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Abstract

We presert a novel algorithm for accuratelydenoisingstatic and time-varying
rangedata. Our approad is inspired by similarity-basednon-local image I-
tering. We shaw that our proposedmethod is easyto implemert and outper-
forms recen state-of-the-art Itering approades. Furthermore, it presenes
ne shape featuresand producesan accuratesmoothing result in the spatial
and along the time domain.
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1 Intro duction

With the increasingusageof scanningdevices,denoisingof digitized mod-

els becameone of the most fundamertal problemsin computer graphics. It

remains a challenging task to remove the inevitable noise createdin every
acquisition processwhile preservingthe details of the underlying shape. Es-
pecially, ne featuresareoftenlost if no specialtreatment is provided. There-
fore, a large variety of smoothing algorithms has beenintroducedin recen

yearsin the elds of imageprocessingcomputervision, and computergraph-
ics. While many image processingapproadesare also speci cally designed
for video denoising, methods for 3-dimensionaldata are usually applied to

static point cloudsor meshes.

Recen improvemens in scanning technology [24, 25] now permit the
acquisition of time-varying rangedata. This is usually accomplishedby pro-
jecting structured light patterns on the scannedobject. Then range data is
computed o -line from the recordedframes using triangulation algorithms
from computer vision.

In this paper, we proposea method for denoisingthis new type of data
which is basedon non-local image Itering [5]. The main idea of this Iter
is to determine the denoisedpixel intensity asa weighted averageof similar
pixel intensities in its vicinity. The similarity of two pixels is determined
by comparingtheir local neighborhoods. We extend this approad to static
and dynamic range data and show that our algorithm accurately presenes
ne shape features,is easyto implemert and is able to outperform recer
state-of-the-art Itering approades.

To our knowledge,our approad is the rst which is designedto denoise
time-varying geometric data. We believe that denoisingthis new type of
data is the rst stepto openit for a wide usein various elds of computer
graphics.



2 Previous Work

Recen state-of-the-artapproatesin imagedenoisingcomprise,for instance,
the well known bilateral lter [22] andits recerly proposedextensionto non-
local neighborhoods [5]. Paris and Durand [17] introduced an interesting
accelerationtechnique for the bilateral Iter which allows it to be mostly
expressedas simple linear convolutions. Other works adapt neighborhood
lters for video processing(4, 15].

Many meshdenoisingmethods are derived from signalor imageprocessing
approades. Taubin [2]] rst introduced signal processingon meshesbased
on the de nition of the Laplacian operator on surfaces. Desbrun et al. [6]
proposeda geometricdi usion algorithm for irregular meshesand introduced
the useof an implicit integration method to stabilize the ow and to allow
larger time steps. In [1], Wiener ltering is applied to meshes.Hildebrandt
and Polthier [10] introduced a new variant of anisotropic mean curvature
ow which presenes non-linear features. Fleishman et al. [9] proposedan
anisotropic mesh denoising algorithm derived from the bilateral neighbor-
hood Iter for images. Concurrertly, Joneset al. [12] introduced a similar
method basedon robust statistics and local rst-order predictors of a sur-
face. Recen work of Yoshizava et al. [23 extendsthe non-local image lter
to meshesby computing a local RBF approximation to de ne the similarity
measure. Our work proposesa di erent similarity measurefor range scans
which does not require to compute a local appraximation and thus allows
a faster evaluation. Furthermore, we introduce how to processtime-varying
range data.

Denoising can be either applied before or after meshingacquired point
clouds. Filtering of meshesis usually faster since the given connectivity
permits ane cien t accesso neighboring samples.On the other hand, surface
reconstruction from noisy point cloudsis a di cult task which makes prior
denoisingdesirable. Pauly and Gross[18§] createa spectral decomposition of a
point cloud and denoiseit by manipulation of the spectral coe cien ts. Lange
and Polthier [13 denoisepoint cloudsusing anisotropic meancurvature ow.



An important group of algorithms that recerly attracted the interest of
marny researbers are moving-least squares(MLS) approadtes. They were
rst proposedby Levin [14] and introducedto computer graphicsby Alexa
et al. [2]. The main idea of MLS is the de nition of a projection operator
which takes points scattered in the vicinity of a surfaceonto the surface
itself. More precisely the MLS surfaceis de ned by the xp oints of the
given projection operator. Mederoset al. [16] applied the MLS projection for
point cloud denoising. Amenta and Kil [3] analyzeddi erent MLS operators
by separatingthem into two componerts. They usedthis represemation to
introduce a new variant of MLS with a better behavior near sharp features.
Fleishmanet al. [8] represetted sharp featuresby de ning piecewisesmaoth
moving least-squaresurfacesusinga method from robust statistics. Dey and
Sun|[7] recerily proposedthe AMLS operator which providesreconstruction
guarartees for the underlying surface for a point set with a non-uniform
sampling density.

Other algorithms are basedon statistical data analysis. Pauly et al. [19
introduced a framework for measuringuncertainty in point-sampled geome-
try which canbe used,for instance,for mergingrangescans.Sdall et al. [20]
usedlocally de ned kernelsto de ne a global probability distribution func-
tion. Point positionson a smooth surfaceare then found by moving the noisy
point setto maximum likelihood positions. Recernly, [11] proposedhow to
produce a smaoth point cloud from a given one using Bayesianstatistics.



3 Non-lo cal Denoising

We beginthis sectionby describingthe ideaof non-local Itering forimagesin
more detail beforewe introduce our extensionof this approad for denoising
static range data. Building on this extension,we then shav how to apply
our algorithm to Iter time-varying rangedata.

3.1 Non-lo cal Image Filtering

The non-local image lter [5] belongsto the group of neighborhood Itering
sdhemes,which de ne the intensity value of a restored pixel of an image as
the weighted averageof neighboring pixels with similar intensity values.

More precisely if animagel = fl(u)ju 2 Pgis given, whereu = (Xx;y)
is a pixel and I (u) is the intensity value at u, the smoothed pixel intensity
I Qu) can be computed asthe averageof all pixel intensitiesin the image
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Figure 3.1 illustrates the computation of the similarity measure.It depends
on the pixel-wise intensity di erence of two squareneighborhoods certered
at the pixels u and v. The vector o denotesthe o set betweenthe certer
pixel and an arbitrary neighborhood pixel. The in uence of a pixel pair on
the similarity falls with increasing Euclidean distance to the certer of the
neighborhoods. For the distance weighting a Gaussiankernel G,( ) with a
user-de nedstandard deviation a is used. Additionally, the method depends
on the parameterh which cortrols the degreeof smoothing.

(u;v)=exp




Figure 3.1: The similarity of neighborhoods is computedbasedon the pixel-
wise di erence of intensity values. Similar neighborhoods of p and g have a
large weight ( p;q), while di erent neighborhoods of p and r have a small
weight ( p;r).

3.2 Static Range Data

We want to adapt this approad from the 2-dimensionalplane to rangedata.
This is not a straight-forward task as image pixels are usually aligned on a
regular and equispacedgrid which is in generalnot true for range images.
Its reasonis that an acquisition device measureghe distance betweenitself
and the object alongits line-of-sigtlt which is not the depth in the form of
a heigh eld. Additionally, computing height data from the given depths
causesthat the sampling positions are no longer equispaced. Hence, our
problem is di erent from image denoising,where pixels are usually aligned
on a regular and equispacedgrid. We assumethat the data is given in the
form of data points p; which are arranged on a regular grid structure. In
this way, the neighborhood information for all points is known, but they are
not required to be equispaced.Sincethis data represemation can be easily
computed from the output of di erent scanning devices,our algorithm is
easilyapplicableto lter dierent typesof rangedata.

Similar to the bilateral Itering algorithm [9], we nd courterparts for
grey valuesof an image by the heighs of points over a tangert plane com-
puted at a given point. By determining the weighted averageof theseo sets,
we nd the displacemen for the point to remove the additive noisecompo-
nert from the rangescansurface. For this, we rst estimatenormalsn; for all
points p; by least-squarestting to their one-ring neighborhood. Although
the resulting normals are noisy, no molli cation in cortrast to [12] is neces-
sary to apply our algorithm. After this, we determinethe Itered points p?



by computing
P
pi2N (pi) d s [(Pi  pj) ni] ni
pi2N (pi) d s
where 4 represets the distanceand ¢ the similarity weight.

Unlike the non-local image Itering algorithm, we do not sum over all
point positionsto Iter a point but over a local squareneighborhood N (p;)
surrounding p;. Additionally, we separatethe distanceweighting factor from
the similarity measure. This allows us a more e cien t computation of the
similarity weight and the denoisedpoint position p?.

The fundamertal di erence between our method and bilateral ltering
is the selection of the similarity weight . Unlike the bilateral Itering
algorithm, where g only weights the similarity betweenthe two points p; and
p;, our approad considersthe similarity of their geometricneighborhoods:

piO: Pi
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This results in a better and more homogeneousltering performance.
We compute the point-wise di erence of two squareneighborhoods certered
at p; and p; and project the distancesonto the normal n;. This givesus
the point-wise height di erence of both neighborhoods which is averagedto
compute the similarity Sim(p;;p;j). We use Gaussianweighting functions
for 4 and ¢ and an automatic procedureto determine their bandwidths
d and s. For this, we rst chooserandom points py of the range scan. We
then determine the maximal distance of the points of N (pk) to px and the
standard deviation of all o sets to the tangert plane de ned at px. The
averagemaximal distance and standard deviation over all random samples
are then assigned 4 and 5. Wesetd= 0:75 gands= .

The user-de ned parametersof our algorithm are thus the size of the
neighborhood N (p;) which cortrols the degreeof smaothing and the size of
the neighborhood usedto determine Sim(p;; p;) which regulatesthe homo-
geneily of the ltering result.

Similar to other neighborhood ltering sdemesfor meshesour algorithm
shrinks the object. This problem can be correctedin a post-processingstep
using for instance a volume presenation technique [6]. On the other hand,
our method doesnot require special boundary treatment which is important
asscanneddata is not closedand often hasholes. Furthermore, our algorithm
only changesthe point position in normal direction. This avoids point-drifts
which would introduceirregularities in the scan.

Sim(pi;p;) =

7



3.3 Time-v arying Range Data

Building on the previous section, we now proposehow to extend our algo-
rithm to handle time-varying rangedata. The data is given asa sequencef
framesead of which is a static range scan. When we apply our algorithm
to eat frame independerly, we obtain a result that is satisfying for eah
frame but which is not temporally stable.

Therefore,we extend N (p;) which is only de ned as a spatial neighbor-
hood in the previoussectionby the temporal domain. This meanswe choose
for N (p;j) samplepoints not only inside the current frame but alsoin neigh-
boring frames. We usually considerone frame before and after the current
framefor N (p;). In the following, we usethe notation N (p;) for the slice of
the neighborhood N (p;) which is cortributed by the frame k. Consequetly,
we have to adapt 4 and ¢ to weight the distance and the similarity be-
tweenp; and p; which can be a points in di erent frames. We adapt the
bandwidths of 4 and s dependingon the frame p; is asseiated with. We
detect the parametersautomatically as descrited in Sec.3.2 for ead frame
k and identify the weighting functionsas g and .

Similar to the spatial domain, we want that neighborhoods from distant
framescortribute lessto the new point position. We thereforeintroducethe
temporal distancefactor g which weighs the cortribution of the frame k.
If cisthe index of the current frame, weselect g = (1=2)* 9. Additionally,
we canweight a frame basedon the level of its additive noise. Neighborhoods
from frameswith a higher amourt of noise can cortribute lessto a smaooth
solution and should thus have a lower weight. We obtain an estimate for
the noise-leel from the bandwidth s, of ¢ for ead frame k. We usethese
valuesto setthe weighting factor ¢ = exp( s2=maxfscg?). By conbining
all elemerts, we determinethe denoisedpoint position as
? K dk sknP pi2N(pi), dk sk [(Pi  Pj) ni] ni

} k dk Skr Pj2N(pi) dk sk .

pi0: Pi

One advantage of our approad is that we do not necessarilyneed to
compensatefor motion betweenframesasthe similarity of the wholetemporal
neighborhood is evaluated. If the motion is high, the similarity of the whole
neighborhood will be low and it will only marginally cortribute to the new
point position. In this way, our approad also automatically accours for
scenechanges.



4 Results

We demonstrateresults of our denoisingapproad in Figures4.1-4.3. We test
our method on scanneddata from various sources.We apply our algorithm
to laserscannedmodels(Figs. 4.1+4.2) aswell asto faceand hand sequences
which wereacquiredusing a structured light scanner(Fig. 4.3). We compare
our result with the bilateral Itering algorithm. Table 4.1 summarizesthe
timings for our results and the parameter settings usedto generatethem.
All imagesare renderedusing at shading.

In Figure 4.1, we show the lItering e ciency of our approad on real-
world laserscanneddata. The imagesshaw that high-frequencynoiseon the
Bimba model is removed after one iteration of our algorithm while lower-
frequencydetails like hair, ear and eye are accurately presened.

Figure 4.2 showvs a comparison of bilateral ltering and our approad
concerningfeature presenation. Note that our algorithm createsa smoother
result of the Turbine Blade model than bilateral Itering and presenesthe
sharp feature more accurately

Figure 4.3 illustrates the results of the bilateral Iter and our algorithm
on three frames of the acquired structured light sequences.To Iter the
scans,we perform two iterations for ead algorithm. In the rst iteration,
we Iter with a larger kernel sizeto remove the stripe artifacts created due
to the projection of regular line patterns onto the scannedobject during the
acquisition process.As the stripe pattern variesover time, our method lters
acrossframesto increasethe temporal stability of the smaoothed sequence.
We consider one frame before and after the current frame while ltering
both sequencesHigh-frequencynoisedistributed over the whole scandoes
not shav any temporal coherence.Therefore,we Iter ewvery frame separately
with a smallerkernelsizein the seconditeration. We choosethe parameters
to optimize the result of eat algorithm.

Figure 4.3 shaws that our method removesthe stripe artifacts and the
high-frequencynoiseproperly and achievesa more homogeneousesult than
the bilateral Iter due to the comparisonof geometric neighborhoods in-



Figure 4.1: Resultsof our approad on a raw laserscanof the Bimba model
(top row). The middle row shavsthe denoisedesult after oneiteration of our
algorithm. In the bottom row we shov zooms of the noisy and denoisedear
of the model and the correspnding mean curvature visualizations. Notice
that high-frequencynoiseis nicely removed while details in hair, earand eye
regionsare accurately presened.

10



raw input bilateral It. our approac

Figure 4.2: Comparison of feature-preseration properties of bilateral |-

tering and our approad on a laserrange scanof the Turbine Blade model.
The zoomedmeancurvature visualizationsshaw that our approad presenes
sharp featuresmore accurately than bilateral Itering while simultaneously

producing a slightly smaother result.
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Figure 4.3: Denoisingresultsfor two acquirednoisy rangesequencesThe raw
input from the structured light scanner(top row) is denoisedusing bilateral
Itering [9] (middle row) and our technique (bottom row). Coloring by mean
curvature is usedto illustrate the smaothnessof the rangedata.

bilateral  Itering

\ model | P | Sim | N() |time/frame |
Blade 59K { 11x11 2.81s
Face Sequence| 192K { 21x21 30s
(50 frames) { 11x11 10s
Hand Sequence| 131K { 21x21 23s
(80 frames) { 11x11 7s

our approac h

| model | P ][ Sim [ N() [ time/frame |
Blade 59K 5x5 7 5.6s
Bimba 212K | 5x5 X7 7.4s
Face Sequence| 192K | 11x11 | 19x19 285s
(50 frames) 5x5 | 11x11 18s
Hand Sequence| 131K | 11x11 | 19x19 203s
(80 frames) 5x5 | 11x11 13s

Table 4.1: Parameter settings and timings for the results presened in this
paper. The parameter P labels the average number of input points per
frame. Sim denotesthe sizeof the neighborhood consideredto computethe
similarity measureof our algorithm. All resultswerecomputedon a 2.66GHz
Pertium 4 with 1.5GB of RAM.
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steadof points. Sinceour algorithm exploits temporal coherencewe acieve
stable Itering results along the time domain. Furthermore, our algorithm
accurately preseneshigh-curvature regions,for instance,at the eyesand the
lips of the facescan.
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5 Conclusions & Future Work

We presen a non-local neighborhood Itering technique for the accurate
denoisingof static and time-varying range data. To our knowledge,our ap-
proac isthe rst method which is designedo denoisetime-varying geometric
data. We shaw that it is able to presene ne surfacefeatures, producesa
better smoothing result than previous state-of-the-art neighborhood lters,

and is easyto implemert. In the future, we plan to enrich our algorithm
by additional attributes like color which is usually acquired simultaneously
with the geometricdata. We believe that combining se\eral attributes during
the Itering processwill further increasethe performanceof neighborhood
Itering sdhemes.
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