English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions

MPS-Authors
/persons/resource/persons96384

Malghani,  Saadatullah
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry , Max Planck Society;

/persons/resource/persons62384

Gleixner,  Gerd
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62589

Trumbore,  Susan E.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Malghani, S., Gleixner, G., & Trumbore, S. E. (2013). Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biology and Biochemistry, 62, 137-146. doi:10.1016/j.soilbio.2013.03.013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-A62A-C
Abstract
Bio-char, biomass that has been deliberately charred to slow its rate of decomposition, has been proposed as an amendment with the potential to sequester carbon and improve certain soil properties. Slow pyrolysis (temperature 500 C) and hydrothermal carbonization (low temperature, high pressure) are two efficient methods to produce bio-char with high yield and are applicable to a broad range of feedstocks. Chars made using slow pyrolysis (PC) and hydrothermal carbonization (HTC) of the same feedstock material (corn, C4) differed in physical appearance, chemical properties and decomposition behavior. We added these HTC and PC chars as amendments to three soils with C3-derived organic matter that differed in clay content, pH, and land use (managed spruce forest, unmanaged deciduous forest and agriculture), and compared their impacts on carbon sequestration and net greenhouse gas (CO2, 13CO2, N2O and CH4) emissions. HTC addition (1% w/w) significantly increased CO2 emissions in all three soils (p < 0.001), with much of the extra C derived from HTC decomposition. In contrast, PC addition (1% w/w) had almost no impact on deciduous forest soil and actually decreased CO2 emission from the agricultural soil. HTC treatment resulted in increased CH4 emission from all soils but reduced N2O fluxes in the agricultural and spruce forest soils. PC amendment had no significant effect on CH4 emission, and resulted in intermediate levels of N2O emission (between control and HTC treatments). Although both HTC and PC chars were produced from the same feedstock, PC had markedly higher potential for carbon sequestration than HTC.