori clear to what extent syncretism can be viewed as systematic, and to what extent it might be accidental.\(^2\) It is a common assumption of many current theoretical approaches to morphology that as many instances of syncretism should be accounted for systematically as possible. Most often, this research strategy is implicitly presupposed; sometimes, it is explicitly formulated (see e.g. Embick 2003, Müller 2007, Pertsova 2007, and references cited in these works). Consequently, given that there is systematic syncretism in abundance, the question arises of how to account for the phenomenon.

One of the most widely pursued approaches to syncretism in morphological theory is underspecification. The basic idea goes back to Jakobson (1962a,b), and the method has been further refined by Bierwisch (1967). Here we illustrate the mechanics of an underspecification approach to syncretism on the basis of the paradigm of pronominal inflection in German. There are two reasons for this choice. First, many underspecification-based analyses of this paradigm have been proposed in the literature; in addition to Bierwisch’s (1967) original approach, syncretism in German pronominal inflection has been addressed in terms of underspecification by Blevins (1995), Sauerland (1996), Wunderlich (1997a), Wiese (1999), Gallmann (2004), and Trommer (2005). And second, whereas the system of pronominal inflection in German provides morphological exponents for determiners like **dies**- ‘this’, **jen**- ‘that’, and, with some stem variation, the definite article **der, die, das** ‘the.**M*/F*/N**’, it is almost identical to the system of strong adjective inflection that forms the empirical basis of our neurophysiological study (and that provides morphological exponents for adjectives in NPs where there is no initial determiner). As a matter of fact, the two paradigms are identical except for genitive masculine/neuter singular contexts, where pronominal inflection has an exponent -**es** and strong adjective inflection has an exponent -**en**. Since this variation is a negligible factor (see n. 10 below), and since our own study focuses on accusative markers where there is no difference, we can thus look at underspecification-based analyses of pronominal inflection as analyses of strong adjective inflection by extension; and this is what we do throughout the remainder of the article.\(^3\)

Against this background, consider the paradigm of pronominal inflection in German in Table 2, with four instantiations of the grammatical category case, three instantiations of the grammatical category gender, and two instantiations of the grammatical category number.

<table>
<thead>
<tr>
<th>Case</th>
<th>SINGULAR</th>
<th>PLURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MASC</td>
<td>NEUT</td>
</tr>
<tr>
<td>NOM</td>
<td>-er</td>
<td>-es</td>
</tr>
<tr>
<td>ACC</td>
<td>-en</td>
<td>-es</td>
</tr>
<tr>
<td>DAT</td>
<td>-em</td>
<td>-em</td>
</tr>
<tr>
<td>GEN</td>
<td>-es</td>
<td>-es</td>
</tr>
</tbody>
</table>

Table 2. Paradigm of pronominal inflection in German.

There are no gender differences in morphological exponent in the plural. Depending on whether one assumes that this implies that the pertinent paradigm cells are con-

\(^2\) This certainly holds for the nominative/accusative syncretism with all neuters in Latin (see Table 1) and virtually all other Indo-European languages (though see Corbett & Fraser 1993 and Fraser & Corbett 1994 on the marginal exception of animate neuter plural forms in Russian).

\(^3\) Note that since pronominal inflection involves only closed-class items that are presumably stored as full forms in the mental lexicon, the experimental design made the choice of the strong adjective paradigm mandatory.
flated not only morphologically but also syntactically, there are thus either sixteen or twenty-four different paradigm cells in this paradigm. However, there are only five distinct morphological forms: -e, -er, -en, -es, -em. For instance, there is only one marker for the two morphosyntactic feature specifications [dative masculine singular] and [dative neuter singular], viz. -em; and this marker is different from all of the other markers in the paradigm.

The most important consequence of the underspecification approach is that natural classes of instantiations of grammatical categories can be expressed. Thus, a common basis of the instances of a given syncretism is sought—a property that the different contexts exhibiting an identical morphological exponent have in common. This property then characterizes a natural class of morphosyntactic specifications. In the case at hand, [dative masculine singular] and [dative neuter singular] contexts (or paradigm cells) differ only with respect to gender information. This leads to the assumption that [masculine] and [neuter] form a natural class. In an approach that relies on morphosyntactic features, this could be expressed by attributing to the two contexts some extra feature to which the information associated with an inflection marker can then refer. Alternatively, and this is the strategy pursued by Jakobson, Bierwisch, and many others, one can derive natural classes of instantiations of a grammatical category (e.g. masculine and neuter as two instantiations of the grammatical category gender) from a decomposition of the standard morphosyntactic features into combinations of more abstract primitive features. Thus, the instantiations of gender in German can be assumed to have the fine structure in 2, with the masculine, feminine, and neuter arising from a cross-classification of the primitive gender features [±masc] and [±fem].

(2) Decomposition of gender features in German

a. masculine = [+masc,–fem]
b. feminine = [–masc,+fem]
c. neuter = [–masc,–fem]
d. [] = [+masc,+fem]

The idea then is that morphological exponents do not have to be characterized by fully specified morphosyntactic features; they can also be characterized by underspecified morphosyntactic information. For instance, the dative singular marker -em is not characterized as [+masc,–fem] (= masculine) or as [–masc,–fem] (= neuter). Rather, this exponent is characterized by a feature specification that is underspecified with respect to gender: [–fem].

Exactly the same situation arises with case features. As shown in Table 2, the marker -es is employed for both nominative neuter and accusative neuter contexts. This syncretism is in line with a basic Indo-European principle (see n. 2), and thus certainly not accidental. The syncretism with -e in nominative feminine and accusative feminine contexts in German looks systematic in the same way; and so on. This can be taken to indicate that cases should be decomposed into combinations of primitive features in the same way as genders. Bierwisch’s (1967) proposal (which builds on Jakobson’s general assumptions for Slavic but modifies his specific suggestions substantially) is based on the cross-classification of the two primitive case features [±obj(ect)] and [±obl(ique)]; it is given in 3.

4 The fourth combination that is logically possible—[±masc,+fem]—may be assumed to be unavailable due to conflicting gender information.

5 Bierwisch originally had [±gov(erned)] instead of [±obj]. This difference is purely terminological. We use [±obj] here mainly because it may be a bit more widespread in the more recent literature.
Decomposition of case features in German

a. nominative = [–obj,–obl]
b. accusative = [+obj,–obl]
c. dative = [+obj,+obl]
d. genitive = [–obj,+obl]

From this it follows that nominative and accusative form a natural class in German (captured by the feature [–obl], which they exclusively share), as do genitive and dative ([+obl]), accusative and dative ([+obj]), and nominative and genitive ([–obj]). In contrast, nominative and dative do not form a natural class, and neither do accusative and genitive. Thus, one does not expect systematic instances of syncretism to affect exclusively these latter two case pairs.

By assuming underspecification with respect to case, gender, and number information, natural classes of these instantiations of grammatical categories can be defined, and instances of syncretism that document these natural classes can be derived. Of all the above-mentioned analyses that pursue this general kind of approach to pronominal inflection marking in German, we focus on a version of Blevins’s (1995) account in what follows, both for the illustration of the mechanics of undespecification and for hypothesis formation for our empirical investigation.6

The essentials of Blevins’s (1995) analysis of the system of pronominal inflection marking in German are given in 4. On this view, there are eight morphological exponents, all of which are underspecified with respect to morphosyntactic features (case, gender, number). In fact, one marker (/e/, realized as [ə]) is fully underspecified with respect to all such information; it emerges as an ELSEWHERE marker.7

6 The reasons for choosing a version of Blevins’s approach over others are as follows. First, it reduces the number of different inflection markers to eight; other accounts (like that of Wiese (1999)) may have to envisage more exponents. Second, Blevins’s account can easily be construed as involving MAXIMAL (rather than MINIMAL) underspecification; this becomes relevant below. Third, this approach avoids TRANSCATEGORIAL features, where a feature counts as transcategorial if it simultaneously encodes information of two (or more) grammatical categories (e.g. gender and number features). As shown by Wiese (1999) and Trommer (2005), it is in principle possible to further reduce the number of inflection markers to the logical minimum of five exponents if one is prepared to adopt such features (e.g. all occurrences of -er could be assumed to go back to a single feature, call it [α], if [α] were to exclusively encode the contexts [nominative masculine singular], [dative/genitive feminine singular], and [genitive plural]). If transcategorial features are permitted, however, the theory by necessity becomes completely unconstrained. Fourth, Blevins’s analysis does not involve DISJUNCTIVE FEATURE SPECIFICATIONS, in contrast to, for example, Bierwisch 1967 and Wunderlich 1997a. Disjunctive specifications state (rather than derive) instances of syncretism. Fifth and finally, Blevins’s approach does not have to stipulate an extrinsic order of markers (as is done in Bierwisch 1967). All that said, it should be pointed out that we have tacitly modified a number of minor aspects of Blevins’s analysis; here the rationale was to adjust the gist of his approach to a more theory-neutral system (e.g. by dispensing with inheritance hierarchies).

7 Some remarks on notation. First, the presentation of the association of form and content of an inflectional exponent by ↔ is as in DISTRIBUTED MORPHOLOGY (see Halle & Marantz 1993), but this is purely for presentational purposes. It should be kept in mind that all that follows can equally well be expressed in any of the other current morphological theories that recognize underspecification (as a matter of fact, Blevins’s analysis is originally formulated in a different morphological framework). Crucial differences between the various underspecification-based morphological theories (like the distinction between incremental and realizational organization, or the lexical/inferential divide; see Stump 2001) are completely orthogonal to our concerns here. Furthermore, note that the morphological exponents are rendered in an abstract, phonemic form (as indicated by the / / notation); thus, [ə] insertion that produces, say, -en from underlying /n/ is phonologically predictable, and should thus not be stated as a property of the marker form.
(4) Inventory of exponents for pronominal inflection in Blevins 1995

a. /n/ ↔ [+obj,+obl,+pl] (DAT.PL)
b. /m/ ↔ [+fem,+obj,+obl] (DAT.M.SG/N.SG)
c. /s/ ↔ [+fem,+obl] (GEN.M.SG/N.SG)
d. /r/ ↔ [+obl] (DAT/GEN.F.SG, GEN.PL)
e. /n/ ↔ [+masc,+fem,+obj] (ACC.M.SG)
f. /r/ ↔ [+masc,+fem,–obl] (NOM.M.SG)
g. /s/ ↔ [–fem,–obl] (NOM/ACC.N.SG)
h. /e/ ↔ [] (NOM/ACC.F.SG/PL)

At this point, what is needed is a method to correctly match the underspecified exponents in 4 to the fully specified syntactic contexts (or paradigm cells) in which they appear; that is, it remains to be shown how the paradigm in Table 2 can be derived from the marker inventory in 4. To achieve this, underspecification-based approaches employ two general requirements that we refer to as COMPATIBILITY and SPECIFICITY. These requirements can then be combined into the general principle governing morphological realization (and thus the correct filling of paradigm cells) given in 5.8

(5) MORPHOLOGICAL REALIZATION: A morphological exponent M is chosen for a syntactic context (or paradigm cell) S if (a) and (b) hold.

a. M is compatible with S.

b. M is the most specific exponent among those that satisfy 5a.

Compatibility can be understood as 6.

(6) COMPATIBILITY: A morphological exponent M is compatible with a syntactic context (or paradigm cell) S if M realizes a SUBSET of the morphosyntactic feature/value pairs of S.

From compatibility it follows that, for example, the exponent /m/ (which is specified as [+fem,+obj,+obl]) cannot be used in accusative contexts (which are specified as [+obj,–obl] and therefore cannot form a superset of the former specification). It also follows from compatibility that /m/ cannot be used in dative feminine contexts (since the latter are specified as [+fem,+obj,+obl], which is incompatible with the marker’s [+fem,+obj,–obl] specification). In contrast, /m/ is compatible with dative masculine singular contexts and dative neuter singular contexts, where it does indeed occur.

However, compatibility alone does not suffice to ensure correct marker choice in underspecification-based theories. In many cases (in fact, in almost all syntactic contexts identified in Table 2, except for nonoblique feminine or plural specifications), more than one exponent is compatible (in the sense of 6) with the syntactic target specification. Consider, for example, accusative masculine singular contexts. It turns out that four exponents in 4 are compatible with the syntactic specification [+masc,–fem,+obj,–obl,–pl]. This is illustrated in 7.

Different compatible markers for accusative masculine singular contexts

<table>
<thead>
<tr>
<th>SYNTACTIC CONTEXT</th>
<th>MARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+masc, –fem, +object, −oblique, −pl]</td>
<td>/n/ ↔</td>
</tr>
<tr>
<td></td>
<td>/r/ ↔</td>
</tr>
<tr>
<td></td>
<td>/s/ ↔</td>
</tr>
<tr>
<td></td>
<td>/e/ ↔</td>
</tr>
</tbody>
</table>

More generally, underspecification typically has the effect of producing a competition of different markers for one and the same morphosyntactic context. The competition can be resolved by invoking specificity in addition to compatibility, as is done in 5b. A simple definition of specificity is given in 8.9

(8) SPECIFICITY: A morphological exponent M₁ is more specific than a morphological exponent M₂ if M₁ realizes more features than M₂.

Given the principle of morphological realization in 5, it follows from 8 that /n/ wins the competition in 7; it emerges as the most specific marker that is available. Similarly, it can easily be verified that the inventory of exponents in 4 fully derives the paradigm of pronominal inflection marking in German, and thus accounts for a number of instances of syncretism in a principled way.10

At this point, we may note that given the compatibility and specificity requirements for morphological realization, there may in fact be two distinct reasons underlying the failure of morphological exponents to qualify as optimal for some particular syntactic context. In accusative neuter singular contexts, for instance, /s/ (with the specification [–fem,–obl]) is chosen, given 5. The exponent /n/ (with the specification [+masc,–fem, +obj,–obl]), which is chosen in accusative masculine singular contexts, is excluded here because of compatibility (via the feature [+masc]); in contrast, the exponent /e/ (with the empty specification []), which is chosen in accusative feminine singular contexts, is excluded here not because of compatibility (there are no features that could conflict) but because of specificity. This becomes relevant later.

9 It has sometimes been argued that the notion of specificity should be taken to be more complex, for example, by incorporating a hierarchy of features or feature types; see Lumsden 1992, Noyer 1997, and Wiese 1999, among others. For present purposes, we can abstract away from these complications, though.

10 Three remarks are in order. First, the system as it is laid out here presupposes that gender is indeed neutralized in plural contexts; that is, no grammatical gender information is present in the plural. This implies that exponents bearing gender features will always violate compatibility in plural contexts.

Second, the analysis still leaves a number of marker homonymies: there are two /n/ exponents, two /s/ exponents, and two /r/ exponents, with different specifications in each case. As noted above, it is hard to see how these remaining kinds of unresolved syncretism could be accounted for in an underspecification-based approach if transcategorial features are avoided. However, see Wiese 1996, Wunderlich 1997a, Eisenberg 2000, and Zifonun 2001 for arguments (based on distributional evidence) that exactly these instances of syncretism should in fact not be derived systematically; if these arguments are correct, a Blevins-type approach that leaves these instances of syncretism unresolved is in fact optimal.

Third and finally, since we are mainly concerned with strong adjective inflection in what follows, the question arises of how to integrate the /n/ exponent that replaces /s/ of the pronominal inflection there in genitive masculine singular and genitive neuter singular contexts. On the one hand, there does not seem to be a way to systematically derive the syncretism with accusative masculine singular /n/; accusative and genitive do not even form a natural class. (Of course, similar problems would arise with dative plural /n/.) On the other hand, distributional evidence, as has just been mentioned, also argues against any attempts to treat the two kinds of /n/ markers as one; to wit, the syncretism breaks down when whole NPs are taken into account: gut-en Weinex ‘good.GEN wine.GEN’ versus gut-en Wein-∅ ‘good.ACC wine.ACC’. Thus, the obvious way to integrate this genitive /n/ into the system of exponents is to simply let it replace, and take over the feature specification of, /s/ in 4c.
Underspecification-based approaches to syncretism that rely on feature decomposition and competition resolution by specificity can be viewed as well established and successful. These concepts play an important role in many current linguistic theories, among them distributed morphology (Noyer 1992, Halle & Marantz 1993, Harley & Noyer 2003), minimalist morphology (Wunderlich 1996, 1997b, 2004), A-morphous morphology (Anderson 1992, Aronoff 1994), paradigm function morphology (Stump 2001), network morphology (Corbett & Fraser 1993), and various accounts in optimality theory (Grimshaw 2001, Trommer 2001, 2006).

Still, it seems clear that if morphological realization centers around (a principle like) 5 and relies on concepts like underspecification, feature decomposition, and competition resolution, this will create an extra layer of morphological complexity and implies additional processing routines (note that underspecification and feature decomposition do not seem to be independently motivated in syntax, thereby essentially creating purely ‘morphemic’ structure, that is, what Aronoff (1994) calls ‘morphology by itself’). Therefore, as mentioned earlier, it would seem that reducing the effort in the storing component (by having morphological exponents with multiple functions, that is, syncretism) increases computational effort in the procedural parts of the grammar not only in syntax (by giving rise to ambiguity) but also in morphology (by requiring additional means to manage syncretism in the grammar), and vice versa. At present, there is still a very lively, ongoing debate about whether reducing the effort for the lexicon or the procedural component of the grammar should be a preferred strategy in the modeling of grammatical knowledge (see e.g. construction grammar as laid out in Tomasello 2003 and Goldberg 2006 versus classical rule-based approaches), as well as in the modeling of language processing in the human mind in psycholinguistics (see the next section).

1.3. Underspecification in Psycholinguistics. Psycholinguistic research on inflectional morphology has predominantly focused on whether inflected word forms are processed and stored as whole words or decomposed into more basic components (e.g. stem and inflectional affix) and on how mental representations of inflected word forms are related to each other. There are many accounts where the full-listing hypothesis is adopted (Butterworth 1983), and there are also many accounts arguing for morphological substructure (Taft & Forster 1975). Finally, there are dual-route models in which both mechanisms may operate more or less simultaneously (Caramazza et al. 1988, Pinker 1991, Clahsen et al. 2003). For overviews see Schriefers 1999 and Marslen-Wilson 2007.

However, at present relatively little is known about the psychological reality of more fine-grained analyses of inflectional phenomena as they have been advanced in morphological theory. As should be clear from the previous section, these kinds of analyses are very common in theoretical linguistics. They establish a radically different view on the nature of morphosyntactic features and categories. As seen above, morphology may not necessarily operate with holistic instantiations of grammatical categories as they are known from syntax such as, for example, masculine vs. feminine vs. neuter gender, or nominative vs. accusative vs. dative vs. genitive case. Instead, an underlying fine-structure of these labels has been argued for that reflects systematic and structural relations between them.

Whereas this conclusion would seem to be entirely uncontroversial for underspecification and competition, it may not be completely obvious at first sight for feature decomposition, especially in view of the fact that underspecification can in principle take place without feature decomposition. However, it is shown in Müller 2008 that all of the theories just mentioned regularly employ feature decomposition.
Strongly related to this notion of feature decomposition is the question of the relation of single inflection markers in the lexicon and how they may differ from each other with respect to the number and kind of features they represent. More precisely, the question arises of whether the fine-grained structures assumed by analyses in theoretical linguistics are also relevant for human language comprehension, and whether inflection markers are processed in the way predicted by underspecification models.

Until now only a few psycholinguistic studies have addressed this issue; see, for example, Clahsen et al. 2001, Janssen & Penke 2002, and Penke et al. 2004. In Clahsen et al. 2001 the authors report a study on German adjectival inflection. They show that inflected words with a highly specific affix (-em) lead to longer reaction times in a lexical-decision task than words with less specific affixes (-es) irrespective of the frequency of the whole word form. Since these results may also be interpreted as an effect of the frequency of the relevant affixes, the authors additionally report a cross-modal priming experiment. They argue that this specific experimental task is less prone to possible frequency effects of the phonological word forms. Again the results of this experiment are compatible with the notion of differences in specificity of different inflection markers. But, crucially, the results of both experiments may be confounded by phonological factors. This holds, for instance, for the observed asymmetry in priming of -e → -(e)s (= reduced priming) versus -(e)s → -e (= full priming). In these cases the degree of phonological overlap could well be a critical factor, especially in priming experiments, which are known to be susceptible to such effects.

Penke and colleagues (2004) also focus on feature specifications of inflected adjectives and determiners in German. They use a sentence-matching task to compare reading times of correct and incorrect sentences. This experimental paradigm is prone to the so-called ‘grammaticality effect’: that is, when two sentences have to be compared and it needs to be determined whether they are identical, participants’ reaction times are sensitive to the grammaticality of these sentences. Response times typically slow down for the judgment of incorrect compared to correct sentences. The authors report significant differences for this grammaticality effect for different types of incorrect markers on adjectives and determiners, concluding that the feature specifications of these markers conflict differently with the features of the syntactic context. For markers with underspecified but nonconflicting features they obtained no grammaticality effect, whereas whenever a (positively valued) feature was in conflict with a (negatively valued) feature of the context, reaction times slowed down. This study thus reports first evidence that the two above-mentioned distinct principles of specificity and compatibility lead to separable effects in behavioral experimental tasks.

Moreover, Penke and colleagues presuppose a fundamental, qualitative distinction between positive and negative feature specifications. The authors claim that the former ‘are a part of the representations of morphologically complex word forms or affixes, whereas negative features are assigned on the basis of paradigmatic contrasts’ (Penke et al. 2004:432). Therefore they suggest that only positive feature values may conflict with features of the syntactic context and hence slow down participants’ reaction times.

Another study that addresses the issue of underspecified inflection markers is Janssen & Penke 2002. The authors investigate verb-subject agreement errors of elicited speech-production data of German agrammatic aphasics. The basic assumption is that verb-subject agreement is not impaired in principle in agrammatic aphasics but that they produce erroneous forms slightly more often than an unimpaired control group would do. The authors compare the results of two different elicitation tasks with predictions drawn from two different morphological models of the representation of inflec-
tional affixes: (i) the NETWORK MORPHOLOGY model that relies on default inheritance trees (Corbett & Fraser 1993), and (ii) the MINIMALIST MORPHOLOGY model, an account based on underspecified paradigms by Wunderlich (1996). Janssen and Penke (2002) hypothesize that the different conceptual representations of affixes in the two accounts should be manifested in different types of substitution errors in language production. The results reported by Janssen and Penke support Wunderlich’s account.

So far, all empirical evidence that underspecification might be involved in the processing of language comes from studies (of both healthy and aphasic participants) that use BEHAVIORAL methods to measure responses to linguistic stimuli. These studies cannot display the exact timing of how and when morphological information is processed. Moreover, some of the studies presented inflected words in isolation (see Clahsen et al. 2001). Here it is not clear to what extent the obtained effects are induced by these tasks, and how inflected word forms are processed without any (at least minimal) morphosyntactic context information.

In order to investigate the on-line processing of morphological information, we conducted an ERP (event-related potential) experiment in which correctly and incorrectly inflected word forms were embedded in plausible morphosyntactic contexts. An important advantage of the ERP method is that it allows for a measurement of highly automatic and even subconscious processes relevant to language, with a high temporal resolution (see Friederici 2002, Kaan 2007). The ERP violation paradigm that was used for the present study compares EEG responses to correct versus incorrect linguistic stimuli. This comparison reveals typical brain potential patterns that are usually defined as ERP components according to their electrophysiological and functional characteristics. These characteristics comprise the latency, amplitude, scalp distribution, and sensitivity of an evoked potential. Language-related ERP components are, for example, a left anterior negativity (LAN) and a late positivity (P600), which have been shown to be sensitive to morphosyntactic information processing. The LAN usually emerges around 300–500 ms after stimulus presentation, with unilateral or bilateral distribution on anterior sites. A LAN is often evoked when a participant encounters a morphosyntactic violation; it is commonly associated with error detection on a phrase-structural or morphosyntactic level (see e.g. Kluender & Kutas 1993, King & Kutas 1995, and Münte et al. 1998). This component is sensitive to grammatical violations that hinder integration of the stimulus into the morphosyntactic context, such as word category or agreement errors. By contrast, the P600 consists of a stronger deviation of wave forms toward positivity. It emerges between 500–900 ms and displays a centroparietal scalp distribution. The P600 component has been predominantly found for syntactic anomalies (see e.g. Friederici et al. 1993, Friederici & Meyer 2004, and Rossi et al. 2005), but also for syntactically complex or ambiguous sentence structures (see Friederici et al. 2002, Friederici & Weisborn 2007), as well as for semantic-pragmatic anomalies (see Regel et al. 2011). The P600 effect in response to syntactic manipulations has been interpreted as a reflection of controlled processes engaged in reanalysis or repair of sentences.

2. EXPERIMENT.

2.1. SETTING THE STAGE. In the present study we examined whether underspecification of inflection markers, assumed as a core principle in morphological theory, is relevant for processing inflection in language comprehension. In order to approach this issue, we used the ERP violation paradigm to investigate brain responses to morphologically correctly and incorrectly marked phrases in German.

The underlying idea is that if the assumption of underspecified morphological markers is correct, we expect a modulation of the LAN component in response to the two dif-
ferent types of illicit morphological exponents. More specifically, these processing differences should depend on the KIND OF VIOLATION an incorrect morphological marker represents. Basically, the question was whether incorrect markers with INCOMPATIBLE features (i.e. a violation of compatibility) trigger different responses from markers that are COMPATIBLE but ruled out due to their insufficient specificity (i.e. a violation of specificity). These differences should be mirrored by diverging amplitudes of the error-detection component (LAN) and/or the component reflecting reanalysis and repair (P600).

In the experiment reported here we investigated the processing of case-marked and gender-marked adjectives in complex prepositional phrases in German. All phrases consisted of a preposition followed by an adjective and a noun. As seen above, (prenominal) adjectives in German agree with a noun with respect to case, gender, and number. These categories are expressed morphologically as (fusional) suffixes on the adjective. We focused on the morphological exponents of the strong adjective inflection (which, as noted above, is nearly identical to the pronominal inflection paradigm). More specifically, we compared the three inflection markers in the accusative singular for each of the three genders (i.e. feminine, masculine, and neuter), as seen in 9.

(9) a. durch schlicht-e Struktur
 by plain-F.SG.ACC structure.F
b. durch schlicht-en Geschmack
 by plain-M.SG.ACC taste.M
c. durch schlicht-es Design
 by plain-N.SG.ACC design.N

The choice of exactly these three morphological exponents (/e/, /n/, /s/) is due to two considerations. First, the three markers in the accusative singular domain of the paradigm are very likely to differ with respect to the kind and number of their morphosyntactic features. The feature specifications of these three exponents according to Blevins’s (1995) analysis are repeated from 4 in 10.

(10) Underspecified accusative markers (Blevins 1995)
e. /n/ ↔ [+masc,−fem,+obj,−obl]
g. /s/ ↔ [−fem,−obl]
h. /e/ ↔ []

In this analysis, /n/ is the most specific of the three markers, while /e/ is the least specific (elsewhere) marker of the whole system (it is radically underspecified).12 Showing up in syntactic accusative contexts, the morphological exponent /e/ should therefore always meet the compatibility criterion, while /n/ and /s/ may give rise to a feature conflict.

12 Note that the /n/ marker is the most specific of the three markers not just in the analysis of Blevins (1995). The short overview in (i) summarizes the number of features assigned to each of the markers in Bierwisch 1967, Blevins 1995, Wunderlich 1997a, and Wiese 1999.

(i)

<table>
<thead>
<tr>
<th></th>
<th>/n/</th>
<th>/s/</th>
<th>/e/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bierwisch</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blevins</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Wiese</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Wunderlich</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Comparing these four different analyses with respect to the number of features they assign to each of the three markers, a general trend can be detected: /n/ tends to be more specific than /s/ and /e/, and /e/ tends to be the most underspecified (default) marker of the system, although its status relative to /s/ is less clear—Bierwisch and Wunderlich identify /s/ as the elsewhere exponent. Arguments against such a view based on considerations related to iconicity are given in Wiese 1999 and Müller 2002.
The second reason for choosing these three markers in particular is that, when comparing different forms in different conditions in an ERP experiment, as many other factors as possible should be identical; that is, the syntactic contexts should differ only in the feature specifications immediately relevant to the experiment. This requirement could be met by manipulating the gender of the noun that the adjective agrees with, while keeping all other factors of the context (e.g. number (singular) and case (accusative)) identical. Thus, these three morphological exponents (/e/, /n/, /s/) in the accusative domain of the paradigm were good candidates to test our hypothesis, because many existing theoretical approaches to pronominal inflection and strong adjective inflection in German converge on the assumption that the feature specifications of these exponents may differ with respect to both specificity and compatibility if chosen in incorrect contexts, and because other factors could be kept nearly identical in the different conditions.

As mentioned earlier, the basic idea of the experimental design was that, whenever gender agreement was manipulated, the incorrect versions should represent different types of violation depending on the nature of their illegitimacy (viz. incompatibility of features versus a lack of specificity).

This basic idea is illustrated in 11 for phrases containing neuter nouns (more precisely, accusative neuter singular contexts). Depending on whether the preceding adjective is incorrectly marked with /e/ (i.e. a feminine form) or /n/ (i.e. a masculine form), two different types of violations occur.13

(11) Two types of illicit neuter agreement (based on marker specifications in Blevins 1995)

a. correct
 durch schlichtes Design
 by plain.N design.N
 [–fem,–obl] [–masc,–fem]
 [+obj,–obl]

b. incorrect1
 compatible (excluded by specificity)
 *durch schlichte Design
 by plain.F design.N
 [] [–masc,–fem]
 [+obj,–obl]

c. incorrect2
 incompatible (excluded by compatibility)
 *durch schlichten Design
 by plain.M design.N
 [+masc,–fem] [–masc,–fem]
 [+obj,–obl] [+obj,–obl]

Assuming that all potentially intervening factors can be excluded, this difference of a violation of compatibility versus specificity should be mirrored in a systematically different pattern in relevant ERP components when comparing the two incorrect conditions with the correct condition. More precisely, regarding error detection we hypothesized that whenever a marker has conflicting features, this could be a stronger cue for error detection than an incorrect but compatible marker. Under this view, an in-

13 Incompatible features that give rise to compatibility violations are set in boldface, here and in what follows.
compatible marker can be regarded as a major violation compared to a compatible (but still incorrect) marker, which in turn should represent a minor violation. By contrast, if morphological underspecification does not play a role in language processing and if the difference between correct and incorrect conditions is a categorical one instead, both incorrect conditions should induce similar brain activity for detecting the mismatch.

Concerning the experimental design, it is important to emphasize that we did not compare the forms of differently inflected adjectives in isolation. When incrementally presented, all phrases are correct until the noun is encountered, and the system cannot detect any error up to this point. Only when the (gender) features of the noun are available can the wrong morphological exponent of the adjective become detectable. We therefore compared ERPs during the processing of the noun, not the adjective, since it is at this position that the morphosyntactic agreement between the adjective and the noun becomes manifest, and agreement actually has to be evaluated. An additional advantage of this experimental set-up is that one does not have to compare different phonological forms for critical epochs: in all three conditions within one gender (i.e. one correct condition and two incorrect conditions) identical forms are compared (e.g. the word Design in the example above).

2.2. MAXIMAL VERSUS MINIMAL UNDERSPECIFICATION. Next, in addition to distinguishing between a traditional, categorical account and underspecification-based accounts, the present investigation was supposed to shed new light on a fundamental question that has only recently begun to come to the fore in theoretical linguistics: assuming that morphological underspecification exists, it remains an open question to what extent exponents should be taken to be underspecified. If a homogeneous approach is to be pursued here, it seems that the two options are that inflection markers should be either minimally or maximally underspecified. Many analyses, like that of Blevins (1995), try to reduce feature specifications as much as possible, yielding maximally underspecified markers. By contrast, it is also possible to retain as many features as possible by omitting only those that give rise to inconsistencies among the occurrences of some marker. This latter kind of approach relies on minimal (or ‘contrastive’) underspecification. The learning algorithm for acquiring underspecified morphological exponents that is sketched in Harley 2001 and developed in some detail in Pertsova 2007 (where it is called the no-homonymy learner) implies such a minimal underspecification: underspecified feature structures of exponents are learned by intersecting the sets of the different (fully specified) environments; as soon as a minimally underspecified exponent can be postulated, the algorithm stops, with no option to proceed to a more substantially (or even maximally) underspecified marker. Consequently, in an analysis that envisages minimal underspecification, markers may still contain redundant features.

The two strategies yield different conceptual benefits. Analyses relying on maximal underspecification may be regarded as more elegant from a purely formal point of view. As a side effect, if feature sets of markers are kept as small as possible, the complexity of the lexical component of such systems is further reduced: fewer features have to be stored for each vocabulary item. In contrast, analyses based on minimal underspecification keep the feature sets of each vocabulary item as rich in content as possible; features are reduced only as much as necessary to cover patterns of syncretism. This strategy may leave lexical entries of morphological exponents rather complex (viz. as specific as possible); however, it reduces processing efforts since the number of competing markers for each cell in the paradigm is minimized. Thus, even in underspecification-based approaches, the lexical–procedural dichotomy still emerges as relevant. An empirical argument in favor of minimal or maximal underspecification can thus be
regarded as an interesting result. It emphasizes either the role of the lexicon by reducing
demands on the procedural part or vice versa.

As a case in point, consider Blevins’s (1995) analysis again. Closer inspection re-
veals that the specifications of markers in 4 still contain redundant features, despite an
overall orientation toward maximal underspecification. For concreteness, it is the [–obl]
feature in the specifications associated with the markers /r/ (for nominative masculine
singular contexts, in 4f) and /s/ (for nominative and accusative neuter singular contexts,
in 4g) that is not strictly necessary in order to fully derive the paradigm. A strengthened,
maximally underspecified version of Blevins’s system that does without these two oc-
currences of [–obl] is given in 12.

(12) Inventory of exponents in Blevins 1995, modified to maximal underspecifi-
cation
a. /n/ ↔ [+obj,+obl,+pl] (DAT.PL)
b. /m/ ↔ [+fem,+obj,+obl] (DAT.M.SG/N.SG)
c. /s/ ↔ [–fem,+obj] (GEN.M.SG/N.SG)
d. /t/ ↔ [+obl] (DAT/GN.F.SG, GEN.PL)
e. /n/ ↔ [+masc,+fem,+obj,–obl] (ACC.M.SG)
f. /t/ ↔ [+masc,+fem] (NOM.M.SG)
g. /s/ ↔ [–fem] (NOM/ACC.N.SG)
h. /e/ ↔ [] (NOM/ACC.F.SG/PL)
In 12, the set of features associated with each marker—and thus, the information that
has to be stored for each item—is maximally reduced.

By contrast, an analysis that maintains underspecification but tries to keep the feature
configurations of markers as specific as possible admits redundant features for markers.
The list of exponents in 13 illustrates an analysis in terms of minimal underspecifica-
tion on the basis of a modified version of Blevins’s original account. Here, all redundant
features that do not create a conflict with possible contexts of insertion are retained in
the markers’ specifications. 14

(13) Inventory of exponents in Blevins 1995, modified to minimal underspecifi-
cation
a. /n/ ↔ [+obj,+obl,+pl] (DAT.PL)
b. /m/ ↔ [–fem,+obj,+obl,–pl] (DAT.M.SG/N.SG)
c. /s/ ↔ [–fem,+obj,–obl,–pl] (GEN.M.SG/N.SG)
d. /t/ ↔ [+obl] (DAT/GN.F.SG, GEN.PL)
e. /n/ ↔ [+masc,+fem,+obj,–obl,–pl] (ACC.M.SG)
f. /t/ ↔ [+masc,+fem,–obj,–obl,–pl] (NOM.M.SG)
g. /s/ ↔ [–masc,+fem,–obl,–pl] (NOM/ACC.N.SG)
h. /e/ ↔ [–obl]15 (NOM/ACC.F.SG/PL)

14 The additional features are set in italics.
15 Note that /e/ could in principle also additionally be specified for gender features (e.g. [+fem]) in order to
avoid competition with markers in the masculine and neuter cells of the paradigm. However, such a step
would produce complications for the occurrence of /e/ in the nominative and accusative plural. There, /e/
is used for all genders. A correct insertion of /e/ for masculine and neuter forms would then be ruled out, even if
we assume that gender features are not active in plural contexts in German, because of a compatibility viola-
tion. This issue could be addressed by a transcategorial feature decomposition that affects both feminine and
plural (see Wiese 1999, Trommer 2005). However, such an approach would be ad hoc as it would blur con-
ceptually well-founded feature categories (i.e. gender and number) and lead to a completely unrestricted the-
ory (see above). In the analysis given here we follow the more conservative account and assume that gender
and number features are only available separately. Thus, /e/ cannot be specified for gender features.
The two (or three, given the difference between our original version of Blevins’s system and the one employing maximal underspecification) analyses are extensionally equivalent; it is not clear whether any independent evidence can be adduced for or against either of them purely on the basis of a theoretical approach. The situation is different if a neurophysiological perspective is taken.

2.3. Hypotheses and Predictions. Our hypothesis is that if the underspecification approach is on the right track, there should be two different kinds of morphosyntactic violations when gender agreement on adjectives is manipulated. The first kind of violation is induced by incompatible features; thus, it gives rise to a compatibility problem. In contrast, incorrectness due to insufficient specificity represents a second kind of violation, viz., a violation of specificity. While, on the one hand, a violation of compatibility can be regarded as a major violation for the system (i.e. a relatively strong cue for error detection, and larger LAN), violating specificity, on the other hand, can be regarded as a minor violation (i.e. a less salient cue for error detection). It is important to note that for each gender the predictions about the type of violation of the two incorrect versions differ. Moreover, the two versions of underspecification-based accounts (employing maximal versus minimal underspecification) lead to different predictions. Based on the maximal underspecification account, we expect the pattern in 14.

(14) Two types of illicit agreement, with maximal underspecification (as in 12)
 a. for feminine phrases:
 IDENTICAL kind of violation (compatibility)
 context features: [–masc,+fem,+obj,–obl]
 correct marker: -e []
 incompatible (incor1): -(e)n [+masc,–fem,+obj,–obl]
 incompatible (incor2): -(e)s [–fem]
 b. for masculine phrases:
 IDENTICAL kind of violation (specificity)
 context features: [+masc,–fem,+obj,–obl]
 correct: -(e)n [+masc,–fem,+obj,–obl]
 compatible (incor1): -(e)s [–fem]
 compatible (incor2): -e []
 c. for neuter phrases:
 DIFFERENT kind of violation (compatibility vs. specificity)
 context features: [–masc,–fem,+obj,–obl]
 correct: -(e)s [–fem]
 incompatible (incor1): -(e)n [+masc,–fem,+obj,–obl]
 compatible (incor2): -e []

Thus, in an approach that relies on maximal underspecification (see 14), predictions for incorrect conditions differ only for neuter nouns. In this context, an /n/-marked adjective triggers a feature conflict (i.e. it violates compatibility), whereas an /e/-marked adjective does not bear conflicting features but violates specificity. In contrast, in an approach that relies on minimal underspecification (see 15), there are also different predictions for masculine contexts.

(15) Two types of illicit agreement, with minimal underspecification (as in 13)
 a. for feminine phrases:
 IDENTICAL kind of violation (compatibility)
 context features: [–masc,+fem,+obj,–obl,–pl]
 correct marker: -e [–obl]
incompatible (incor1): -(e)n \(+\text{masc,–fem,}+\text{obj,–obl,–pl}\)
incompatible (incor2): -(e)s \(–\text{masc,–fem,}–\text{obl,–pl}\)

b. for masculine phrases:
DIFFERENT kind of violation (compatibility vs. specificity)
context features: \(+\text{masc,–fem,}+\text{obj,–obl,–pl}\)
correct: -(e)n \(+\text{masc,–fem,}+\text{obj,–obl,–pl}\)
incompatible (incor1): -(e)s \(+\text{masc,–fem,}+\text{obj,–obl,–pl}\)
compatible (incor2): -e \(–\text{obl}\)

c. for neuter phrases:
DIFFERENT kind of violation (compatibility vs. specificity)
context features: \(–\text{masc,–fem,}+\text{obj,–obl,–pl}\)
correct: -(e)s \(–\text{masc,–fem,}–\text{obl,–pl}\)
incompatible (incor1): -(e)n \(+\text{masc,–fem,}+\text{obj,–obl,–pl}\)
compatible (incor2): -e \(–\text{obl}\)

The difference between 14b and 15b is that in the approach based on minimal underspecification (i.e. 15b), there is a redundant \(–\text{masc}\) feature of the marker /s/. This feature is predicted to yield a conflict with the syntactic context, and therefore to induce a qualitatively different error compared to the illicit but compatible /e/ marking. Thus, the two models differ in their predictions about masculine phrases. While with maximal underspecification both incorrect exponents represent the same kind of violation (satisfying compatibility and fatally violating specificity), with minimal underspecification they differ: the /e/ marker is still compatible but the /s/ marker now violates compatibility.

To sum up, the predictions for the processing of different incorrect markers for a categorical versus two different versions of underspecification-based accounts are given in Table 3.16

<table>
<thead>
<tr>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITHOUT</td>
</tr>
<tr>
<td>NOUN GENDER</td>
</tr>
<tr>
<td>categorical</td>
</tr>
<tr>
<td>feminine (correct e)</td>
</tr>
<tr>
<td>neuter (correct s)</td>
</tr>
<tr>
<td>masculine (correct n)</td>
</tr>
</tbody>
</table>

Table 3. Predictions: assumed processing differences for different incorrect markers.

2.4. METHOD.

PARTICIPANTS. Forty-two native German-speaking students (twenty-one female, mean age 26.0 years (SD 2.7)) participated in the experiment. All subjects were right-handed, had normal or corrected-to-normal vision, and were paid for their participation.

STIMULUS MATERIAL. As stimulus material a set of 180 experimental items and sixty filler items was used. All items were German prepositional phrases consisting of a preposition followed by an inflected adjective and a noun, for example, durch gute Arbeit ‘by good work’. Four prepositions that uniquely govern accusative case were chosen: durch ‘by’, ohne ‘without’, für ‘for’, and gegen ‘against’. Singular neuter, feminine, and masculine adjective-noun combinations (twenty noun phrases each) were used as completion of the prepositional phrase. All nouns were matched for frequency (half frequency class

16 Some notational conventions in Table 3: 1 signals a violation of specificity; 2 signals a violation of compatibility; \(\alpha = \beta\) indicates the same type of violation/the same processing; and \(\alpha < \beta\) indicates a different type of violation/different processing.
11, half frequency class 12 according to http://wortschatz.uni-leipzig.de), length (an average length of six letters), and syllable structure (only disyllabic words), and differed only in gender. The nouns of each of the three genders included morphologically simple as well as derived forms. The overall proportion of derived forms within each gender group was kept as similar as possible across the three groups (i.e. masculine: c. 40%; feminine: c. 50%; neuter: c. 30%). To ensure that potential ERP effects did not result from differences in plausibility and familiarity, two pretests were carried out on the stimuli. In a rating study, the familiarity of the prepositional phrases was examined. In this pretest, eighteen participants rated the prepositional phrases on a seven-point scale from unfamiliar to very familiar. On average, experimental itemswererated with 3.6; differences between the items \(F(1,179) = 0.06, \text{n.s.} \) were not found. In a further pretest, the degree of plausibility was tested in a rating using a seven-point scale from implausible to very plausible. Average plausibility of the items was 4.1. Differences in plausibility were not found \(F(1,179) = 0.47, \text{n.s.} \). A list of the experimental material (correct items) is given in the appendix.

For the morphosyntactic violation conditions, two additional incorrect versions were created for each of the 180 correct phrases: the morphological marker at the adjectival ending, that is, /e/, /n/, or /s/, was manipulated in such a way that it resulted in a gender disagreement between the adjective and the noun. All three inflectional markers /e/, /n/, and /s/ were fully crossed, leading to nine experimental conditions (see Table 4).

<table>
<thead>
<tr>
<th>MASCULINE NP</th>
<th>NEUTER NP</th>
<th>FEMININE NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRECT</td>
<td>ohne neuen Rabatt</td>
<td>ohne neues Genre</td>
</tr>
<tr>
<td>INCORRECT 1</td>
<td>ohne neue Rabatt</td>
<td>ohne neue Genre</td>
</tr>
<tr>
<td>INCORRECT 2</td>
<td>ohne neue Rabatt</td>
<td>ohne neue Genre</td>
</tr>
</tbody>
</table>

Table 4. Experimental design/conditions.

Thus, the noun was critical for the grammaticality of the phrase since at this position it became clear whether the phrase structure was morphosyntactically correct. Filler items were similar to experimental items and were all morphosyntactically correct in order to balance the ratio of correct and incorrect items.

PROCEDURE. Participants were tested individually in a thirty-five-minute session during which they were seated in a soundproof, dimly lit booth. Participants were asked to read attentively all prepositional phrases and to reply to the experimental task (a grammaticality judgment of the phrase) as accurately as possible with ‘yes’ or ‘no’. Half of the trials were correct and half were incorrect. All responses were given via a button press. Prior to the experiment, participants received instructions and a short training phase of six trials. For experimental presentation, the stimulus material was pseudorandomized and divided into three versions of 180 items and sixty filler items each. In this way, the critical word of each experimental item was presented only once within each version. Experimental conditions were equally divided across all versions (i.e. twenty items of each condition). A trial sequence started off with the presentation of a fixation cross for 300 ms in the middle of the monitor. After an interstimulus interval

\[17 \] Note that the predicted effects were expected to be observed WITHIN EACH GENDER according to the manipulation of the adjectival form preceding the noun. Thus, although there is evidence that morphological derivation (i.e. category conversion) causes processing costs (see Stolterfoht et al. 2010), the minimally different proportions of derivations among the gender groups should not interfere when experimental conditions within each gender are compared.
(ISI) of 400 ms, the prepositional phrase was presented visually, word-by-word, centered on the screen with 400 ms for each word and an ISI of 300 ms. After stimulus presentation and an additional interval of 1500 ms, subjects had to perform the experimental task. When the response was given (response time of maximal 3000 ms), and an intertrial-interval of 1000 ms ended, the next trial started. ‘Yes’ and ‘no’ answers were completely balanced across all experimental conditions.

DATA RECORDING AND ANALYSIS. Behavioral data were analyzed in a repeated-measures analysis of variance (ANOVA) with the factors Gender (neuter/feminine/masculine) and Marker (correct/incorrect1/incorrect2). ERP data were extracted from the electroencephalogram (EEG) recorded from fifty-two Ag-AgCl electrodes according to the International 10-20 System of Electrode Placement. During the signal recording the EEG was referred to the right mastoid and afterward rereferenced to the average of the left and right mastoids. The recording included bipolar horizontal and vertical EOG. Resistance of all electrodes was kept under 5 kΩ. EEG and EOG signals were recorded continuously with a band pass between DC and 70 Hz and a sampling rate of 500 Hz. Average ERPs were computed for the critical word (i.e. the noun) for each electrode position for each of the nine experimental conditions. Averages were aligned to a 200 ms prestimulus baseline and calculated for a period of 1000 ms after stimulus onset, and included only correctly answered trials. Approximately 8% of the trials were excluded from the averages due to ocular artifacts (automatic EOG rejection ±40 µV).

For statistical analysis of ERP data, two latency windows were employed: 300–550 ms (LAN) and 600–900 ms (P600). Repeated-measures ANOVAs were performed on all dependent variables. For distributional ERP analyses, two topographical factors Site (anterior/posterior) and Hemisphere (left/right) were defined and completely crossed, yielding four different REGIONS OF INTEREST (ROIs), each containing nine electrodes. 18 Midline electrode positions were analyzed separately. In sum, analyses were carried out on four within-subject factors: Site (anterior/posterior), Hemisphere (left/right), Gender (neuter/feminine/masculine), and Marker (correct/incorrect1/incorrect2). In order to avoid potential violations of sphericity, the Greenhouse-Geisser correction was applied to all effects with more than one degree of freedom. Whenever interactions between two or more factors were found, further analyses were carried out. Post hoc tests using t-test for pairwise comparison were applied to analyze the main effects of Marker and Gender. Due to multiple comparison, all effects observed in post hoc testing are corrected by the Bonferroni Holm procedure.

2.5. RESULTS.

BEHAVIORAL DATA. Behavioral performance of participants on the grammaticality judgment was excellent and revealed a mean accuracy rate of 96.5% (SD 5.02). Statistical analysis showed a main effect of Gender ($F(2,82) = 14.88, p < 0.001$), a marginally significant effect of Marker ($F(2,82) = 2.43, p < 0.09$), and a significant interaction of Gender with Marker ($F(4,164) = 3.41, p < 0.01$).

Resolving the interaction of Gender with Marker by the factor Gender revealed main effects of Marker for feminine ($F(2,82) = 3.97, p < 0.02$) and masculine noun phrases ($F(2,82) = 5.69, p < 0.01$). Pairwise comparison of the different levels of Marker effects showed a significant difference between the two incorrect conditions ($F(1,41) = 7.83$,

18 The four ROIs included the following electrodes: left anterior = F7, F5, F3, FT7, FC5, FC3, T7, C5, C3; right anterior = F4, F6, F8, FC4, FC6, FT8, C4, C6, T8; left parietal = TP7, CP5, CP3, P7, P5, P3, PO7, PO3, O1; right parietal = CP4, CP6, TP8, P4, P6, P8, PO4, PO8, O2; midline = AFZ, FZ, CZ, CPZ, PZ, POZ, OZ.
For feminine noun phrases, which suggests that slightly more errors were made in the incorrect condition with an /n/-marked adjective (0.4% of all responses (SD 0.83)) than in the condition with an /s/-marked adjective (0.2% (SD 0.75)). For masculine noun phrases, significant differences between the correct and first incorrect condition ($F(1,41) = 8.37, p < 0.01$), as well as the correct and second incorrect condition ($F(1,41) = 9.33, p < 0.01$), were found, indicating that correctly marked masculine noun phrases were judged better than both types of morphosyntactically manipulated phrases (0.2% (SD 0.53) errors for correct marking versus 0.5% (SD 1.16) errors for incorrect marking by /e/ and 0.53% (SD 1.05) for incorrect marking by /s/).

Electrophysiological data. ERPs at the critical word revealed a left anterior negativity (LAN) and late centroparietal distributed positivity (P600) for both morphosyntactically manipulated conditions (i.e., incorrect1 and incorrect2) compared to the correct condition. Most interestingly, the amplitude of the LAN was modulated by gender. A LAN was evoked for manipulations of both feminine and neuter noun phrases, but not for manipulations of masculine noun phrases. In addition, a graded modulation of the LAN amplitude was seen for neuter noun phrases by showing the largest amplitude for the incorrect condition containing an /n/-marked adjective and medium amplitude for the incorrect condition containing an /e/-marked adjective.

The 300–550 ms latency window. The main analysis of the LAN time window showed a significant effect of Marker ($F(2,82) = 20.11, p < 0.001$) and a marginally significant effect of Gender ($F(2,82) = 2.98, p < 0.06$). A four-way interaction of Site, Hemisphere, Gender, and Marker ($F(4,164) = 2.95, p < 0.03$) was also significant. Resolving this interaction by Site showed for anterior electrode sites a main effect of Marker ($F(2,82) = 19.37, p < 0.001$) as well as a marginally significant three-way interaction of Hemisphere, Gender, and Marker ($F(4,164) = 2.02, p < 0.10$). For posterior electrode sites a significant effect of Marker ($F(2,82) = 11.26, p < 0.001$) and a marginally significant interaction of Gender with Marker ($F(4,164) = 2.37, p < 0.06$) were present. The interactions found for anterior and posterior sites were further resolved, and the effects observed in the different domains are displayed in Table 5.19

<table>
<thead>
<tr>
<th></th>
<th>LEFT ANTERIOR</th>
<th></th>
<th></th>
<th>POSTERIOR SITES</th>
<th></th>
<th></th>
<th>MIDLINE SITES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTERIOR SITES</td>
<td>F</td>
<td>df</td>
<td>F</td>
<td>df</td>
<td>F</td>
<td>df</td>
<td>F</td>
<td>df</td>
</tr>
<tr>
<td>Marker</td>
<td>14.23***</td>
<td>2,82</td>
<td>17.71***</td>
<td>2,82</td>
<td>11.26**</td>
<td>2,82</td>
<td>14.25***</td>
<td></td>
</tr>
<tr>
<td>Gender × Marker</td>
<td>6.13**</td>
<td>4,164</td>
<td>2.49(*)</td>
<td>4,164</td>
<td>2.37(*)</td>
<td>4,164</td>
<td>2.39(*)</td>
<td></td>
</tr>
<tr>
<td>FEMININE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker</td>
<td>8.44***</td>
<td>2,82</td>
<td>6.19**</td>
<td>2,82</td>
<td>5.01**</td>
<td>2,82</td>
<td>3.02(*)</td>
<td></td>
</tr>
<tr>
<td>cor vs. incor1</td>
<td>13.9***</td>
<td>1,41</td>
<td>8.64**</td>
<td>1,41</td>
<td>n.s.</td>
<td>1,41</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>cor vs. incor2</td>
<td>6.40*</td>
<td>1,41</td>
<td>8.74**</td>
<td>1,41</td>
<td>8.41**</td>
<td>1,41</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>incor1 vs. incor2</td>
<td>n.s.</td>
<td>1,41</td>
<td>n.s.</td>
<td>1,41</td>
<td>n.s.</td>
<td>1,41</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>NEUTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker</td>
<td>17.49***</td>
<td>2,82</td>
<td>11.53***</td>
<td>2,82</td>
<td>7.87***</td>
<td>2,82</td>
<td>12.93***</td>
<td></td>
</tr>
<tr>
<td>cor vs. incor1</td>
<td>36.59***</td>
<td>1,41</td>
<td>25.54***</td>
<td>1,41</td>
<td>10.71**</td>
<td>1,41</td>
<td>19.41***</td>
<td></td>
</tr>
<tr>
<td>cor vs. incor2</td>
<td>12.78**</td>
<td>1,41</td>
<td>9.47**</td>
<td>1,41</td>
<td>10.12**</td>
<td>1,41</td>
<td>16.16**</td>
<td></td>
</tr>
<tr>
<td>incor1 vs. incor2</td>
<td>4.17*</td>
<td>1,41</td>
<td>n.s.</td>
<td>1,41</td>
<td>n.s.</td>
<td>1,41</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>MASCULINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker</td>
<td>n.s.</td>
<td>2,82</td>
<td>n.s.</td>
<td>2,82</td>
<td>n.s.</td>
<td>2,82</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Effects of the step-down ANOVAs for anterior and posterior sites and the ANOVAs for the midline sites of the 300–550 ms latency window.

19 Abbreviations used in this table: cor = correct, incor1 = incorrect1, incor2 = incorrect2, (*) = $p < 0.10$, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, n.s. = not significant.
Our hypothesis clearly predicts different patterns for the processing of incorrect phrases according to the noun’s gender. This difference is assumed to be due to different underlying feature structures. This means that the factor Marker concerns different manipulations for each gender (i.e. for feminines: correct, incompatible1, incompatible2; for neuters: correct, compatible, incompatible; for masculines: correct, compatible1, compatible2). Hence, the incorrect conditions cannot be compared directly between genders. We therefore analyzed the effects of Marker separately for each gender.

For feminine and neuter noun phrases, amplitude differences were observed between the correct and both incorrect phrase markings, validating the presence of a LAN effect for these two genders. This effect emerged on left and right anterior sites, and was also present on midline electrode sites, implying that the LAN was bilaterally distributed. In addition, for neuter noun phrases the negativity was confirmed on posterior sites; this suggests a more widespread distribution of the LAN seen for both morphosyntactically manipulated conditions compared to the correct condition.

Most importantly, for neuter nouns pairwise comparison of the different marker levels revealed significant differences between the two incorrect conditions ($t(1,41) = 4.17, p < 0.05$), which substantiates a graded modulation of the LAN amplitude in response to manipulations of neuter noun phrases. In comparison to the correct condition, the largest LAN amplitude was seen for the incorrect condition containing an adjective marked with /n/; in contrast, a medium amplitude of LAN emerged for the incorrect condition containing an adjective marked with /e/.

However, while for neuter and feminine noun phrases a LAN was evoked, for masculine noun phrases no such effect was present ($F(2,82) = 0.23$, n.s.).

The 600–900 ms latency window. The main analysis of the P600 time window revealed a main effect of Marker ($F(2,82) = 7.01, p < 0.003$) and a marginally significant effect of Gender ($F(2,82) = 2.42, p < 0.10$). A three-way interaction of Site, Gender, and Marker ($F(4,164) = 3.36, p < 0.02$) was also present. All effects yielded by the resolution of this interaction, as well as effects found for the midline electrode sites, are displayed in Table 6.20

<table>
<thead>
<tr>
<th></th>
<th>ANTERIOR SITES</th>
<th>POSTERIOR SITES</th>
<th>MIDLINE SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>F</td>
<td>df</td>
</tr>
<tr>
<td>Marker</td>
<td>2.82</td>
<td>n.s.</td>
<td>2.82</td>
</tr>
<tr>
<td>Gender</td>
<td>2.82</td>
<td>n.s.</td>
<td>2.82</td>
</tr>
<tr>
<td>Gender × Marker</td>
<td>4,164</td>
<td>3.72**</td>
<td>4,164</td>
</tr>
<tr>
<td>FEMININE</td>
<td>Marker</td>
<td>2,82</td>
<td>2.71(*)</td>
</tr>
<tr>
<td></td>
<td>cor vs. incor1</td>
<td>1,41</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>cor vs. incor2</td>
<td>1,41</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>incor1 vs. incor2</td>
<td>1,41</td>
<td>n.s.</td>
</tr>
<tr>
<td>NEUTER</td>
<td>Marker</td>
<td>2,82</td>
<td>n.s.</td>
</tr>
<tr>
<td>MASCULINE</td>
<td>Marker</td>
<td>2,82</td>
<td>4.88**</td>
</tr>
<tr>
<td></td>
<td>cor vs. incor1</td>
<td>1,41</td>
<td>9.25**</td>
</tr>
<tr>
<td></td>
<td>cor vs. incor2</td>
<td>1,41</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>incor1 vs. incor2</td>
<td>1,41</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Table 6. Effects of the step-down ANOVAs for anterior and posterior sites and the ANOVAs for the midline sites of the 600–900 ms latency window.

20 Note that, just as for the early latency window, the factor Marker had different levels for each gender. Thus we could not compare incorrect conditions independently of the factor Gender. Abbreviations are as before: cor = correct, incor1 = incorrect1, incor2 = incorrect2, (*) = $p < 0.10$, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, n.s. = not significant.
On posterior sites a late positivity was confirmed for incorrect relative to correct phrase marking. Differences between incorrect phrase markings were not observed. This finding suggests the emergence of a P600 effect for both types of phrase-marking violations. For masculine noun phrases, however, the P600 in response to the incorrect phrase marking was also present on anterior sites, which suggests that the P600 amplitude was more prominent than P600 responses for equivalent manipulations of neuter and feminine noun phrases.

Figures 1, 2, and 3 visualize all observed effects for each gender.\(^{21}\) Consider first Figure 1, which illustrates the ERP effects that can be detected with the processing of feminine noun phrases; here the correct marker is /e/, given as a solid line, and /n/ and /s/ are the incorrect markers, given as dashed and dotted lines, respectively.

![Figure 1. ERP effects observed for feminine noun phrases.](http://muse.jhu.edu/journals/language/v089/89.2.opitz01.html)

Next, Figure 2 documents the ERP effects showing up with the processing of neuter noun phrases. The correct marker is /s/ (solid lines); the incorrect markers are /n/ (dashed lines) and /e/ (dotted lines). Note the diverging dashed and dotted wave forms in the left-anterior area (e.g. at FC5), which are important below.

\(^{21}\) Color versions of Figs. 1–3 can be accessed at http://muse.jhu.edu/journals/language/v089/89.2.opitz01.html.
Finally, Figure 3 illustrates the ERP effects occurring with masculine noun phrases; /n/ is the correct marker (solid lines), and /s/ and /e/ are the incorrect markers (dashed and dotted lines, respectively).

So far, one particular observation requires additional analysis. Phrases containing masculine nouns displayed quite an unusual pattern for correct forms. Correct forms did not differ from the incorrect versions in the left anterior region in the early time window. The obvious question is then: are correct masculine forms special only in comparison to incorrect forms (with respect to a LAN effect) or do they also differ compared to correct forms of other genders? We therefore carried out an additional comparison for all correct phrases by gender. This comparison was possible since we had carefully matched the items of each of the three groups with regard to length and frequency, and since we had also controlled for familiarity and semantic/pragmatic plausibility of the correct phrases. For the comparison of correct phrases between grammatical genders we obtained a significant difference for Gender for the anterior ROI in the early time window ($F(2,82) = 7.55, p < 0.001$). Subsequent analyses revealed that this effect was caused by a difference between masculine and neuter phrases ($F(1,41) = 11.65, p < 0.01$) as well as between masculine and feminine phrases ($F(1,41) = 9.93, p < 0.01$). Feminine phrases, however, did not differ from neuters ($F(1,41) = 0.32$, n.s.).
2.6. DISCUSSION.

BEHAVIORAL DATA. As indicated by the results of the grammaticality-judgment task, participants read the stimuli carefully and had no difficulty judging their correctness. The percentage of incorrect responses was marginal (about 3.5%). An effect of Gender was still found, which suggests that masculine noun phrases were more difficult to judge than feminine and neuter noun phrases. Note that neither did the nouns differ with respect to their frequency or word length, nor did the whole phrases differ in plausibility or familiarity. On the basis of the pretest data, what caused the effect of Gender must remain open to speculation. More importantly, though, the marking on the adjective in masculine noun phrases did not result in behavioral differences between the two incorrect conditions; this implies that judgments of grammaticality did not differ between these two manipulations. Differences between the two incorrect conditions were seen
only for feminine noun phrases. However, for feminine noun phrases, no differences were observed between the correct marking and both types of incorrect marking. Therefore, this finding is not directly relevant for the question of underspecification. More generally, since the experimental task of providing grammaticality judgments can only detect delayed responses, differences between the two types of incorrect condition (which might then indicate differences between compatibility and specificity) are not to be expected. It should be emphasized again that the behavioral task was included in the experiment solely to guarantee that participants attend to the stimuli thoroughly. Due to the particular characteristics of the task (e.g. the delayed response), the results here are not expected to be crucially influenced by the experimental manipulation. The case is different with on-line processing, where we expect that such effects might show up.

Electrophysiological data. In our experiment we found two different kinds of ERP evidence that support the hypothesis that underspecification of inflection markers is relevant in actual language processing in the human brain.

Comparing incorrect conditions for each gender. The first, more obvious, kind of evidence concerns differences in amplitudes between incorrect phrases for LAN and P600. Left anterior negativity modulated among different incorrect conditions only, but most crucially, for neuter nouns, while effects of the centro-parietal P600 did not differ between incorrect conditions of any gender. The P600 effect that was invariantly present for all incorrect conditions for all genders implies a different processing of correct versus incorrect phrases. We did not find evidence, however, that the functional processes underlying the P600 (i.e. reanalysis and repair) were differently affected by different genders or different types of violation.

The LAN effects, however, revealed a highly compelling pattern of differences for the three genders. As Table 7 summarizes, the results clearly speak in favor of an underspecification-based model of morphological processing.22

<table>
<thead>
<tr>
<th>PREDICTIONS</th>
<th>WITHOUT UNDERSPECIFICATION</th>
<th>WITH UNDERSPECIFICATION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOUN GENDER</td>
<td>categorical</td>
<td>maximal</td>
<td>minimal</td>
</tr>
<tr>
<td>feminine</td>
<td>s = n</td>
<td>s² = n²</td>
<td>s² = n²</td>
</tr>
<tr>
<td>neuter</td>
<td>e = n</td>
<td>e¹ < n²</td>
<td>e¹ < n²</td>
</tr>
<tr>
<td>masculine</td>
<td>e = s</td>
<td>e¹ = s¹</td>
<td>e¹ < s²</td>
</tr>
</tbody>
</table>

TABLE 7. Predictions and results.

Closer scrutiny of the results reveals that the predictions of the maximally underspecified account fit the data perfectly.

For feminine nouns no model predicts any differences in the processing of incorrect forms. Accordingly, we did not observe any differences in participants’ brain responses.23

The crucial case in our experiment, however, is that of neuter nouns. Here, predictions of categorical and underspecification-based accounts differ radically. As mentioned above, in a system of underspecified and competing inflection markers, there are

22 The notational conventions in Table 7 are the same as in Table 3; see n. 16. In addition, * indicates a significantly different amplitude (p < 0.05).

23 Note that in underspecification-based approaches, following our hypothesis, both markers exhibit the same kind of violation: that is, they violate compatibility. But, in contrast to Penke et al. 2004, this violation is induced by positive ([+masc]) and negative ([–fem]) feature values in the same way. Thus, contrary to Penke et al. 2004, we do not find evidence that positive and negative feature values are treated differently in language processing.
two different criteria that have to be met for correct markers: compatibility and specificity. For neuter nouns, marker /n/ violates compatibility while marker /e/ violates specificity. The two criteria reflect fundamentally different principles and therefore induce different responses in brain activity when violated: participants’ EEG wave forms exhibit a greater negative amplitude when there is a conflicting feature (i.e. a violation of compatibility), compared to an incorrect marker that is compatible in principle but excluded because it is not specific enough (i.e. that triggers a violation of specificity).24

The processing of masculine nouns revealed no difference between the two incorrect conditions with regard to the LAN. This was correctly predicted by a categorical account as well as by an account based on maximal underspecification since both markers /s/ and /e/ are compatible with the context. Note, however, that the brain responses for the two incorrect conditions in the LAN latency window did not differ significantly from the correct condition. Let us put this initially surprising result aside for the moment; we come back to this issue in the next subsection. For the time being, we conclude that the results of the LAN effects for the incorrect conditions clearly mirror patterns predicted by underspecification-based accounts.

The pattern of the P600, which has been found to reflect processes of reanalysis and repair (see Neville et al. 1991, Friederici et al. 1993, and Friederici et al. 2001, among others), is different from that of the LAN. It could be interpreted to be compatible with a categorical distinction. As a first step toward accounting for the difference between LAN and P600 effects, it should be emphasized again that the two ERP components subsume different functional processes (see e.g. Friederici 2002). The LAN is generally assumed to be sensitive to a first detection of morphosyntactic violations, and it acts as a reliable indicator of processes of morphosyntactic agreement, whereas the P600 component is sensitive to parsing problems, and taken to reflect semi-conscious processes of reanalysis and repair. Thus, different patterns for the two components indicate different underlying functional processes. The repair processes of the P600 component may operate on a less abstract level than morphosyntactic error detection in the LAN component. It is also reasonable to assume that the kind of grammatical violation presented to the participants, as well as the additional task (grammaticality judgment), induces complex processes of repair and response strategies that may not be specific. Indeed, P600 effects have recently been reported for sentence-level semantic/thematic violations (see Kim & Osterhout 2005, Bornkessel-Schlesewsky & Schlesewsky 2008).

Summing up the results so far, the effects of the LAN for the processing of ungrammatical phrases with different sources of violation (compatibility vs. specificity) clearly indicate that underspecification is involved in actual language processing. Only an explanation that relies on two different kinds of incorrectness is consistent with all effects obtained for the LAN. This is crucially demonstrated by the different amplitudes of the two incorrect conditions for neuter nouns. Moreover, it is the account based on

24 A purely phonological/graphematic source for the difference between the two incorrect conditions for neuter nouns can be ruled out. In principle, it is conceivable that the two different incorrect adjectival forms ending in -e and -en could induce different brain responses due to the number of their segments alone (forms marked with -en being one segment longer than forms marked with -e—at least if [ə] is maintained and the nasal does not become syllabic in -en). Such an account can be dismissed for two reasons. First, we did not compare the processing of the (differently marked) adjectives but the processing of the nouns, which were identical in each condition. A marginal phonological effect of the preceding adjective should certainly have disappeared by the time the noun is to be processed. And second, if there were phonological effects of the adjectives for neuter nouns, the same should hold for masculine nouns, for which both incorrect forms differ in exactly the same way in terms of the number of segments (cf. -es vs. -e). This phonological difference, however, did not lead to different brain responses.
MAXIMAL UNDERSPECIFICATION that is supported by the results because we obtained no such differences for masculine nouns, which would have been expected if the markers were MINIMALLY UNDERSPECIFIED (see Table 7). This finding is especially interesting from a theoretical point of view with regard to the modeling of inflectional systems within underspecification-based accounts. Until now there were only conceptual and theory-internal reasons for favoring theories relying on either minimal or maximal underspecification of morphological exponents. Thus, there is evidence not only that actual language processing relies on underspecified inflection markers but, furthermore, that it is a system with maximally reduced feature sets that seems to be favored by natural language processing.

An effect of feature matching. A second finding that can eventually be shown to support the notion of underspecified inflection markers (albeit in a somewhat more indirect way) is the very unusual pattern found for phrases containing masculine nouns. Recall that comparing different morphological markers on adjectives preceding a masculine noun, we obtained no differences in left anterior regions for the early time window. In contrast, for the two other genders there were reliable LAN effects for correct versus incorrect conditions. There are at least two possible explanations for this fact. First, it might be the case that the morphosyntactic error was not detected by the system at all. This explanation, however, is quite unlikely and can be ruled out immediately by the fact that we obtained reliable P600 effects for incorrect conditions even for masculines. Furthermore, the grammaticality judgments indicated that participants had no difficulties detecting the error. A second possibility is that there is no observable difference because for the correct condition the amplitude of the negativity is also increased due to an independent factor, thereby masking the difference in processing between correct and incorrect forms. On this view, the two factors effectively cancel each other out.

A straightforward candidate for such a factor is the complexity of the marker’s feature specification. As can be seen in 10, /n/ is a highly specific marker that is associated with a large set of features. We would thus like to propose an explanation of the missing LAN differences between correct and incorrect masculine phrases that is based on the feature specification of the inflection marker. More precisely, it is the high degree of specificity of the marker /n/ that induces the observed stronger negativity. 25

Agreement evaluation of a highly specific marker, thus, may use up more processing resources than agreement evaluation of a less specific marker. This increased processing demand for highly specific markers neutralizes differences that otherwise would occur between correct and incorrect phrases.

We would like to consider this as an EFFECT OF FEATURE MATCHING. We suggest that the very process of feature matching is mirrored by the amplitude of the LAN. In what follows we illustrate this idea in more detail by providing a brief sketch of the mechanism we want to propose. We contend that the process of binary agreement in language comprehension consists of at least two functionally different steps. In a first step, the process has to check whether successively available pieces of information (i.e. features) are compatible. In a second step, missing information has to be integrated in order to derive a fully specified morphosyntactic structure. More specifically, the mechanism may operate as follows in examples with a structure \([PP P [\, NP \, A \, N]]\) such as those that form the em-

25 Note that this reasoning is fully compatible with the observation that we also obtained LAN differences for correct phrases compared by Gender. Recall that in this comparison it is also the /n/-marked form on the adjective (i.e. the correct masculine phrase) that induces a stronger negativity on left anterior electrodes in an early time window, when compared with neuter and feminine phrases. It is reasonable to assume that the two observations are closely related.
pirical basis of our study. First, the preposition is parsed. Since all P items we considered unambiguously assign accusative case, the feature specification \([+\text{obj},–\text{obl}] (= \text{ACCUSATIVE})\) is available at this point (as government or selection information). Second, the prenominal adjective is encountered. Now the gender information associated with the adjective’s inflection marker (if there is any such information in the first place) becomes available; this is \([+\text{masc},–\text{fem}]\) with /n/, \([-\text{fem}]\) with /s/, and no gender feature with /e/. Furthermore, the adjective’s case specification (if there is any) is now accessible. To carry out agreement (and ensure matching of the case specifications of P and A), the case features of the adjective are compared with the case features of the preposition.\(^{26}\) If there are no conflicts, potentially missing case features of the preposition are copied onto the adjective, yielding full case specifications on A from this point onward. Third and finally, the noun enters the structure. The noun brings with it fully specified gender information and (irrelevantly for the present reasoning) fully specified number information, but presumably no case information whatsoever yet.\(^{27}\) As before, the morphosyntactic features of the new item—here, the noun—must be matched with the morphosyntactic features of the preceding item—now, the adjective—so as to carry out agreement. The stage of the parsing process that captures this configuration is shown for masculine, neuter, and feminine NPs in 16a,b,c, respectively.\(^{28}\)

(16) Sizes of feature sets in well-formed NPs before A-N agreement

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Gender Features</th>
<th>Case Features</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. durch schön Geschmack</td>
<td>[+masc,–fem]</td>
<td>[+obj,–obl]</td>
<td>most features compared: 4/2</td>
</tr>
<tr>
<td>by</td>
<td>plain.M</td>
<td>taste.M</td>
<td></td>
</tr>
<tr>
<td>b. durch schön Design</td>
<td>–fem</td>
<td>–obl</td>
<td>fewer features compared: 3/2</td>
</tr>
<tr>
<td>by</td>
<td>plain.N</td>
<td>design.N</td>
<td></td>
</tr>
<tr>
<td>c. durch schön Struktur</td>
<td>–masc, +fem</td>
<td>–obl</td>
<td>fewest features compared: 2/2</td>
</tr>
<tr>
<td>by</td>
<td>plain.F</td>
<td>structure.F</td>
<td></td>
</tr>
</tbody>
</table>

With masculine NPs in 16a, four features of the adjective (all of them inherent) must be compared with two gender features of the noun upon encountering the latter. In contrast, with neuter NPs in 16b, only three features of the adjective (one inherent, two acquired from P, given strict maximal underspecification) must be compared with the two inherent noun features. Finally, with feminine NPs in 16c, only two features of the adjective (none of them inherent) need to be compared with the noun’s gender features. Assuming a categorical split between the first and the second/third configurations (which may plausibly further be increased by the qualitative difference pertaining to inherent versus acquired features, with the latter being easier to process due to recent ac-

\(^{26}\) This step, by assumption, is more costly if more features need to be compared. However, since EEG waveformswere compared for the processing of the NOUN (and not the ADJECTIVE), any such effect cannot be directly observed in the data.

\(^{27}\) The nouns that were used in our experiment are all massively case-ambiguous between (at least) nominative, accusative, and dative, and therefore uniformly (i.e. across all genders) most likely radically underspecified with respect to case from a purely morphological point of view.

\(^{28}\) Note that we here adopt the version of Blevins’s approach in 12 based on maximal underspecification. Adopting the approach in 4, however, would not substantially change things (the difference concerns the status of [–obl] in neuter contexts as derived or inherent). Note also that number features are ignored here to simplify exposition. Inherent features of lexical items and inflection markers are set in italics; features that show up as aresult of agreement copying are underlined.
tivation by matching of P and A), the LAN effect with well-formed masculine NPs can be accounted for as a result of additional morphosyntactic processing effort.

The final step of morphosyntactic feature integration that follows the matching operations just sketched then consists of copying the case features of the adjective onto the noun, and copying the gender (and number) features of the noun onto the adjective (where necessary), yielding fully specified structures throughout.

Note that this simple model of agreement evaluation may ultimately also account for the observed pattern of different kinds of incorrect phrases. The first stage of the evaluation (i.e. the comparison of the feature sets) is the most complex part of the mechanism. It may be assumed to be highly demanding on processing resources since it consists of symbolic computations, that is, a pairwise comparison of feature sets. We may therefore expect that error detection at this stage can be regarded as a major violation. This is exactly in line with our finding that a violation of compatibility leads to a stronger negativity in left anterior regions. In contrast, we may assume that the matching algorithm initially succeeds with illicit morphological exponents on the adjective that are compatible but insufficiently specific, with the choice of the wrong exponent detectable only by invoking specificity. Assuming that specificity is sensitive to the difference between inherent and acquired features, it can systematically block feature copying when matching exponents with fewer features are involved. Thus, violations of specificity have a qualitatively different source in parsing than violations of compatibility, and they may therefore be less demanding on processing resources. Consequently, a violation of specificity is expected to show a reduced LAN compared to a violation of compatibility.

On a more general note, we can conclude that the effects of LAN in our experiment do not reflect correctness or incorrectness of the phrase; rather, the present data indicate that the LAN is also amplified depending on the number of features that have to be processed in order to establish an agreement relation. The left anterior negativity is thus observed even for the processing of correct agreement, modulated by the complexity of the morphosyntactic feature structure. This effect emerges when a masculine adjective is followed by a masculine noun and their agreement has to be brought about.

Underspecification and optimal design. To sum up, the results of our experiment yield two different kinds of evidence for the notion of underspecified inflection markers. First, the differences with respect to LAN between two kinds of incorrect versions of neuter phrases can be explained by an underspecification-based approach, at least in a version that involves maximal underspecification. The distinct amplitudes mirror a difference in quality: a violation of compatibility versus specificity (i.e. an incorrect marker contains either compatible or incompatible features). Second, the unexpected effects of LANs for correct masculine forms additionally may be taken to suggest that

29 In contrast, correctness is directly mirrored as a function of later and more posterior effects (P600). Here, it is always the incorrect forms that show a larger amplitude compared to the correct condition.

30 Note in passing that the source of this effect is an interaction of the properties of the adjective and the noun. It can be neither the /n/-marked adjective nor the masculine noun alone that is the cause of an increased negativity. On the one hand, if it were the masculine form of the adjective per se that causes the increased negativity, we would also expect to see differences for LAN when incorrect /s/- and /n/-marked forms for feminine nouns are compared. Crucially, this is not the case. On the other hand, we did not observe any main effect for Gender in left anterior regions as would be expected if it were the properties of the masculine nouns alone that triggered the effect. Thus, the unusual pattern observed for correct masculine phrases is determined by an interaction of the properties of masculine-marked adjectives and masculine nouns; therefore, the pattern has to be grounded in the notion of agreement.
underspecification is also crucially involved in morphological processing. This second finding reflects a difference in quantity: the number of features that have to be checked in adjective-noun agreement.

A straightforward consequence of this reasoning is that the degree of specificity of inflection markers is directly correlated with processing load in human language comprehension. This particular observation provides an interesting insight into the question of why underspecified morphological exponents occur so frequently in the languages of the world. As mentioned in §1, a system of underspecified markers at first sight would seem to increase processing demands. The results of the present study, however, indicate that an underspecification-based system also leads to a reduction of computational effort—at least in certain contexts, viz., whenever (strongly) underspecified markers are processed. From this perspective, the processing of less specific inflection markers is—at least at a certain stage during language comprehension—less demanding for cognitive resources. Therefore, an inflectional system that consists of a set of underspecified markers can arguably be viewed as optimal from an optimal design perspective on language (see Chomsky 2005). This is so for at least two reasons. First, underspecification optimizes memory load, since the number of stored markers can be reduced. Second, the processing component of the system also benefits from less specific markers: computational effort is reduced when the number of features that have to be compared/matched is kept small.

Notwithstanding the fact that there are several reasons to retain more specific markers in the system—such as, for instance, the option of an unambiguous encoding of grammatical information in certain contexts—there are benefits if the number of highly specific markers is reduced in a system in favor of less specific ones. Facilitated processing and memory effort with underspecified markers may be considered as a major motivation for having such markers in the system. This should be observable in at least two dimensions: diachronically and synchronically. On the one hand, there should be an incentive for less specific markers to spread in the system over time. On the other hand, less specific markers should also be more persistent in impaired processing. These implications provide fascinating research topics; but we will leave the matter here.

3. Conclusion. Underspecification of inflection markers is a widely used concept in morphological theories. The main goal of the investigation reported in the present article was to find out whether this concept can be independently corroborated by neurophysiological evidence of language processing in the human brain.

The experiment on strong adjective inflection in German that we carried out shows that whenever agreement between an adjective and a noun has to be evaluated, early ERP components (i.e. the LAN) are sensitive to different kinds of violations that are inherently grounded in underspecification-based accounts: compatibility versus specificity. Furthermore, the results of our experiment provide additional evidence bearing on the question of whether underspecification is maximal or minimal: the pattern of the LAN effects supports a modeling that relies on maximally underspecified inflection markers.

Furthermore, additional evidence from the processing of well-formed phrases supports the assumption that functional processes underlying the LAN may also be sensitive to different degrees of specificity of inflection markers, thereby providing a second

\[31\] However, as noted by Fuß (2005), this tendency may also be counteracted by explicitness requirements favoring more specific exponents.
argument for underspecification: our results can be taken to indicate that more specific markers induce a stronger LAN than less specific markers.

To conclude, underspecification is not merely a well-supported concept in morphological theory; it may also explain neurophysiological responses of the human brain when processing language. Thus, it seems that underspecification is real, and that it is not an imperfection: it may qualify as optimal from an optimal design perspective on language since it actually reduces complexity for both the lexicon (minimizing storage costs for marker inventories) and the procedural part (minimizing computational effort in agreement rules).

APPENDIX: LIST OF 3 × 60 EXPERIMENTAL ITEMS (CORRECT CONDITIONS)

<table>
<thead>
<tr>
<th>PREP</th>
<th>ADJECTIVE</th>
<th>FEM NP</th>
<th>ADJECTIVE</th>
<th>MASC NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>durch</td>
<td>leichtes</td>
<td>Neigung</td>
<td>leichten</td>
<td>Akzent</td>
</tr>
<tr>
<td>ohne</td>
<td>unerwartetes</td>
<td>Störung</td>
<td>unerwarteten</td>
<td>Alarm</td>
</tr>
<tr>
<td>gegen</td>
<td>grausames</td>
<td>Seuche</td>
<td>grausamen</td>
<td>Befehl</td>
</tr>
<tr>
<td>ohne</td>
<td>echtes</td>
<td>Achse</td>
<td>echten</td>
<td>Segen</td>
</tr>
<tr>
<td>ohne</td>
<td>geheimes</td>
<td>Akte</td>
<td>geheimen</td>
<td>Bescheid</td>
</tr>
<tr>
<td>durch</td>
<td>festes</td>
<td>Bindung</td>
<td>festen</td>
<td>Beton</td>
</tr>
<tr>
<td>ohne</td>
<td>zusätzliches</td>
<td>Schwelle</td>
<td>zusätzlichen</td>
<td>Bonus</td>
</tr>
<tr>
<td>durch</td>
<td>andauerndes</td>
<td>Schande</td>
<td>andauern</td>
<td>Boycott</td>
</tr>
<tr>
<td>ohne</td>
<td>bekanntes</td>
<td>Miene</td>
<td>bekannten</td>
<td>Doktor</td>
</tr>
<tr>
<td>gegen</td>
<td>erneutes</td>
<td>Panne</td>
<td>erneuten</td>
<td>Eklat</td>
</tr>
<tr>
<td>durch</td>
<td>umstrittenes</td>
<td>Route</td>
<td>umstrittenen</td>
<td>Erlass</td>
</tr>
<tr>
<td>gegen</td>
<td>übermäßiges</td>
<td>Härte</td>
<td>übermäßigen</td>
<td>Genuss</td>
</tr>
<tr>
<td>ohne</td>
<td>historisches</td>
<td>Predigt</td>
<td>historischen</td>
<td>Irrtum</td>
</tr>
<tr>
<td>durch</td>
<td>tatsächlich</td>
<td>Schwere</td>
<td>tatsächlich</td>
<td>Tarif</td>
</tr>
<tr>
<td>gegen</td>
<td>modernes</td>
<td>Grafik</td>
<td>modernen</td>
<td>Kontext</td>
</tr>
<tr>
<td>für</td>
<td>deutliches</td>
<td>Kopie</td>
<td>deutlichen</td>
<td>Kontrast</td>
</tr>
<tr>
<td>durch</td>
<td>langes</td>
<td>Allee</td>
<td>langen</td>
<td>Konvoi</td>
</tr>
<tr>
<td>durch</td>
<td>ungewohntes</td>
<td>Handlung</td>
<td>ungewohnten</td>
<td>Luxus</td>
</tr>
<tr>
<td>durch</td>
<td>gemeinsames</td>
<td>Spende</td>
<td>gemeinsamen</td>
<td>Tenor</td>
</tr>
<tr>
<td>ohne</td>
<td>neues</td>
<td>Sonne</td>
<td>neuen</td>
<td>Rabatt</td>
</tr>
<tr>
<td>für</td>
<td>berühmtes</td>
<td>Kanzlei</td>
<td>berühmten</td>
<td>Rektor</td>
</tr>
<tr>
<td>durch</td>
<td>falsches</td>
<td>Treue</td>
<td>falschen</td>
<td>Report</td>
</tr>
<tr>
<td>ohne</td>
<td>weiteres</td>
<td>Übung</td>
<td>weiteren</td>
<td>Beleg</td>
</tr>
<tr>
<td>durch</td>
<td>staatlisches</td>
<td>Haftung</td>
<td>staatlischen</td>
<td>Sektor</td>
</tr>
<tr>
<td>ohne</td>
<td>altes</td>
<td>Schüssel</td>
<td>alten</td>
<td>Slogan</td>
</tr>
<tr>
<td>für</td>
<td>ungewöhnliches</td>
<td>Ernte</td>
<td>ungewöhnlichen</td>
<td>Käse</td>
</tr>
<tr>
<td>gegen</td>
<td>geplantes</td>
<td>Zensur</td>
<td>geplanten</td>
<td>Transfer</td>
</tr>
<tr>
<td>gegen</td>
<td>großes</td>
<td>Achtung</td>
<td>großen</td>
<td>Zirkus</td>
</tr>
<tr>
<td>ohne</td>
<td>goldenes</td>
<td>Krone</td>
<td>goldenen</td>
<td>Globus</td>
</tr>
<tr>
<td>ohne</td>
<td>vorgesehenes</td>
<td>Kürzung</td>
<td>vorgesehenen</td>
<td>Balkon</td>
</tr>
<tr>
<td>gegen</td>
<td>teures</td>
<td>Substanz</td>
<td>teuren</td>
<td>Diesel</td>
</tr>
<tr>
<td>gegen</td>
<td>beliebtes</td>
<td>Beute</td>
<td>beliebten</td>
<td>Express</td>
</tr>
<tr>
<td>durch</td>
<td>genaues</td>
<td>Quote</td>
<td>genauen</td>
<td>Status</td>
</tr>
<tr>
<td>durch</td>
<td>erfolgreicher</td>
<td>Gala</td>
<td>erfolgreichen</td>
<td>Kongress</td>
</tr>
<tr>
<td>für</td>
<td>politisches</td>
<td>These</td>
<td>politischen</td>
<td>Konsens</td>
</tr>
<tr>
<td>durch</td>
<td>schlichtes</td>
<td>Struktur</td>
<td>schlichten</td>
<td>Geschmack</td>
</tr>
<tr>
<td>ohne</td>
<td>besonderes</td>
<td>Geste</td>
<td>besonderen</td>
<td>Applaus</td>
</tr>
<tr>
<td>ohne</td>
<td>kritisches</td>
<td>Lehre</td>
<td>kritischen</td>
<td>Faktor</td>
</tr>
<tr>
<td>durch</td>
<td>kulturelles</td>
<td>Schwäche</td>
<td>kulturellen</td>
<td>Nutzen</td>
</tr>
<tr>
<td>ohne</td>
<td>allgemeines</td>
<td>Panik</td>
<td>allgemeinen</td>
<td>Jubel</td>
</tr>
<tr>
<td>durch</td>
<td>einfaches</td>
<td>Meldung</td>
<td>einfachen</td>
<td>Anzug</td>
</tr>
<tr>
<td>ohne</td>
<td>öffentliches</td>
<td>Moral</td>
<td>öffentlichen</td>
<td>Appell</td>
</tr>
<tr>
<td>durch</td>
<td>unverschämtes</td>
<td>Bitte</td>
<td>unverschämt</td>
<td>Betrug</td>
</tr>
</tbody>
</table>
REFERENCES

Clahsen, Harald; Sonja Eisenbeiss; Meike Hadler; and Ingrid Sonnenstuhl. 2001. The mental representation of inflected words: An experimental study of adjectives and verbs in German. Language 77.510–43.

MECKLINGER, AXEL; HERBERT SCHRIEFERS; KARSTEN STEINHAUER; and ANGELA D. FRIEDERICI.
1995. Processing relative clauses varying on syntactic and semantic dimensions: An
MÜLLER, GEREON. 2002. Remarks on nominal inflection in German. More than words: A
festschrift for Dieter Wunderlich, ed. by Ingrid Kaufmann and Barbara Stiebels, 113–
45. Berlin: Akademie.
MÜLTE, THOMAS F.; KOLJA SCHILTZ; and MARTA KUTAS. 1998. When temporal terms belie
NEVILLE, HELEN J.; JANET L. NICOL; ANDREW BARSS; KENNETH I. FORSTER; and MERRIL F.
GARRETT. 1991. Syntactically based sentence processing classes: Evidence from event-
NOYER, ROLF. 1992. Features, positions, and affixes in autonomous morphological struc-
NOYER, ROLF. 1997. Features, positions and affixes in autonomous morphological structure.
New York: Garland.
PENKE, MARTINE; ULR IKE JANSSEN; and SONJA EISENBEISS. 2004. Psycholinguistic evidence
for the underspecification of morphosyntactic features. Brain and Language 90.423–
33.
PERTSOVA, KATYA. 2007. Learning form-meaning mappings in presence of homonymy: A lin-
guistically motivated model of learning inflection. Los Angeles: University of Califor-
nia, Los Angeles dissertation.
REGEL, STEFANIE; THOMAS C. GUNTER; and ANGELA D. FRIEDERICI. 2011. Isn’t it ironic? An
electrophysiological exploration of figurative language processing. Journal of Cogni-
tive Neuroscience 23.2.277–93.
ROSSI, SONIA; MANFRED F. GUGLER; ANJA HAHNE; and ANGELA D. FRIEDERICI. 2005. When
word category information encounters morphosyntax: An ERP study. Neuroscience
Letters 384.3.228–33.
SCHLESEWSKY, MATTHIAS; GISBERT FANSELOW; REINHOLD KLIEGL; and JOSEF KREMS. 2000.
The subject preference in the processing of locally ambiguous wh-questions in Ger-
man. German sentence processing, ed. by Barbara Hemforth and Lars Konieczny, 65–
SCHRIEFERS, HERBERT. 1999. Morphology and word recognition. Language comprehen-
sion: A biological perspective, 2nd edn., ed. by Angela D. Friederici, 101–32. Berlin:
Springer.
SCHRIEFERS, HERBERT; ANGELA D. FRIEDERICI; and KATJA KÜHN. 1995. The processing of lo-
cally ambiguous relative clauses in German. Journal of Memory and Language 34.
499–520.
STOLTTERFOHT, BRITTA; HELGA GES E; and CLAUDIA MAIENBORN. 2010. Word category conver-
sion causes processing costs: Evidence from adjectival passives. Psychonomic Bul-
letin and Review 17.651–56.
Press.
TAFT, MARCUS, and KENNE TH FORSTER. 1975. Lexical storage and retrieval of prefixed
acquisition. Cambridge, MA: Harvard University Press.
Doctorate Colloquium for Manfred Bierwisch, Universität Leipzig.
TROMMER, JOCHEN. 2006. Person and number agreement in Dumi. Linguistics 44.1011–57.
WIESE, BERND. 1996. Iconicity and syncretism: On pronominal inflection in Modern Ger-
man. Theoretical linguistics and grammatical description, ed. by Robin Sackmann and
Monika Budde, 323–44. Amsterdam: John Benjamins.
WIESE, BERND. 1999. Unterspezifizierte Paradigmen: Form und Funktion in der pronomi-
Opitz and Müller [Received 18 January 2012; accepted 27 December 2012]
Institut für Linguistik, Universität Leipzig
Beethovenstr. 15, 04107 Leipzig, Germany
[andreas.opitz@uni-leipzig.de]
[gereon.mueller@uni-leipzig.de]

Regel and Friederici
Department of Neuropsychology, Leipzig
Max Planck Institute for Human Cognitive and Brain Sciences
[regel@cbs.mpg.de]
[angelafr@cbs.mpg.de]