Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Enhanced neurochemical profile of the rat brain using in vivo 1H NMR spectroscopy at 16.4 T

MPG-Autoren
/persons/resource/persons83980

Hong,  S-T
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83793

Balla,  DZ
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hong, S.-T., Balla, D., Shajan, G., Choi, C., Ugurbil, K., & Pohmann, R. (2011). Enhanced neurochemical profile of the rat brain using in vivo 1H NMR spectroscopy at 16.4 T. Magnetic Resonance in Medicine, 65(1), 28-34. doi:10.1002/mrm.22609.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BCC6-6
Zusammenfassung
Single voxel magnetic resonance spectroscopy with ultrashort echo time was implemented at 16.4 T to enhance the neurochemical profile of the rat brain in vivo. A TE of 1.7 msec was achieved by sequence optimization and by using short-duration asymmetric pulses. Macromolecular signal components were parameterized individually and included in the quantitative analysis, replacing the use of a metabolite-nulled spectrum. Because of the high spectral dispersion, several signals close to the water line could be detected, and adjacent peaks could be resolved. All 20 metabolites detected in this study were quantified with Cramér-Rao lower bounds below 20, implying reliable quantification accuracy. The signal of acetate was detected for the first time in rat brain in vivo with Cramér-Rao lower bounds of 16 and a concentration of 0.52 μmol/g. The absolute concentrations of most metabolites showed close agreement with values previously measured using in vivo 1H NMR spectroscopy and in vitro biochemical assay.