Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

When Correlation Implies Causation in Multisensory Integration

MPG-Autoren
/persons/resource/persons84129

Parise,  CV
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83906

Ernst,  MO
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Parise, C., Spence, C., & Ernst, M. (2012). When Correlation Implies Causation in Multisensory Integration. Current Biology, 22(1), 46-49. doi:10.1016/j.cub.2011.11.039.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B870-A
Zusammenfassung
Inferring which signals have a common underlying cause, and hence should be integrated, represents a primary challenge for a perceptual system dealing with multiple sensory inputs [ [1], [2] and [3]]. This challenge is often referred to as the correspondence problem or causal inference. Previous research has demonstrated that spatiotemporal cues, along with prior knowledge, are exploited by the human brain to solve this problem [ [4], [5], [6], [7], [8] and [9]]. Here we explore the role of correlation between the fine temporal structure of auditory and visual signals in causal inference. Specifically, we investigated whether correlated signals are inferred to originate from the same distal event and hence are integrated optimally [10]. In a localization task with visual, auditory, and combined audiovisual targets, the improvement in precision for combined relative to unimodal targets was statistically optimal only when audiovisual signals were correlated. This result demonstrates that humans use the similarity in the temporal structure of multisensory signals to solve the correspondence problem, hence inferring causation from correlation.