Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family

MPG-Autoren
/persons/resource/persons97425

Steinhauser,  D.
Small Molecules, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;
Systems Metabolomics, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97093

Buessis,  D.
Developmental Physiology and Genomics, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97239

Kopka,  J.
Applied Metabolome Analysis, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97050

Altmann,  T.
Developmental Physiology and Genomics, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Rautengarten-2005-Inferring Hypotheses.pdf
(beliebiger Volltext), 884KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rautengarten, C., Steinhauser, D., Buessis, D., Stintzi, A., Schaller, A., Kopka, J., et al. (2005). Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family. PLoS Computational Biology, 1(4), e40. doi:10.1371/journal.pcbi.0010040.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-2B45-A
Zusammenfassung
The gene family of subtilisin-like serine proteases (subtilases) in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i) control of development, (ii) protein turnover, and (iii) action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB) (http://csbdb.mpimp-golm.mpg.de/psdb.html), as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de).