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1. INTRODUCTION

1.1 Motivation

Under real-life conditions, biological systems from single cells to entire organisms have to

cope with a constantly varying environment, be it changing conditions of nutrient availability,

or noisy external signals that have to be processed. Moreover, their internal properties are also

subject to uncertainty, since they can, for instance, be changed by mutations. Evolution, there-

fore, most probably implied strongly favored robustness, that is, a system’s ability to maintain

(key) functional characteristics despite potentially harmful external or internal perturbations.

A now widely accepted notion is that many (or most) cellular sub-systems are robust [136].

Examples for this capacity can already be found in such simple organisms as the bacterium

Escherichia coli, which displays perfect adaptation in its search for nutrients (chemotaxis) [4],

and also a high resistance towards gene deletions. The inactivation of any single gene out of

approximately 90% of all genes does not affect viability when the organism is cultivated under

(idealized) laboratory conditions.

Robustness has long been recognized as an important property of biological systems, for

instance described as ’canalization’ (towards a specific outcome despite uncertain starting con-

ditions) in developmental biology. However, the understanding of how robustness is accom-

plished at the cellular or molecular level is still limited [102]. A major reason for this fact is that

robustness is intimately linked to the apparent complexity of cellular systems as several lines of

evidence suggest [30, 151]. In principle, complex systems may either show a behavior or a de-

sign difficult to understand [275]. However, the behavior of biological systems is in most cases

relatively simple. Even genome-wide regulation of gene expression during the yeast and human

cell cycle can be reconstructed by using a few fundamental expression patterns [113, 114]. The

comparison of, for instance, the number of metabolic and regulatory genes shows that complex-

ity in biology arises mainly from abundant control circuits, that is, from the system’s design:

”In a nutshell, the system complexity is built in to provide for simple behavior.” [151]. In anal-

ogy to evidence from highly evolved engineered systems, the main purpose of cellular control

systems seems to be to guarantee reliable performance of vital functions under conditions of

uncertainty [45]. Understanding the design principles ensuring robustness, hence, requires the

analysis of degrees of complexity, which can not be achieved by intuition alone.

The emergent field of systems biology is directed towards a quantitative, system-level un-

derstanding in biology. Systems biology relies on an interdisciplinary approach combining

concepts from biology, information sciences and systems engineering [137]. In this area of
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research, theory-based approaches, especially mathematical modeling of complex biological

systems, play a central role. Developing virtual representations of cells and organisms finally

enables one to perform computer experiments similar to experiments with real biological sys-

tems. Mathematical modeling requires and entails a precise representation of the knowledge on

the system, and of hypotheses for unknown mechanisms. It allows one to apply formal methods

of analysis. Mainly these two characteristics are expected to lead to a deepened understanding

of the biological systems under consideration [67, 88].

Mathematical modeling consequently played a central role in the recent re-discovery of

robustness as an important property of cellular systems. Barkai and Leibler [11], by using a

simplified biochemical network model, were the first to suggest that the ability of the bacte-

rial chemotaxis system to adapt to constant stimuli is a robust property of the network, and

not a result of fine-tuning of biochemical parameters. This proposition was later confirmed

by detailed theoretical and experimental analysis [4]. Other systems, for which robustness

was demonstrated based on mathematical models include, for instance, protein kinase cas-

cades acting as switches in intracellular signaling [73, 116], the reduced cell cycle regulation

of Xenopus eggs [19, 180], and complex networks controlling the development in Drosophila
melanogaster [61, 171, 272]. Relatively few studies, such as an investigation of the phage λ

gene regulatory circuit [160], addressed this topic exclusively through experimentation.

The exact causes for robustness, however, in most instances have yet to be determined.

Specifically, how network structure and functionality are related is a largely open question. One

obvious factor contributing to robustness is regulation. For the case of adaptation in chemotaxis,

robustness could be explained by the fact that the regulatory network structurally corresponds

to the biochemical implementation of an integral feedback control [284]. It is, however, unclear

and difficult to understand, how complex, composite mechanisms ensure robustness [202]. Reg-

ulation, especially in complex systems, additionally, always implies a trade-off between robust-

ness and fragility [45]. Understanding the design principles of cellular networks, which evolved

to (optimally) cope with this constraint, represents a major, but largely unresolved challenge.

The approach followed in this work is to uncover the principles underlying robustness, and

the consequences of robustness for a system-wide understanding by analysing robustness in

cellular networks from three different angles. The first part deals with the interplay between

network structure, function and cellular regulation in larger systems in order to evaluate, for

instance, to what extent regulation supports potential alternative routes to enhance robustness.

As in many cases it is not evident how additional complexity could improve a system’s per-

formance, the second direction of research focuses on the contribution of individual regulatory

loops in simultaneously achieving robustness and precision of cellular control. The third part

deals with the question whether robustness represents an obstacle for system identification, be-

cause largely invariant behavior provides only scarce information on the internal structure of a

system. All three problems will be addressed by model-based analysis of different, representa-

tive biological examples.
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1.2 Outline

Systems analysis of robustness in cellular networks first requires a definition of the term ”robust-

ness” as well as the specification of suitable quantitative measures for this property. Chapter 2 is

devoted to this purpose. It also reviews the current understanding on the mechanisms contribut-

ing to robustness in living cells, with a particular emphasis on open questions and conceptual

approaches in the field.

Investigations into the relationship between network structure, function, and regulation

with respect to robustness will be performed for two biological examples, which represent

two extreme positions in the spectrum of dynamic properties of cellular functional entities.

Metabolism is mainly characterized by a requirement for homeostasis, whereas signal gener-

ation and processing in general involve more complex dynamics. Hence, different forms of

control should prevail owing to their different sensitivities [107]. From the point of view of

systems analysis, metabolic networks are amenable to structural analysis without significant

loss of description accuracy. Since this approach is also suitable for the analysis of large-scale

networks, it will be applied to the fairly complex, yet well-studied central metabolism of the

bacterium Escherichia coli (chapter 3).

Genetic oscillators generate an important class of intracellular signals. They may show

complex dynamics and have emerged as model systems for studies in systems biology. Es-

pecially those systems establishing intracellular clockworks show desirable features such as

moderate size and a well-established knowledge of the biological mechanisms. Relatively low-

dimensional parameter spaces of the associated mathematical models makes them suitable for

systematic dynamic analysis. In chapter 4, comparative analysis of two published models of

the oscillator underlying circadian rhythms in the fruit fly is performed to study, to what extent

structural features of the system, such as individual control loops, contribute to the observed

robustness and precision of the clock.

As noted above, robustness of cellular systems may hinder the identification of internal

working principles from the observable behavior. It may facilitate mathematical modeling,

because exact values of kinetic parameters do not have to be known. However, it is unclear,

which consequences robustness has for the construction of valid and predictive mathematical

models based on experimental data. Mathematical modeling and model analysis of a complex

control module in the yeast cell cycle will be used to address this problem (chapter 5).

Matching mathematical analysis with biological reality requires the analysis of specific bi-

ological examples, and, thus, of specific forms of robustness and its generation. Ultimately,

however, systems biology approaches should allow for the uncovering of cellular design princi-

ples that are valid in a more general sense. In the summary (chapter 6), an emphasis is therefore

laid on the comparison across the biological systems studied and the analytical methods em-

ployed to approach this aim.





2. SYSTEMS ANALYSIS OF ROBUSTNESS

2.1 Robustness: Definition and measures

The notion of robustness has recently received considerable interest in diverse fields for which

the existence of complex networks is characteristic. Examples include the internet, social net-

works, and biology [249]. Not surprisingly, the term ”robustness” has been associated with

different, sometimes conflicting interpretations. Here, starting from a broad definition, which

encompasses a common denominator of the understanding of robustness, the aim is to obtain

an operational definition that proves suitable for analyzing the properties of cellular networks.

In general, robustness means the persistence of a system’s characteristic behavior under

perturbation or conditions of uncertainty. Robustness is, hence, defined for a specific system,

which, however, may have arbitrary structural and behavorial features. The concept is closely

related to stability in dynamical systems theory, but usually employed with respect to a broader

class of phenomena [30, 137] (for a contrary, but rarely encountered point of view see e.g.

[160]). In engineering, the task of determining a system’s robustness is often accomplished

by transformation into a suitable stability problem. However, compared to stability theory in

systems dynamics, no elaborate theory of robustness exists yet. In principle, thus, apart from

these two differences, robustness and stability refer to identical concepts; they will be used as

synonyms in this work (but see also [125]). It has to be noted that robustness (such as stability)

encompasses a relative, not an absolute, property of a system. No system can maintain stability

for all its functions when encountering any kind of perturbation. Any operational definition of

robustness, and systems analysis thereof, thus, requires two additional specifications. Namely,

it has to be explicitly clarified, (1) which characteristic behavior or function remains unchanged,

and (2) for which type of disturbances or uncertainties this invariance property holds.

For relatively simple systems, the characteristic behavior can often be captured by defini-

tion of a dynamical regime. Investigations of oscillators may thus focus on the persistence of

a regular periodic solution. As can be seen from this example, robustness in general refers to

a qualitative property, and does not preclude quantitative changes (in period or amplitude of

the oscillations) to occur [11]. For engineered or biological systems, one often understands by

characteristic behavior the ”desired system characteristics” [30] to be maintained. A typical

task in control engineering is to achieve robust stability or robust performance (i.e.. guaranteed

tracking) in the face of plant uncertainty captured by describing the plant as belonging to a

(structured or unstructured) set, for every member of which the characteristic has to hold [51].

Here, robustness directly connects to functionality. In technical as well as in living systems,
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it makes sense to protect key functions by design, or as a result of evolution. Especially in

biology, however, function can, in many cases, not easily be assigned to a particular subsystem

of a cell or organism [180]. In bacterial chemotaxis, for instance, maintaining the ability to

adapt to changing nutrient concentrations, whereas adaptation times are allowed to fluctuate, is

intuitively understandable. As a counter-example, signal transduction relies upon sensitive de-

tection, amplification and decoding of input signals. It would not be sensible to react identically

irrespective of the signals received. Identification of key inputs and outputs for specific sub-

systems, however, may not be evident from the complex overall network structure, and cellular

signaling requires both robustness and precision [79]. The claim of higher-order behavior or

entire modules to be robust and, hence, imply functional advantage, therefore requires careful

justification.

Similar considerations apply for the specification of perturbations. Cellular systems face

three broad classes of uncertainties: (1) externally induced perturbations owing to variable en-

vironments, (2) internal perturbations arising from changes in the structure of the system, such

as mutations affecting kinetic properties of proteins, or leading to the lack of components, and

(3) intrinsic noise as a consequence of the low copy number of many cellular components.

The first two classes of disturbance can be dealt with in a deterministic framework. External

perturbations may directly influence the solutions of a dynamical system; resistance to these

influences equals the notion of stability in dynamic systems theory. Perturbations affecting the

structure of the systems itself, but which do not result in qualitatively different dynamics, reveal

structural stability of a system [125]. These two types of perturbations can, hence, be mapped

on changes in inputs and system parameters, respectively.

Stochastic effects resulting from the random character of biochemical reactions in princi-

ple require an explicit inclusion of noise in robustness analysis [202]. In gene expression, for

instance, intrinsic noise considerably contributes to overall variation, with potential amplifica-

tion and propagation by regulatory dynamics [63, 254]. Theoretical and experimental studies,

however, demonstrated that stochastic noise in gene expression can efficiently be suppressed by

regulation, especially when employing autoregulation via negative feedback [15, 254]. More-

over, deterministic behavior is not necessarily linked to high molecule numbers. A phenomenon

called stochastic focusing has the potential to enhance the reliability of cellular control through

noise. This principle bears similarity to the repression of output noise by signal noise in stan-

dard nonlinear control [191]. In particular, noise has been demonstrated not to dramatically

change the behavior of a complex intracellular oscillator that will be analyzed herein [95]. This

work will exclusively be concerned with deterministic analysis of cellular networks, but limi-

tations of this approach can not be excluded. However, for the example systems investigated,

they do not seem to impose severe restrictions on the generality of results.

In this framework, measurements of robustness will mainly rely on assessing the influence

of changes in system parameters onto the observed behavior [219]. Parameters in this context

encompass kinetic constants as well as information on interactions, initial concentrations, and
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time-varying entities such as inputs. Also structural information (existence of links or com-

ponents) can by these means be encoded in the form of system parameters. A model of a

biochemical network then serves as a mapping from parameter space to behavior space [180].

Different measures of robustness based on parametric studies have been employed so far. Early

in the 1970s, Savageau introduced parameter sensitivities, which quantify the change of a sys-

tem’s state in response to a change in parameters into the realm of biology [218]. This measure,

however, usually does not directly reflect robustness, since it has to be connected (via a derived

feature) to the quality of a behavior, or a specific functionality. Other approaches use the size

of parameter space, in which the desired behavior occurs as a measure of robustness. Examples

include the bandwidth of compliant single parameter values obtained, for instance, through bi-

furcation analysis [165], the optimum margin of stability [180], or criteria inspired by biology

such as mutation load [233], and mutational expansion [171]. In contrast to parameter sensi-

tivities, however, for practical reasons, these measures enable analysis only in low dimensions

of parameter space. Interactions between many parameters may yield complex synergistic or

antagonistic outcomes. For this reason, the methods are limited in assessing the effect of multi-

dimensional uncertainty in complex systems [165].

Furthermore, all measures discussed so far describe local (with respect to a specific point in

parameter space) properties of a system. For revealing general design principles of networks,

however, one needs to examine global characteristics, that is, the type of behavior a network

may show independent of a specific parameterization. In principle, two ways for avoiding, or at

least diminishing this shortcoming exist: First, rigorous methods such as the structured singu-

lar value developed in robust control theory [293] guarantee a valid answer. The methods are,

however, limited by the efforts required to apply them to highly nonlinear biological systems of

reasonable complexity. For this reason, presumably, only smaller biological subsystems were

subjected to a very simplified version of this analysis up to now [165]. Monte Carlo methods,

secondly, randomly sample the parameter space, and in combination with local analysis can

provide for an estimate of global properties. Random search can not guarantee general robust-

ness of a system, but for complex systems, it seems to be most suitable to obtain evidence for

(or against) global robustness.

It has to be noted that the type of analysis proposed here is distinct from a Monte-Carlo

approach often used for studying robustness of biological networks. There, identical behavior

of a system for a large population of randomly generated parameter vectors is interpreted as an

indicator of robustness [11, 61, 272]. Identical behavior, however, does not necessarily entrain

invariance of behavior in case of perturbations, as it is characteristic for robustness. In principle,

a high number of very small regions in parameter space yielding the same qualitative dynamics

could be captured by the randomly generated sets of parameters. Then, even smaller perturba-

tions in the nominal parameters would cause the system to leave the corresponding region in

the behavior space. Random search, hence, can only account for global robustness properties

when combined with local evaluation of sensitivities.
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The analysis of robustness, thus, has to be based on detailed specification of the behavorial

regimes, the types of disturbances, and the measures for robustness considered. The following

section will refine these general principles for the case of cellular networks by discussing spe-

cific forms of robustness in biological systems, their (broader) functional role and emergence.

2.2 Robustness in complex systems

To understand the functional role of robustness in biological systems in more detail, three points

deserve attention: the phenomenology of robustness, the means by which it is achieved, and the

evolution of robustness. As noted above, robust systems show relative insensitivity to alterations

of the systems’ parameters, and the ability to adapt to varying environments. Moreover, a

high degree of robustness is present when ”graceful degradation” occurs. This phenomenon

refers to an ordered degradation of functionality after large perturbation in contrast to immediate

catastrophic failure. Apoptosis (programmed cell death) in case of unrecoverable damage is a

prominent example of this feature [136, 137].

Biological systems, however, also show extremely contrary, highly sensitive characteristics

under circumstances, for instance, when small changes in single key regulatory proteins lead

to complete deregulation of cell growth in cancer. Theoretical approaches are desired in order

to explain such counter-intuitive behavior on the basis of general characteristics of complex

systems. They could allow for conclusions on the existence and features of potential design

principles and, thus, provide a framework for understanding robustness in complex cellular

networks.

A general concept for explaining the existence and characteristics of extremely robust sys-

tems termed ”Highly Optimized Tolerance” (HOT) was recently suggested by J. Doyle and

co-workers. It relies on the central idea that robustness - in technical as well as in biological

systems - has to be regarded as a limited and conserved resource. This quantity (tolerance)

requires careful distribution, adapted to the function a system is intended to perform, and the

associated uncertainties. High optimization refers to a strategy of simultaneously achieving

high performance and error-tolerance by a high degree of internal structure. The management

and overall conservation of robustness lead to a ”robust yet fragile” behavior of such systems,

namely a high robustness (”barriers to cascading failures”) in the face of anticipated or usu-

ally encountered disturbances, but hypersensitivity towards unexpected perturbations or design

flaws. Hence, it means a highly structured sensitivity [28, 29].

Highly optimized tolerance accounts for two important characteristics that distinguish so-

phisticated engineered and biological systems from complex physical systems: their structural

complexity and the notion of function [103]. It furthermore emphasizes a necessary connection

between complexity and robustness. Making certain functions of a system more insensitive

towards disturbances, for instance, may require additional control loops. This, in turn, leads

to higher complexity and to new potential sources of fragility [30]. Finally, highly optimized
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tolerance does not require global optimization of a system or its deterministic development,

but may be established either through purpose-driven, but in practice iterative design or as an

outcome of evolutionary processes [29, 294].

Highly optimized tolerance encompasses a theoretical framework for linking characteristics

of the behavior of robust systems to their inherently complex structure, and the development

of the latter. It encompasses robustness as a guiding principle for explanation of cellular com-

plexity, which, in turn, implies the possibility of deriving cellular design principles through

robustness analysis, when taking the trade-offs captured by HOT into account. Moreover, simi-

larities between engineered and biological systems could enable one to base the search for such

principles on well-known mechanisms used to confer robustness to technical systems. For this

purpose, however, two points deserve critical consideration: the extent of similarity between

the two classes of systems, and the assumptions underlying the concept of highly optimized

tolerance.

Evidence for the general validity of the theory up to now stems either from the study of

highly simplified (lattice percolation) models [28, 29, 294], or from analogies between various

aspects of living and technical systems [30,45]. Direct applicability to biology, for example, by

uncovering predicted design principles, remains to be shown. Concerning potential differences,

especially the fact that natural evolution acts on populations of cells or organisms, and that its

outcome depends on e.g. the population size needs to be taken into account. For instance,

the existence of apoptosis in unicellular organisms such as yeast can only be explained by a

competitive advantage for the group (i.e. the clone), not for the individual cell providing the

suicide mechanism [80]. In this respect, however, several pieces of evidence support the general

scheme of the HOT framework. First, in model-based scenarios of evolution of gene networks

in changing environments, in which robust behavior was required, simple expression pattern and

temporally stable, highly organized structures were favored [20, 21]. In experimental studies,

independently evolved strains of E. coli, secondly, showed convergent patterns of development

towards higher fitness [39]. Finally, evolutionary arguments indicate that robustness may in

fact not impose barriers to evolution, but instead enhance ’evolvability’. Robustness enables

genotypic variability (flexibility) without immediate functional consequences, which shortens

the path for further development to (favorable) phenotypes [134, 160].

The concept of highly optimized tolerance takes an extreme position in it assumptions on the

strategies and goals for handling the trade-off between performance and reliability. In particular,

it implies a high-risk strategy in that all marginal performance benefits are captured, at the

expense of the risk of high losses upon unexpected perturbations. A different strategy could

consist in trading small losses in average performance against drastical reduction of the risk and

size of catastrophes. Such a risk-aware variant of the HOT concept was recently proposed as

”constrained optimization with limited deviations” (COLD). Using identical models as for the

HOT scenario, it was shown that this regime can enhance robustness (in terms of utility), while

showing similar overall system behavior [184].
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To summarize, theoretical concepts relying on connections between robustness, complexity

and overall design principles capture important robustness characteristics of man-made as well

as of living systems. At present, how the implicit trade-offs described by the theories is handled

in real-world systems requires studying more complex, realistic examples. Also, the concepts’

applicability for detailed analysis of functional and design principles operational in cellular sys-

tems remains to be determined. The theories, however, strongly support the existence of general

design principles for achieving robustness. Additionally, they provide guidelines for the anal-

ysis of such principles, namely, as a first approximation to employ engineering principles for

extrapolation to biology. The following section therefore focuses on basis mechanisms confer-

ring robustness to technical systems and their relevance for understanding cellular networks.

2.3 Mechanisms conferring robustness

In engineering complex technical systems, design for protection against deleterious distur-

bances mainly employs four ingredients. These encompass (1) back-up systems (redundancy

and diversity), (2) disturbance rejection through feedback control, (3) structuring of complex

systems into semi-autonomous functional units (modularity), and (4) their reliable coordina-

tion via establishment of hierarchies and protocols. Examples for all of these features exist in

biology as well [45, 136]. Their potential contributions for conferring robustness to cellular

networks – and for the analysis thereof – are discussed in this section.

2.3.1 Redundancy

The simplest strategy to protect against failure of a specific component is to provide for alterna-

tive ways to carry out the function the component performs. At the cellular level, this back-up

strategy can appear in two principal forms. Either two or more duplicate genes play identical

physiological roles, or groups of different genes constitute alternative pathways for achieving

the required functionality. Both mechanism are also referred to as ’genetic buffering’ in the bi-

ological literature [102]. In contrast to redundant systems in engineering, however, completely

identical genes that do not diverge in functionality or regulation would not survive during nat-

ural evolution [146]. Instead, structurally different entities perform similar functions owing to

functional overlap, which lead to the suggestion to use ’degeneracy’ as a more appropriate term

for this phenomenon than redundancy [54].

The question, whether characteristics of individual components or network characteristics

contribute most to genetic buffering is highly debated. Analysis of a limited set of duplicate

genes in yeast discovered no significant correlation between sequence similarity and the effect

of mutations on phenotype and gene expression [273]. Based on evolutionary arguments, a

study on robustness of metabolic networks in humans and mice reached a similar conclusion.

Here, the gene evolution rate, which serves as a negative indicator of mutational effects, showed
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no difference between structurally related and unrelated genes, whereas the pattern of network

connections did so [135]. A recent analysis of deletions in all yeast genes, however, unraveled

statistically significant connections between duplicate genes and functionality. This finding is

compatible with a view of network structures making a dominant contribution in providing

robustness through redundancy, but indicates that the issue remains open [99].

Closer investigation of robustness in cellular networks as a consequence of redundant path-

ways, thus, offers one approach to the uncovering of design principles unclarified at present.

In this respect, the previous studies cited above suffer from the fact that direct links between

robustness and gene or pathway function were not established. They relied on indirect evidence

such as sequence similarity or topological proximity owing to unspecified interactions. Abstract

graph-theoretical reasoning on interaction networks, for instance, leads to the conclusion that

robustness is a feature only of specific classes of redundant networks [2], into which cellular

networks do not per se have to fall.

2.3.2 Feedback control

Control circuits undoubtedly play a decisive role in maintaining cellular functions in the face

of internal or external uncertainties [45]. Intimately linked to this fact, they account for most

of the cellular complexity. Understanding cellular design principles requires deeper inspection

of cellular regulation [87], which, however, meets difficulties owing to the highly integrated

character of these circuits. This section, therefore, will focus on general contributions of control

to robustness in biochemical systems, and on methods for the analysis of these contributions in

cellular networks of increasing complexity.

Most importantly, feedback loops can account for robustness in cellular network function.

In brief, by using the output of a function to be controlled in order to determine appropriate

input signals, feedback enables a system to adjust the output by monitoring it. In general,

negative feedback is employed in reducing the difference between actual output and a given set-

point, thereby dampening noise and rejecting perturbations. The role of positive feedback (or

autocatalysis) in conferring robustness to biological systems is less obvious, since it may cause

instabilities. For this reason, the design of technical systems tries to avoid positive feedback.

In biology, however, decisions for example in development need to be derived from noisy and

graded input signals and have to be maintained. Enhanced sensitivity through positive feedback

also speeds up stress responses. Depending on which cellular functionalities require protection

from perturbations, hence, both forms of feedback and combinations thereof can contribute to

robustly achieve a desired behavior [79].

It is essential to note that the role of feedback is ambiguous with respect to robustness. Feed-

back, in general, also introduces fragilities to the system. Such fragilities include the possibility

of self-sustaining and cascading failures as a consequence of positive feedback. Uncontrolled

tumor growth illustrates this danger. A high gain in negative feedback, in principle, leads to
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faster control but fragilities enter in potentially inaccurate transient responses, namely because

time-varying perturbations can be amplified [45]. As already shown in the context of the general

definition of robustness, the degree to which a control circuit contributes to a system’s robust-

ness in comparison to an unregulated system, thus, depends on the circuit design, the control

objective, and the type of perturbations affecting the system.

Design of artificial gene circuits on the basis of mathematical models is one promising ap-

proach for analyzing simplified cellular functions in detail [106]. Engineered genetic circuits in

model organisms provided direct means for testing the predicted features of regulatory schemes

of low complexity in vivo. In particular, it was shown that a simple feedback loop relying on

negative auto-regulation of a transcription factor stabilizes steady-state gene expression levels

despite the inherent noise in gene expression. Importantly, autoregulation proved advantageous

over unregulated transcription for a range of biologically plausible parameters. Not surprising-

ly, this effect was enhanced by high gain of the feedback loop [15]. Experimental work thus

confirmed predictions already made in a classical theoretical study of stability in gene regula-

tion [220]; inferiority of positive autoregulation with respect to steady-state stability remains to

be determined experimentally [106].

Combined experimental and theoretical approaches were also employed to study systems

mimicking bistable switches that could be involved in cellular decision-making. Two genes mu-

tually repressing each other’s expression (double-negative feedback) proved sufficient to con-

struct a reliable irreversible switch [84]. A certain robustness was furthermore demonstrated

for autocatalytic gene activation in combination with cooperative activator-DNA interactions

- a simpler system mimicking a bistable switch [16]. In this case, however, experimentally

determined stochastic transitions between the two stable steady states [16] indicate a very con-

strained robustness of the system when subject to realistic perturbations. Similar observations

were made for an oscillatory circuit, which was engineered by coupling three transcriptional

repressors [62].

These examples illustrate current limitations of the approach using simple artificial gene

regulatory circuits: under real-life conditions with intracellular noise and uncertain components,

more complex circuits are required. One possibility for achieving higher robustness consists

in combining multiple levels of regulation, for instance, controlled transcription, translation,

post-translational modification and degradation [267]. Investigating the robustness of cellular

control circuits, moreover, has to account for the fact that in many cases where highly precise

and reliable behavior is indispensable for overall cellular functionality, multiple intertwined

feedback loops operate [74]. Structural properties such as robustness can not be elucidated

by simple addition of component properties. Genetic circuit engineering thus has a particular

strength in testing theoretical predictions, which, however, requires more realistic descriptions

of biological regulation and their thorough analysis.

Instead of building up regulatory circuits from simple elements to approach cellular com-

plexity, an other approach tries to extract the core control logic out of realistic models of bio-
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logical systems. In particular, delineating an equivalence between biological regulatory circuits

and technical controllers, for which theoretical foundations are well-established, proved suc-

cessful. Several regulatory networks, including the chemotaxis network in E. coli were shown

to establish an integral feedback scheme [60, 158, 284]. As integral feedback is necessary and

sufficient for robust steady-state control, robustness of phenomena such as perfect adaptation

or homeostasis are readily explained by the equivalence [45]. Difficulties arising in this type of

analysis result from two factors: the process of extracting basic control schemes from complex

network schemes, and limitations in current control theory. The latter constraint is more fun-

damental, because a well-established body of general theory for complex non-linear control is

lacking.

For this reason, among others, direct investigation of mathematical models for cellular reg-

ulatory circuits has become a prominent method for analyzing robustness. As discussed in

section 2.1, however, a critical issue in this approach lies in properly deducing robustness of

a particular control structure from numerical simulations. Uncovering design principles con-

ferring robustness through intertwined feedback control furthermore requires an analysis of the

role that individual control loops play. Experimental evidence supports the assertion that differ-

ent instances of feedback possess individual roles and significance in cellular regulation [79].

As suggested recently in the context of model validation [180], comparative analysis of robust-

ness of different models incorporating different aspects of the real control structure could help

to clarify these roles. In contrast to recent studies such as those for a simplified model of a

circadian clockwork [244], therefore a general link between control structure and robustness

properties has to be established. Up to now, the approach primarily proved successful in point-

ing to missing links in current understanding. Analysis indicated that even the well-studied

control scheme of the bacteriophage λ does not entirely explain the observed robustness [10].

Whereas for simpler feedback control circuits, thus, experimentally and theoretically

founded analyses of robustness properties exist, the understanding of complex intertwined reg-

ulatory networks is still limited. The bottom-up concept of engineering gene circuits has to rely

on an understanding of complex composite circuits, and its comparison to biological reality. A

reduction of cellular control networks to basic technical control schemes is currently confined

to the elucidation of design principles underlying the robustness of particular functionalities.

Systematic comparison of differences in robustness properties based on biologically realistic

mathematical models, however, could provide a way to elucidate working principles of specific

example networks in a first step towards elaborating cellular design principles.

2.3.3 Modularity

Focusing on the internal structure of cellular systems, one central, increasingly accepted no-

tion is that these systems are composed of ’functional units’ or ’modules’. Modules can be

understood as semi-autonomous entities that show dense internal functional connections, but
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looser connections with their environment [90, 148]. An example for a modular structuring

of metabolic networks is shown in Fig. 2.1. An enzymatic reaction in glycolysis belongs ac-

cordingly to the functional unit ”glycolysis”. This in turn can be regarded as part of the larger

unit ”catabolism”. Hence, modularity of cellular systems is closely connected to the concept of

hierarchical structures that will be considered in the following section.
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Fig. 2.1: Modular structures in metabolic networks. The scheme refers to the decomposition of cellu-

lar metabolism into smaller modules. Arrows indicate containment relations. Glycolysis (left)

is considered to be a functional unit that constitutes one part of catabolism, which again is con-

nected to other higher-order modules of the metabolic network. Abbreviations are ’PPW’ for

pentose phosphate pathway and ’TCA’ for tricarboxylic acid cycle.

With respect to robustness, modularity leads to a benefit for overall functionality of com-

plex systems. Encapsulation of simpler functions can reduce the risk of catastrophic failure by

preventing the spread of damage in one module throughout the network [2, 103]. As a conse-

quence of modularity, among other criteria, biological systems seem to be more closely related

to synthetic, engineered systems than to physical systems [45, 103, 151]. Therefore, a promis-

ing way to come to a system-level understanding of cells is to identify common features in

the large-scale organization of complex networks in both domains, and to extend successful

theoretical concepts established for the analysis and synthesis of complex technical systems

to biological systems [87]. For this purpose, however, two critical issues have to be clarified,

namely to prove the existence of modularity in cellular systems, and to establish methods for

the unanimous identification of modules [151]. Both problems are intimately linked.
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Several lines of functional experimental evidence suggest that cellular networks are orga-

nized in a modular fashion. A large-scale analysis of yeast mutants provided important support

for modularity. It focused on synthetic lethality, which captures the phenomenon of cells car-

rying individual deletions in two genes the cells being viable, whereas the combination of both

mutations is lethal. Analysis revealed synthetic lethality predominantly of genes acting in the

same (intrinsic) or functionally similar (extrinsic) pathways. The results have to be interpreted

with caution owing to caveats in experiment design, but they are completely in accordance with

features of a modular system [102]. Moreover, some complex functional units such as trans-

lation or controlled proteolysis could be reconstituted in vitro, which underlines their (limited)

autonomy [103].

One class of approaches for identification and demarcation of functional modules also re-

lies on experimental data. Concerning the first task, it supports the existence of modules,

although it may be biased due to the explicit search for them. Network topology, that is,

the pattern of network connections, was analyzed in several studies. Irrespective of whether

metabolic networks spanned by components and reactions [126, 203], protein-protein interac-

tion networks [168,208], or gene regulatory networks [168] were considered, separable clusters

were always found. Topological network analysis also showed that transcriptional regulation

networks in E. coli [177, 235] and yeast [153] are composed of recurrent ’network motifs’ or

simple building blocks that can perform functions such as feedback control. Moreover, a re-

cent study of a large compendium of yeast gene expression profiles came to similar conclusions

based on functional data [61]. Importantly, when the modular structures obtained were com-

pared to current classifications of metabolic or regulatory pathways, large overlaps between

them, as well as discrepancies were revealed [61, 203, 208].

Other approaches for demarcation of modules rely on a conceptual identification of mod-

ules [132, 148]. For this demarcation, for instance, a preliminary set of three biologically moti-

vated criteria was introduced [148, 248]. To be (relatively) self-contained, the modules have (i)

to perform a common physiological task such as to represent a linear pathway for amino acid

synthesis, (ii) to be controlled at the genetic level by common regulators (i.e. identical tran-

scription factors or the organization in one operon for prokaryotic systems), and (iii) to possess

a common information processing (signal transduction) network. The essential feature of this

approach is the combination of classical concepts in the analysis of metabolic systems with a

signal-oriented perspective to cellular regulation. Distinct to this approach, several authors ad-

dressed the question of demarcation in a more quantitative, flux-oriented way regarding either

metabolic pathways [212, 223, 227] or intracellular signal processing networks [131, 229].

Strong evidence from experimental investigations, hence, exists to sustain the assertion that

cellular networks are structured into functional units having their own identity and limited au-

tonomy. Moreover, different criteria for identification of modules show considerable overlap.

However, these module boundaries are partially not consistent with biological intuition. This

may be explained by more flexible concepts of modularity, which allow, for instance, for one
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component to occur in more than one module [103], or to consider a non-unique representation

of module boundaries owing to dynamic processes [9]. Clearly, further systematic theoretical

investigations on larger modular systems such as in [262] will be necessary to come to a more

stringent formulation of criteria for demarcation. However, the substantial agreement between

the results obtained from different decomposition methods suggests to regard units identified

by these approaches as reasonable approximations to real cellular modules.

Modularity in biochemical networks entails two important consequences for the analysis of

robustness in such networks. First, it lets one refer to general concepts linking modularity and

robustness that were established for different domains, for instance, in the realm of man-made

systems. There, especially graph-theoretical analysis suggested that certain network structures

involving modularity should be robust to random perturbations [2] (see also chapter 3.2). Re-

cently, these predictions were claimed to be valid for cellular networks, especially metabolic

networks, accordingly [126, 203]. These assertions, however, remain to be validated (or falsi-

fied) by comparing the predictions to experimental observations. In particular, it is unclear, in

how far high-level abstractions based on interaction patterns only are able to capture network

functionality. A simple example for this potential problem is provided by a study on protein

interaction networks [168]. There, the authors argue that the observed suppression of direct

links between central hubs in the network enhances robustness by avoiding cross-talk between

different modules and, thus, localizing effects of potential damage. If, however, cross-talk was

vital for coordination of cellular functions, the pure topological argument implying equal impor-

tance of all interactions would not hold. Analysis of network structures, thus, has to take into

account the interplay between different cellular networks and their potential dynamics, when

necessary [188,235]. Furthermore, judgment on the power of theoretical concepts must rely on

comparison with experimental observations, which is lacking so far.

The notion of a living cell being composed of subunits of limited autonomy, second, sim-

plifies modeling and abstraction of general properties [45]. For the mathematical modeling of

cellular systems, the modular structure raises the possibility to independently develop mathe-

matical models for each of the functional units. Hence, submodels as entities in the ”model

world” correspond to functional units in the ”real world”. These submodels can later be con-

nected to obtain a description at the system-level [148, 248]. Consequently, the analysis of

robustness can proceed from the detailed investigation of individual modules to their interplay

and its consequence for overall systems performance. Modularity of cellular systems, hence,

provides one with testable hypotheses derived from top-down studies as well as with opportu-

nities for a more detailed bottom-up approach. Both approaches should finally converge.
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2.3.4 Hierarchies and protocols

Protocols encompass the set of rules aiming at an efficient management of relationships between

the parts (i.e. modules) that constitute a system. They include, for instance, the organizational

structures for embedding modules, and the interfaces between modules that allow for system

function [45]. Protocols, hence, are of primary importance for an understanding of how in-

formation in complex systems such as in living cells is integrated [103]. As already discussed

in the previous section, analysis of robustness at the system level has to include these aspects,

which have only received few attention so far. The purpose of this section is to give an outline

of predominant protocols in biology, and of their potential implications for system robustness.

In general, an efficient means for coordination in complex systems is to organize a system

hierarchically, namely to establish different layers of integration [174]. This architecture, in

particular, helps to reduce the costs of information transmission [100]. In cellular systems, dif-

ferent facets of hierarchical organization can be distinguished. At a very abstract level, a cell can

be divided into two general subnetworks, a regulatory network and a metabolic network [148]

as shown in Fig. 2.2. These networks possess very different characteristics: The metabolic net-

work is mainly occupied with substance transformation, e.g. to provide metabolites and cellular

structures. In many cases it involves fast biochemical reactions. The regulatory network’s main

task is information processing, e.g. for the adjustment of enzyme concentrations to the require-

ments of variable internal and external conditions. This network involves the use of genetic

information. Compared to information flow, mass flow only plays a subordinate role in the

regulatory network. In this sense, the regulatory network is superimposed onto the metabolic

network, fulfilling functions analogous to a controller in a technical process.

control action

metabolic network

metabolites
cellular structures

products

regulatory network

DNA, RNA
proteins

amino acids
nucleotides

proteins

sensor signals

Fig. 2.2: Regulatory network and metabolic network: Cellular components constituting the networks

and the major connections between them implying signal exchange (left) and substance flow

(right).

The interaction between both networks is necessarily bound to substance exchange due to

the requirements for precursors and proteins. However, the main connections consist in directed

signal flow, i.e. sensor signals (e.g. generation of second messengers) and control action (e.g.

adjustment of enzyme concentrations). For a system-wide understanding and description of

cellular function, these relations between metabolism and regulation imply that analysis will
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have to integrate both organizational levels. Moreover, it is important to note that for the com-

munications within the levels, standard protocols exist, which include, for instance, exchange

of energy and reduction equivalents through general currencies for the metabolic network, and

gene expression, covalent modifications or common mechanisms of controlled degradation for

the regulatory network [45].

Cellular regulation is established by especially complex gene and protein networks. In

cell cycle regulation of bacteria, for instance, genome-wide analysis of gene expression clearly

demonstrated a hierarchical control architecture [150]. A closer look at the hierarchical struc-

ture of cellular regulation may thus help to deal with this kind of complexity. As shown in

Fig. 2.3 for transcriptional regulation in budding yeast, the system’s possible behavior on a

lower level is constrained by regulation at higher levels. For example, the presence of RNA-

Polymerase offers a wide variety of different gene expression patterns, but the actual gene ex-

pression is adjusted by combinatorial control involving associated factors and specific transcrip-

tion factors. Transcription is thus affected by layers above the influence of gene-specific regu-

lators, which enables the cell to establish global to local layers of regulation by controlling the

availability of more and more specific components associated with a general transcriptional ma-

chinery [112]. Similar control structures can be found as a common theme in translation [216]

and in intracellular proteolysis [133].
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Fig. 2.3: Hierarchical structure of the regulatory network: Example of transcriptional regulation in bud-

ding yeast. Specificity of regulation increases from global regulation to single gene expression

(top to bottom), whereby the components involved (left) become more specific as well as the

internal or external signals (right) processed. Shaded areas at each regulatory level indicate the

respective behavior in a system-theoretical sense [276, 277] allowed by the combination of all

regulatory interactions including higher levels of control.

Several lines of evidence suggest that hierarchical structures confer robustness to cellular

systems. One major proposition, already encountered in the context of modularity, is that sep-
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aration of functions, and their integration at higher levels, reduces the average damage owing

to arbitrary deletions of links in the network. Topological studies showing hierarchical mod-

ularity in metabolic networks argue along these lines [203]. Analysis of dynamical networks

with overall structures similar to those of cellular networks demonstrated a superior systems

performance and controllability when feedback control specifically operates on higher levels

of integration [274]. Moreover, it is intuitively clear that well-designed hierarchies and proto-

cols contribute to the robustness of complex systems, for instance, by constraining the effects

of local de-regulation, or by providing common standards for robust coordination of cellular

functions [45]. For cellular networks, however, the major challenge consists in elucidating the

links between different levels of organization [188]. In particular, it is unclear, how trade-offs

between, for example, robustness and efficiency are handled by means of protocols and hier-

archies. For this purpose, cellular networks will have to be analyzed across different levels of

integration in order to uncover the operating principles underlying functional integration. Apart

from the very general investigations cited above, detailed studies of these aspects of robustness

have not yet been carried out for specific biological examples.

2.4 Conclusions

The view that biological systems are highly resistant to perturbations is largely undisputed. Be-

yond this basic notion, however, no generally accepted approach to the analysis of robustness in

cellular systems exists. In any instance, however, it has to be taken into account that robustness

refers to the maintenance of specific functionalities of a system that is subjected to specific per-

turbations. In the model world, the analysis of parameter sensitivities offers a method to capture

this link, especially when it is designed so as to investigate structural features of a system, and

not only one particular instance of its behavior.

The current knowledge about robustness in biological systems, and the cellular design prin-

ciples underlying it, shows a large bias. At very high levels of abstraction, concepts such as

highly optimized tolerance elaborate general features, namely the trade-off between efficiency

and robustness, and necessary connections between robustness and complexity. Large-scale

topological analysis of cellular networks gives clues on structural features of cellular networks

that could confer robustness to cellular function. Both high-level approaches, however, cur-

rently suffer from the fact that beyond analogies with engineered systems, their central hy-

potheses remain to be evaluated by analysis of specific biological examples that connects math-

ematical modelling and experimental observations.

At the other end of the spectrum, studies of robustness in small systems proved successful.

However, they have to be extended to more complex systems to enable one to infer general de-

sign principles from specific biological examples. In this respect, further investigations should

be guided by, and specifically address current hypotheses on which mechanisms could con-

tribute to robustness in biology. In particular, the relative importance of redundancy of compo-
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nents vs. pathways, the role of individual feedback circuits, the modular organization of cellular

networks, and the integration of cellular functionality across hierarchies are of predominant in-

terest. The robustness analysis of selected metabolic and regulatory networks to be described

in the following chapters will therefore focus on these aspects.



3. METABOLIC NETWORKS: STRUCTURAL
ANALYSIS

3.1 Introduction

Structural analysis of complex networks in diverse fields such as the World Wide Web, sci-

entific citations or cellular metabolism recently attracted considerable attention for one major

reason: As network function is always affected by structure, topological analysis can yield in-

sight into network function and behavior [249]. Current theoretical approaches have different

strengths and shortcomings in providing an integrated, predictive description of cellular net-

works. Specifically, dynamic mathematical modeling of large-scale networks meets difficulties

as mechanistic detail and kinetic parameters are rarely available. In contrast, structure-oriented

analyses only require network topology, which is well-known in many cases.

Previous approaches of structural analysis of metabolic networks have focused on the devel-

opment of the theoretical foundations for this type of analysis in conjunction with a systematic

concept of metabolic pathways [223, 227, 228], and on specific aspects of the functionality of

metabolic networks. Such specific aspects include the identification of individual (extreme) op-

eration modes in networks of moderate size [226], theoretical yield determination [57,226,227]

and the analysis of shifts in flux patterns due to external or internal changes [58, 59, 222].

Structure-oriented analysis of metabolic networks has generated important results on the predic-

tion of essential genes [58] and the ability of topology-based methods to be used for such pre-

dictions in principle [57]. System-wide, global properties of metabolic networks, however, have

only been investigated with respect to the optimality of bacterial growth performance [57, 58],

and, recently, by showing pathway redundancy in different systems [190, 200].

Although some studies on robustness in metabolism exist [59, 126], so far the relationship

between metabolic network structure, functionality, robustness and cellular regulation has not

been investigated systematically. Such an analysis may, for instance, allow for important in-

sight into the design principles of metabolic regulation and their role in making the system

robust towards disturbances. As regulation implies the realization of various behaviors on the

background of the metabolic network structure, it should itself be adapted to, and thus affected

by, the structure. Enzymes that always have to operate together in any potential steady state of

the metabolic system, are, hence, expected to be coded for by co-expressed genes [40]. Here, for

studying the connections between network functionality, robustness and gene regulation on the
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basis of network structure alone, among other network characteristics, the non-decomposable

pathways able to operate coherently at steady state (elementary flux modes) were determined

and analyzed. The central metabolism of the well-studied bacterium Escherichia coli served as

a model system.

3.2 Principles of structural network analysis

At a very abstract level, cellular metabolism can be thought of as a complex network in which

substances (nodes) are linked to each other via reactions (links). For analysis of these networks,

two major approaches can be distinguished: In the narrower field of systems biology, most

analysis methods rely on network stoichiometry, reaction reversibilities and potentially other

constraints such as maximal pathway capacities. Applications of graph theoretical methods

on metabolism only use the scheme of network connections as a starting point [126]. The

underlying principles of both approaches will be briefly described in this section.

3.2.1 Stoichiometric approach

Metabolism usually involves fast reactions and high turnover of substances when compared to

regulatory events. Therefore, analysis of metabolic networks is often based on the approxima-

tion that on longer time scales metabolite concentrations and reaction rates are constant (quasi

steady-state assumption). With the stoichiometry of the network represented in a stoichiometric

matrix S (dimension: q × m, q: number of reactions, m: number of metabolites), the quasi

steady-state assumption leads to the fundamental metabolite balancing relation

dc(t)
dt

= S · r = 0 . (3.1)

Here, c(t) denotes the time-dependent vector of metabolite concentrations and r the vector

of net reaction rates representing a flux distribution in the network, respectively. Dilution of

metabolites due to cell growth is neglected.

In general, an infinite number of flux distributions comply to the system of linear equations

given by (3.1). However, all possible solutions are contained in a vector space called the null

space. Its analysis in turn allows one to investigate the complete space of admissible network

functionalities based on the network topology [108]. Previously established analysis methods

in the field can be differentiated into three major approaches: elementary-mode analysis [228],

extreme pathway analysis [224], and flux balance analysis (FBA) in a narrower sense, as it has

been introduced in [264]. They all employ mathematical methods from convex analysis [210].

Elementary-mode analysis and extreme pathway analysis follow very similar concepts,

namely to decompose the metabolic network into meaningful smaller units or pathways. El-

ementary flux modes ei can be defined as the smallest sub-networks enabling the metabolic

system to operate in steady state [226]. They are subject to the non-decomposability condition
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saying that there must not be any steady-state flux vector r that has zero components wherever

any ei does and at least one additional zero component. This condition also implies genetic

independence of elementary modes, because the set of enzymes (genes) in one mode can not

be the subset of enzymes in any other mode [108, 226]. Such as any steady-state flux distribu-

tion, elementary flux modes have to fulfill the metabolic balancing equation (3.1). Moreover,

elementary modes have to be thermodynamically feasible, i.e. all irreversible reactions must

proceed into the right direction.

For example, in a hypothetical network (Fig. 3.1), five elementary modes exist, which can-

not further be decomposed. In each elementary mode, the enzymes are weighted by the relative

fluxes they carry. By linear combination of elementary modes, all thermodynamically and stoi-

chiometrically feasible flux distributions can be obtained, i.e.

r =
∑

i

λi · ei for all λi ≥ 0 (3.2)

with the non-negative scaling factors λi . Up to these scaling factors for each mode, the set of

elementary modes is unique for a given network structure [227]. Hence, it enables to investigate

the space of all physiological states that are meaningful for the cell in the long-term perspective.

e1

e2

e3 e4

e5

S

M1

M3

BC

M6

M4

M2

M5

µ

(1)

(1) (1)

(1)
(1)

(1)

(1)

(1)

(1)
(1)

P

(1)

Fig. 3.1: Example network. Reactions (solid arrows, 1:1 stoichiometry for substrates and products)

convert substrate S into a biomass component BC and a secreted by-product P via internal

metabolites M1-M6. Cellular growth rate µ is approximated by the production of BC. The

hypothetical network comprises five elementary flux modes ei (dashed arrows, relative flux in

braces). The modes e1, e3 and e4 give the same BC:S yield of 1:1, while e5 gives a yield of 1:2.

In this network, extreme pathways and elementary flux modes are identical.

Extreme pathways differ from elementary modes in that their computation requires a slightly

different model formulation. External sources and sinks such as extracellular substrates are con-

nected to the network by exchange fluxes (which may be reversible or irreversible), while all
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internal reactions must be irreversible. If necessary, reversible internal reactions have to be split

up into forward and backward reactions. Elementary modes can be non-negative linear combi-

nations of other elementary modes. This situation does not occur for extreme pathways, which

may result in a smaller set of pathways compared to elementary modes if some exchange fluxes

are reversible [223], otherwise both sets coincide [139]. The compactness of the set of extreme

pathways has been argued to be an advantage of this concept. However, as shown in [139],

this smaller set size compared to elementary modes may lead to incomplete results e.g. for

analysis of network flexibility. For metabolic models approaching the whole-cell level, more-

over, such reversible exchange fluxes are hardly conceivable and are not employed in earlier

models [58, 190, 200]. As for the hypothetical network in Fig. 3.1, for practical applications,

therefore extreme pathways and elementary modes will be identical.

Elementary-mode analysis as well as extreme pathway analysis compute and use a set of

several (or many) independent pathways uniquely describing the entire flux space. Flux balance

analysis (FBA), in contrast, determines a single flux solution through linear optimization [58].

For this purpose, in most cases it is assumed that cells adjust metabolic fluxes in such a way

that optimal growth rates are achieved. However, one uncertainty associated with this approach

arises from the fact that the objectives according to which e.g. cellular regulation works opti-

mally – its underlying logic – are essentially unknown. Moreover, the optimal solution obtained

by FBA is included in the set of elementary modes as long as no additional constraints have to be

obeyed [226], but it is only valid for a specific situation, and not necessarily unique. This is ob-

vious, for example, in the network shown in Fig. 3.1, where three elementary modes (e1, e3, e4)

lead to the same, maximal growth yield. Further shortcomings of this method for the type of

study to be carried out here result from FBA’s focus on a specific behavior. Sub-optimal flux

distributions for a given situation can not be determined by FBA. As a consequence, FBA is

hardly able to handle functional features linked to network flexibility such as robustness. With-

out additional constraints, for example the incorporation of additional knowledge on cellular

control circuits (an approach termed “regulatory FBA” [42, 43]), FBA will also be unable to

cope with metabolic regulation.

Taken together, elementary-mode analysis provides the most promising method for assess-

ing robustness and its underlying mechanisms in metabolic networks. For the reasons given

above, results obtained by this method will be the same as for analysis of extreme pathways.

Flux balance analysis, however, characterizes a different – albeit presumably limited – ap-

proach. It will be employed for comparison to elementary-mode analysis.

3.2.2 Graph-theoretical approach

The graph-theoretical approach to capturing structure and function of complex networks in

quantitative terms entirely differs from the methods presented so far. It only uses the pattern

of network connections to derive structural parameters, which are supposed to characterize net-
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work function and dynamics [249]. From the reaction scheme, graph representation including

nodes (metabolites) and links (reactions) are derived. Two metabolites are considered to be

connected when they are involved in the same reaction. e.g. one as substrate and the other as

product. For analysis of this graph, the connectivity k of a node, i.e. the number of links it is

attached to, is of primary interest.

The distribution of probabilities p(k) for a node to have a defined connectivity k allows to

classify networks according to their overall topology. In statistically homogeneous networks

(random graphs, Fig. 3.2a), the connectivity follows a Poisson distribution with most nodes

having a connectivity close to the average connectivity 〈k〉. Accordingly, the chance of detecting

a highly connected node decays with

P(k) ≈ e−k for k >> 〈k〉 . (3.3)

a b

Fig. 3.2: Classes of network graphs. a, Representative structure of a random graph. b, Scale-free

network, in which the overall topology is dominated by some highly connected nodes (gray).

Unlike random networks, scale-free networks are characterized by few dominating hubs

with high connectivity, around which nodes with lower connectivity are clustered (Fig. 3.2b).

Their extreme heterogeneity is reflected by a probability distribution of connectivities without

accentuated peak. For large k, its decay follows a power law with parameter γ (the slope of a

linear regression in a double logarithmic plot):

P(k) ≈ k−γ for k >> 〈k〉 . (3.4)

As graph-theoretical analysis of genome-scale metabolic networks pointed out, these net-

works have scale-free character. The overall topology as well as the major hubs of these net-

works such as ATP, a general energy current for many reactions, are well conserved among

species [72, 126]. More importantly, the network topology has been shown to be robust against

random removal of nodes; only when central hubs are deleted, system fragmentation occurs.

In particular, the network diameter D, defined as the average minimal path length between any

two nodes (substances), turned out to be relatively invariant upon random removal of nodes in

metabolic networks. This has been suggested to reflect network robustness, since an increasing
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diameter would indicate network disintegration [126, 143]. This prediction, however, awaits

correlation with real-world behavior especially since random mutations in cellular networks

correspond more to the removal of links (reactions), than deletion of nodes. For robustness

analysis of E. coli metabolism, the graph-theoretical approach will therefore be evaluated in

parallel with methods relying on stoichiometric network analysis.

3.3 Model of Escherichia coli central metabolism

Elementary-mode analysis has mainly been applied to biochemical networks of moderate com-

plexity [48, 211, 226, 227]. To explore the utility of the approach for a system of realistic com-

plexity, the central metabolism of the bacterium Escherichia coli was chosen as an example. The

central carbon catabolism, in particular, provides a plethora of alternative routes for generating

essential precursor molecules, energy (ATP) and reduction (NAD(P)H) equivalents. Focusing

on this part of metabolism seemed best suited to analyze network robustness, which may re-

sult from pathway redundancy. In analogy to other network analyses [58, 187], hence, central

carbon metabolism was modeled in - partially extended - detail (Fig. 3.3). In the anabolic part

of the model, lumping predominantly linear pathways into single assembly reactions served to

reduce model complexity. The following paragraphs will give a concise overview of the model

structure; details can be found in appendix A, Tab. A.1-A.2.

In brief, the model contains pathways for the uptake of representative substrates feeding

into different parts of catabolism, namely the PTS system and the hexokinase transporter for

glucose, as well as single uptake pathways for glycerol, succinate and acetate. The following

major catabolic pathways were included and mostly captured at the single-reaction level:

(1) Glycolysis and gluconeogenesis: major pathways for conversion of glucose-6-phosphate

to pyruvate (and vice-versa for gluconeogenesis), for fueling the cell with C6 and C3

building blocks, and for the generation of ATP through substrate-level phosphorylation;

(2) Pentose phosphate pathway (PPW): interconversion of carbohydrates and production of

NADPH as reduction equivalent mainly used for biosynthetic purposes (oxidative branch)

and fueling with precursors such as erythrose-4-phosphate (non-oxidative branch);

(3) TCA cycle: general pathway for the final oxidation of fueling compounds, provides elec-

trons for oxidative phosphorylation by the respiratory chain as well as precursors for

biosynthesis;

(4) Glyoxylate bypass: shunt to the TCA cycle, which by avoiding decarboxylation reactions,

allows for synthesis of succinate from acetate;

(5) Anaplerotic reactions: linker reactions between the TCA cycle and glycolysis for replen-

ishing pools of intermediates;
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Fig. 3.3: Overview of E. coli central catabolism. Shaded areas indicate the intracellular space. Only

major nodes and the twelve precursor metabolites (bold face) identified in [183] are named

explicitely (G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; R5P, ribose-5-phosphate;

E4P, erythrose-4-phosphate; DHAP, dihydroxy-acetone-phosphate; G3P, glyceraldehyde-3-

phosphate; 3PG, 3-phosphoglycerate; PEP, phosphoenol-pyruvate; PYR, pyruvate; AcCoA,

acetyl-coenzyme-A; ICIT, iso-citrate; ALKG, α-ketoglutarate; SUCCOA, succinyl-coenzyme

A; SUC, succinate; MAL, malate; OAA, oxalo-acetate). The combination of the readily in-

terconvertible metabolites DHAP and G3P constitutes the pool precursor ”Triose phosphate”

according to [183]. Reactions were partially combined. Reversibility of a pathway does not

necessarily indicate reversibility of all reactions, but may rely on pairs of counter-acting, irre-

versible reactions.

(6) Energy / reduction equivalents: ATP supply by oxidative phosphorylation, surplus ATP

production for cellular maintenance, and interconversion of NADH and NADPH (trans-

hydrogenation);

(7) By-product excretion: formation of lactate, formate, ethanol, acetate and succinate, which

are released into the medium.
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Previous networks [58] were extended by - among others - the anaplerotic reactions via malic

enzyme and pyruvate oxidase as well as by parallel pathways for initial acetate metabolism.

Some parts of the catabolic network of E. coli, which are mainly activated for anaerobic growth

such as the Entner-Doudoroff pathway or the uptake of external electron acceptors were omitted

in order to obtain a model of manageable complexity.

Anabolism comprises the part of metabolism, which is mainly responsible for the conver-

sion of precursor metabolites into building blocks of macromolecules. To finally enable one

to describe biomass synthesis, the pathways for building blocks for all relevant cellular macro-

molecules were included in the model. In particular, synthesis of all amino acids, of nucleotides

for RNA and DNA, of fatty acids, and of sugars and lipopolysaccharides for cell wall assembly

were captured. Most of these biosynthetic pathways are linear such that they could be lumped

into one single pseudo-reaction each. Branch points in, for instance, amino acid interconver-

sion, required a more detailed description.

For polymer synthesis from monomers, again, the fact that polymer compositions in E. coli
are relatively constant under varying growth conditions [183,264] was exploited to set up overall

reactions for these pathways. The growth rate is approximated by the production rate of macro-

molecular cellular constituents like DNA and protein. It is modeled as one reaction converting

a fixed ratio of precursors into biomass. The implicit assumption of a fixed macromolecular

composition of the cell, however, constitutes a simplification, since it is known that parameters

such as the protein content or the type of storage compound varies with growth conditions. To

assess the effect of this variability on model predictions, two alternative, experimentally de-

termined average patterns of macromolecular composition (Tab 3.1) were considered. Unless

stated otherwise, in the following the first scenario will be used as the standard parameter set.

Tab. 3.1: Two alternative scenarios for overall macromolecular biomass composition. Data for the

standard scenario 1 were adapted from [264]. The second macromolecular composition from

[183] does not amount to 100% since the soluble pool of building blocks as well as inorganic

ions are not captured by the stoichiometric model used herein.

Macromolecule Percentage of dry weight

Scenario 1 Scenario 2

Protein 64.0 55.0

DNA 18.5 20.5

RNA 3.0 3.1

Lipid 10.0 9.1

Lipopolysaccharide 1.5 3.4

Peptidoglycan 1.5 2.5

Glycogen 1.5 2.5
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Altogether, the network contains 89 substances and 110 reactions, of which 68 reactions can

be attributed to single gene products or to multi-enzyme complexes co-operating in a single re-

action. The stoichiometric model thereby allows a concise description of the central metabolism

in E. coli from substrates to biomass and, simultaneously, the analysis of major parts of the

metabolic network at the single-reaction or single-gene level.

3.4 Structural network analysis

In this section, structural network analysis for the E. coli central metabolism will first consider

the calculation of elementary flux modes and interpretation of the overall number of modes

in terms of network flexibility (section 3.4.1). Next, the method was evaluated for prediction

of mutant phenotypes to assess the validity of the approach to describe the in vivo situation

(section 3.4.2). Closer studies on robustness in the metabolic network using different methods

of structural network analysis follow (section 3.4.3), which will finally be connected to an

investigation into the role of cellular regulation, namely of metabolic control by gene regulation

(section 3.4.4).

3.4.1 Elementary-mode determination and network flexibility

Pathway analysis in metabolic networks is a combinatorial problem. With increasing numbers

of metabolites and reactions, the number of alternative, overlapping routes increases more than

linearly [138]. Computation of elementary modes (or extreme pathways) in complex networks

such as the E. coli model studied here, therefore requires efficient software tools. For this

purpose, the ”FluxAnalyzer” [140], a program with graphical user interface for the analysis of

metabolic networks based on Matlab (Mathworks, Inc.) was used and further developed. In par-

ticular, the software contains a core algorithm for determination of elementary modes described

previously [227]. This algorithm was optimized with respect to computation speed and mem-

ory requirement by additional pre-processing steps as well as by a modified implementation

of the comparison of preliminary flux patterns, the most time-consuming step in the iterative

procedure [138, 140].

Elementary modes were determined for the network model described above for the simul-

taneous uptake of the four substrates glucose, glycerol, succinate and acetate. Selecting subsets

of modes allows for detailed analysis of e.g. different substrate uptake regimes. For instance, to

analyze growth on glucose alone, all modes have to be selected, in which either the PTS system

or hexokinase are active, and all the uptake systems for the other substrates display zero flux.

Tab. 3.2 gives an overview of the number of elementary flux modes for different specifications.

Here, the number of modes simultaneously meeting a set of conditions C1, . . . , Cn , is denoted

by N (C1, . . . , Cn). These conditions include, for example, the situation where cells can grow,

which is abbreviated by µ. Excess energy production in the form of ATP (AT P), the sub-
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strate metabolized (Sk for the k-th substrate) and oxygen uptake (O2) are specified accordingly.

The operator ’�=’ indicates that certain fluxes must not occur. The total number of modes for

single-substrate uptake includes one futile cycle without substrate consumption.

Tab. 3.2: Number and distribution of elementary flux modes. Abbreviations of substrates are: Glc,

glucose; Gly, glycerol; Suc, succinate, Ac, acetate. The notation for selecting sets of elemen-

tary modes is explained in the main text.

Single substrate uptake: Simultaneous

Selection Glc Ac Gly Suc Total utilization

- N 27,099 598 11,332 4,249 43,279 507,633

Growth only N(µ, �=ATP) 73.1% 58.7% 78.6% 76.3% 74.6% 90.2%

ATP only N( �=µ, ATP) 3.2% 5.0% 2.4% 2.4% 3.0% 0.6%

Growth and ATP N(µ, ATP) 6.6% 2.0% 5.1% 4.2% 5.9% 4.0%

No growth / ATP N( �=µ, �=ATP) 17.1% 34.3% 13.9% 17.1% 16.5% 4.3%

Aerobic growth N(µ, O2) 73.1% 60.7% 83.6% 80.5% 76.4% 93.4%

Anaerobic growth N(µ, �=O2) 6.6% 0.0% 0.0% 0.0% 4.1% 1.7%

The total number of elementary modes for the given conditions is here used as a quanti-

tative measure of the degrees of freedom [108], that is, of network flexibility or redundancy.

As the comparison of the absolute numbers of pathways shows, although all substrate regimes

comprise the same number of reactions and metabolites, they differ by two orders of magni-

tude. When considering only single-substrate regimes, glucose, for example, can be utilized in

approximately 45 times more different ways than acetate, which corresponds to biological in-

tuition. Simultaneous utilization of all substrates enhances the number of alternative pathways

by a factor of ten. Compared to other studies in the field [190, 200], which obtained no more

than approximately 20.000 functional units (extreme pathways), the complex model of E. coli
central metabolism analyzed here shows considerably higher structural flexibility. This also re-

flects the structural information inherent to the elementary modes, which makes them valuable

tools for the analysis of network functionality.

Within the six sets of elementary modes compiled in Tab. 3.2, a majority for each regime

supports growth, i.e. could sustain the organism’s viability by alternative routes in cases when

disturbances in specific reactions occur. The possibility to use different carbon and energy

sources enhances this ability. The fact that anaerobic growth is comparably under-represented

presumably results from the specific formulation of the network model as discussed in sec-

tion 3.3. However, these data provide an example of how flux mode number directly relates net-

work structure to function. An empty set implies that no steady-state flux distribution fulfilling

the stoichiometric and thermodynamic constraints described, and complying with the specifica-

tions exists, hence predicting an inviable phenotype. For instance, as observed in vivo, anaero-

bic utilization of any of the four substrates but glucose is impossible without additional terminal
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electron acceptors. As a prerequisite for the analysis of network robustness to be carried out,

this property will be exploited to assess the quality of predictions obtained by elementary-mode

analysis, in particular concerning mutant phenotypes.

3.4.2 Predicting mutant phenotype

Based on the set of elementary modes determined for wild type, the ability to grow or not of

mutants carrying deletions in single genes was investigated. For this purpose, the number of flux

modes for a mutant �i utilizing substrate Sk is determined by (additionally) selecting for those

flux modes that do not require the reaction catalyzed by the product of gene i . The number

of flux modes N showing a positive growth rate µ for this mutant is denoted by N (µ, �i).
Theoretical predictions were then compared to experimental data on mutant phenotypes, which

have been compiled in appendix A, Tab. A.3.

Here, 90 different combinations of single-gene deletion and carbon source were investi-

gated. The relative number of flux modes for these mutant strains allows a correct prediction

of the experimentally determined growth phenotype in the overwhelming majority of cases

(Fig. 3.4a).
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Fig. 3.4: Metabolic network topology and phenotype. a, Relative number of elementary modes en-

abling deletion mutants �i of E. coli to grow for 90 different combinations of mutation and

carbon source. The solid line separates experimentally determined inviability from viability.

Dashed lines delimit the situations with erroneous predictions. b, Averaged ratios of flux mode

numbers separated by three classes of mutant phenotype (+: viable, o: ambiguous results, -

: inviable) and the carbon sources used in growth experiments (glucose, glycerol, succinate,

acetate and all four substrates).

Most situations with an empty (non-empty) set of flux modes correspond to inviable (vi-

able) mutants. Altogether 90% of the predictions (81 out of 90 cases) were correct. Incorrect

predictions were obtained in 9 cases, which are summarized in Tab. 3.3. Among these, two

false negatives, i.e. the prediction of viability whereas in vivo cells can not grow, are linked

to the gene for phosphogluco-isomerase (pgi), which inter-converts fructose-6-phosphate and

glucose-6-phosphate. This can be accounted for by the model structure that requires glucose-
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Tab. 3.3: Incorrect predictions of mutant phenotype. Cases, in which mutants were predicted to be

viable, whereas in vivo they are not (false positives) are separated from cases of incorrect

assignment of viability by the analysis (false negatives).

Gene Substrate(s) in vivo situation

False positives: pfkA Glc

fba Glc inhibition of stable RNA synthesis [241]

tpiA Glc potential formation of toxic methylglyoxal [78]

ppc Gly

sucAB Suc, Ac

mdh Ac severely impaired growth [41]

False negatives: pgi Gly, Suc substitutable precursor glucose-6-phosphate [27]

6-phosphate for growth and, hence, its production via gluconeogenesis when the cell utilizes

substrates other than glucose, whereas in vivo this precursor is substitutable [27]. Erroneous

positive predictions are partly explained by side-effects caused by the respective mutations,

which can not be captured by the model. They may also be caused by insufficient pathway

capacities (kinetic constraints) in vivo, i.e. the inability to install the flux ratios that would be

required for balancing the network.

As can be noted in Fig. 3.4a, the share of elementary flux modes operational in a specific

mutant may vary to a large degree. To assess the influence of this variation on prediction qual-

ity, mean values and standard deviations of the number of elementary modes were determined

separately for the four substrates and for the growth phenotype (Fig. 3.4b). A statistically sig-

nificant classification of growth behavior (p < 10−5 for all substrates) results from the analysis.

Taken together, it seems, hence, justified to regard the relative number of elementary modes as

a reliable indicator of network function. In this respect, however, the flux-balance approach

is complimentary to the analysis of elementary modes, since by both methods similarly good

predictions of E. coli mutant phenotypes were obtained [58].

3.4.3 Analysis of network robustness

For the metabolic network of E. coli, the structure-function relationship with respect to net-

work robustness might be addressed by elementary-mode analysis as well as by using a graph-

theoretical approach. In both cases, robustness is defined operationally as insensitivity of net-

work function, i.e. the ability to sustain bacterial growth, despite internal disturbances like mu-

tations [11]. The view of an ”optimal” architecture of metabolic control that serves to provide

robustness, for instance, forms the core of the successful cybernetic modeling approach [144].

Here,in particular the effects of deletions of single genes coding for metabolic enzymes were

investigated, since for these disturbances predictions correspond well to the behavior in vivo.
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Analyzing the effect of changes in, for example, kinetic parameters is not possible using the

structural analysis, which does not incorporate reaction dynamics. However, the gene deletions

investigated here would represent an extreme case of parameter perturbations, such that results

obtained by structural analysis provide a framework for more detailed analysis.

The number of elementary modes qualitatively indicates whether a mutant is viable or not,

but it does not necessarily describe, to what extent a mutation affects growth quantitatively.

Therefore, additionally the maximal biomass yield Y max for each combination of mutant and

substrate was calculated as a quantitative measure of network performance. Maximal biomass

yield Y max for a given substrate was defined as the optimum of

Yi,X/Sk = eµ
i

eSk
i

(3.5)

The superscripts to e specify single reaction rates - here, growth and substrate uptake - in ele-

mentary flux mode i selected for utilization of the k-th substrate Sk .

The effect of random mutations on bacterial growth was assessed by determining number

and biomass yield of flux modes after deletion of each single reaction for the four (exclusively

used) substrates glucose, acetate, glycerol, or succinate, respectively. The maximal biomass

yield depending on the share of operational modes in the mutants is summarized in Fig. 3.5a.

Central metabolism of E. coli behaves highly robust, since mutants with significantly reduced

metabolic flexibility show a growth yield similar to wild type. Only when the number of el-

ementary modes is severely cut down by a mutation, functionality is affected. On average,

approximately 10% of the modes will be sufficient to enable nearly wild type growth capability.

Robustness relies, at least in part, on pathway redundancy. Analysis of the set of elemen-

tary modes in wild type reveals the existence of multiple, alternative pathways with identical

biomass yield (Fig. 3.5b). No pronounced decrease of the share of elementary modes towards

higher yields can be detected, which explains the finding of relative insensitivity of growth

when a single gene is deleted. Taken together, however, elementary-mode analysis points to a

co-existence of robustness (against most types of genetic perturbations) and fragility (regarding

few, specific gene deletions), as already shown for cellular regulation [45, 248, 272].

A plausible hypothesis concerning the connection between network flexibility and robust-

ness is that the degrees of freedom of a network could be used to predict its sensitivity towards

disturbances. Therefore, next, the question whether the number of elementary modes N di-

rectly relates to network robustness was investigated. As a measure for robustness, the maximal

growth yield for each mutant as already shown in Fig. 3.5a was used. Counting the number of

cases for which Y max(�i) > 0 gave the number of viable single-gene mutants for each substrate

regime, i.e. a measure of the probability to tolerate deletion mutations.

For different single-substrate uptake regimes, the organism’s resistance to arbitrary gene

deletions correlates well (r2 = 0.93) with N for the corresponding wild type (Fig. 3.5c). Simi-

lar results are obtained when considering the cases when more then one substrate can be utilized.
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Fig. 3.5: Robustness analysis using elementary flux modes. a, Dependency of the mutants’ maximal

growth yield Y max(�i) on the share of elementary modes operational in the mutants. Data

were binned to reduce noise. The regression curve was obtained by fitting y = k1 · x/(k2 +
x) with k1 = 1.11 and k2 = 0.06. b, Distribution of growth-supporting elementary modes,

i.e.share of elementary modes in wild type having a specific relative growth yield compared

to wild type utilizing the respective substrate. For comparison, an equal distribution (−−) has

been included. c, Effect of arbitrary gene deletions on viability for single substrate uptake

(•) and for simultaneous uptake of multiple substrates (◦) assessed by relating the number of

viable mutants to the total number of elementary flux modes in the respective wild type. Linear

regressions for single substrates and for all data points shown in the panel are indicated by

−−and —, respectively.

Here, in general, the number of viable mutants is higher than for single-substrate regimes show-

ing a comparable number of elementary modes. Most likely, this represents the effect of higher

degrees of independence of metabolic pathways for the multi-substrate case. The ability to uti-

lize different carbon sources simultaneously could, thus, also be advantageous for the organism

when the type of robustness discussed here is considered. In general, these data show that to

a certain extent the number of elementary modes provides an estimate for fault-tolerance of

metabolic networks.

Graph-theoretical methods are widely used to analyze complex networks [17,126,249] and

could provide important clues on the robustness of metabolic networks. In particular, invariance

of the network diameter D towards random disturbances in the network structure has been

suggested to reflect network robustness, i.e. absence of network disintegration [126]. In a

first step, graph-theoretical parameters of the network studied herein, and of the elementary

modes as specific sub-networks were checked for consistency with topological characteristics of

large-scale metabolic networks. Analysis of network connectivity was performed as described

in [126].

The network studied here is scale-free, i.e. the probability P(k) for a substance to participate

in k reactions decays according to P(k) ≈ k−γ (Fig. 3.6a). The corresponding exponents γin =
1.5 and γout = 1.3 for incoming and outgoing links, respectively, were obtained by least square
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Fig. 3.6: Graph-theoretical analysis. a, The distribution of network connectivities P(k) is shown sep-

arately for incoming (◦) and outgoing (�) links. Data were binned to reduce noise. Linear

regressions for the E. coli network with γ = 1.4 (—) and for γ = 2.15 reported in [126] (−−)

are included. b, Average mutant network diameters D(�i) relative to the network diameter of

wild type D as a function of the (relative) number of growth-supporting elementary modes in

the mutants considered (—: linear regression).

fit to the binned data. The regression of the probability distribution for the average γ = 1.4

is shown in the panel. Compared to a previous analysis of the genome-scale E. coli metabolic

network [126] (dashed line, γ = 2.15), the characteristic slope is smaller due to the focus on the

highly interconnected central metabolism. Less connected metabolites in the periphery of the

metabolic network have been under-represented in this selection, whereas for energy and and

reduction equivalents often also occurring in peripheral pathways, the connectivity numbers are

lower than in the genome-scale networks.

The diameter of the entire network (D = 2.9) as well as the average network diameter of

elementary modes (D = 2.9 ± 1.1) correspond well to the values of D = 3 − 3.5 previously

reported [17, 126]. However, for the network studied here, a constant diameter does not neces-

sarily imply identical functionality (Fig. 3.6b). If the diameter reflected network functionality,

for a decreasing number of elementary modes as a reliable indicator of mutant viability, the

diameter should increase significantly. In contrast, only a slight increase can be detected, which

proves to be statistically insignificant. For all mutants considered, the diameter turned out to be

slightly higher than for wild type, but this is uncorrelated to the in vivo growth behavior of the

specific deletion strains.

Robustness and fragility, hence, are not predicted by a pure graph-theoretical measure of

network topology. In contrast to elementary modes, for instance, the network diameter does

not reflect specific characteristics of metabolism such as molar yields. Moreover, metabolic

networks are not simple graphs as suggested by this direction of research, but hyper-graphs,

in which one edge (reaction) may link more than two nodes (substances). For the specific

requirements of analysis of structural robustness in metabolic networks, thus, the approach

based on elementary flux modes could be validated for the network studied, whereas the graph-

theoretical approach proved to be less suitable.
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3.4.4 Robustness and genetic control

Elementary-mode analysis of the E. coli metabolic network underlines the network’s robustness

when drastic perturbations such as the complete inactivation of a specific gene for a metabolic

enzyme occur. During a bacterium’s average life, however, it seems more likely that the major-

ity of perturbations will be caused by short-term fluctuations in the environmental conditions,

for instance variations in nutrient availability or the exposure to toxic compounds. A suitable

strategy to cope with these challenges would be to provide certain aspects of the flexibility en-

coded in the metabolic network structure by cellular regulation. The cell could adjust transcript

levels and / or protein levels such that they not only enable optimal flux distributions for a spe-

cific situation [57], but also allow for fast re-adjustment of fluxes in case of different conditions.

A basal expression of enzymes likely to be required to reject common disturbance - and their

down-regulation by, for example, allosteric control in situations where these enzymes are not

needed - would be in accordance with such a concept of metabolic regulation. This, in turn,

leads to the question whether the steady–state results of the intrisically dynamic regulation in

complex metabolic networks could be predicted by elementary-mode analysis.

A direct, quantitative correlation between metabolic fluxes and transcriptome or proteome

patterns has not been observed [186, 187, 253]. However, the existence of a more indirect link

seems likely. To assess the degree to which cellular regulation accounts for metabolic robust-

ness, the basic assumption employed herein is that optimization during biological evolution

can be characterized by the two objectives of flexibility - associated with robustness - and ef-

ficiency [11, 108]. This is, for example, supported by evidence from the evolution of energy

transduction [195]. Comparison of predictions based on structural network analysis with in
vivo data on cellular regulation should allow for conclusions on the relative importance of the

two objectives.

Flexibility means the ability of cellular systems to adapt to a wide range of environmen-

tal conditions, i.e. to realize a maximal bandwidth of thermodynamically feasible flux distri-

butions, hence of elementary flux modes. Efficiency, as the second objective, could be de-

fined as the fulfillment of cellular demands with an optimal outcome such as maximal cell

growth [57, 58], using a minimum of constitutive elements (i.e. genes and proteins) [108].

Since these two criteria impose contradictory challenges, optimal cellular regulation needs to

find a trade-off. The analysis will therefore rely on a parameter characterizing flexibility and

efficiency derived from metabolic network structure, for which the term ”control-effective flux”

is introduced.

Control-effective fluxes are determined directly from the set of elementary modes, and do

not require optimization. The analysis begins by assigning an efficiency to each elementary

mode. These efficiencies εi relate the output of the i-th mode (growth or ATP production for

cellular maintenance requirements) to the investment required to establish the mode, i.e. to

produce the enzymes. This investment is approximated by the sum of all (absolute) fluxes,

since for comparable metabolite concentrations, the flux through an enzymatic reaction scales
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linearly with enzyme concentration. With flux modes normalized by the total substrate uptake,

efficiencies εi (Sk, �) for the targets for yield optimization - growth and ATP generation - are

defined as

εi (Sk, µ) = eµ
i∑

l |el
i |

and εi (Sk, AT P) = eAT P
i∑
l |el

i |
. (3.6)

The calculation of efficiencies and control-effective fluxes will be illustrated using the hy-

pothetical network shown in Fig. 3.1. In this network, ATP is not generated, and, hence, only

the growth rate has to be considered. It is assumed to be identical to the production rate of the

biomass component BC. Tab. 3.4 gives the absolute fluxes for each reaction in each elementary

mode of the example network required for these calculations. They can easily be derived from

the graphical representation. For all reactions in the fifth mode, fluxes have to be normalized by

the two units of substrate consumed. According to (3.6), the efficiency of e1 then, for instance,

is obtained by dividing the growth rate eµ
1 , which equals the rate of production of BC via the

reaction M2 →BC, by the total flux in the mode, i.e. it is 1/4. The other efficiencies are deter-

mined accordingly. For the example network, thus, elementary mode e4 would be favored over

e1 and e3 involving more enzymatic steps for obtaining the same growth yield.

Tab. 3.4: Determination of control-effective fluxes. All data refer to the hypothetical network shown

in Fig. 3.1. Absolute fluxes are normalized by the total substrate uptake in each mode, which

in the case of the fifth mode amounts to two units of substrate per unit of biomass produced.

Reaction l Elementary mode Control-effective fluxes

e1 e2 e3 e4 e5
17
12 · ν1(S)

Absolute flux l in mode i |el
i |

S →M1 1 0 1 0 0 7/12

M1 →M2 0 1 1 0 0 1/3

M1 →M3 1 1 0 0 0 1/4

M3 →M2 1 0 0 0 0 1/4

M2 →BC 1 0 1 0 0 7/12

S →M4 0 0 0 1 0 1/2

M4 →BC 0 0 0 1 0 1/2

S →M5 0 0 0 0 1/2 1/6

M5 →M6 0 0 0 0 1/2 1/6

M6 →BC 0 0 0 0 1/2 1/6
∑

l |el
i | 4 2 3 2 3/2

Growth rate eµ

i

1 0 1 1 1

Efficiency εi (S, µ)

1/4 0 1/3 1/2 1/3
∑

i εi (S, µ) = 17/12
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Subsequently, control-effective fluxes νl are determined for a specific reaction l as the (nor-

malized) average flux through this reaction in all elementary modes, whereby for each mode the

actual flux is weighted by the mode’s efficiency. In other words, control-effective fluxes νl(Sk)

are obtained by averaged weighting of the product of reaction-specific fluxes and mode-specific

efficiencies over the inventory of elementary modes using the substrate under consideration:

νl(Sk) = 1

Y max
X/Sk

·
∑

i εi (Sk, µ) · |el
i |∑

i εi (Sk, µ)
+ 1

Y max
A/Sk

·
∑

i εi (Sk, AT P) · |el
i |∑

i εi (Sk, AT P)
. (3.7)

Here, Y max
X/Sk

and Y max
A/Sk

denote optimal yields for biomass production and for ATP generation for

cellular maintenance, respectively (experimentally determined yield parameters can, however,

easily be incorporated into the approach). Due to the normalization of modes, the effect of

system input (substrate utilization) is implied in (3.7). As the case of the hypothetical network

shows (Tab. 3.4), reactions participating only in an inefficient mode with respect to biomass

production (e5) will be weighted less than e.g. the most efficient mode (e4). Reactions S →M1

and M2 →BC, however, are assigned even more importance, which reflects the incorporation

of flexibility as the second objective into the determination of control-effective fluxes.

In general, control-effective fluxes represent the importance of each reaction for efficient

and flexible operation of the entire network. In contrast to flux-balance analysis (FBA) used to

predict (optimal) flux distributions, this approach directly takes network flexibility into account

because optimal and sub-optimal modes are considered. There exists, however, not such a strict

separation between these two methods, but rather a continuum. By selection of sub-sets of

elementary flux modes, for which the control-effective fluxes are calculated, the logic behind

FBA can be approached; in the limit, only the most efficient flux modes would be considered.

Cellular control on longer time scales is predominantly achieved by genetic regulation. With

control-effective fluxes relying on steady-state flux patterns, the control-effective fluxes should

correlate with mRNA levels. Theoretical transcript ratios �(S1, S2) for growth on two alterna-

tive substrates S1 and S2 were therefore calculated as ratios of control-effective fluxes

�l(S1, S2) = νl(S1)

νl(S2)
. (3.8)

These theoretical predictions were compared to previously published cDNA-microarray data

for E. coli growing exponentially on glucose, glycerol and acetate [186, 187]. The relevant

experimental data can be found in Tab. A.3

The structure-derived prediction of the differential expression of 50 genes for acetate vs.

glucose shows good agreement with experiment (Fig. 3.7a). The majority of predictions devi-

ates from the measured values only by a factor of two or less. However, several theoretically

derived transcript ratios differ from the corresponding experimental data to a higher degree. To

elucidate, to which extent these differences could be attributed to random noise, or to system-

atic effects, a test for systematic errors was subsequently performed. It relied on comparing

the distribution of residuals - the deviations between theoretical and measured values - to the

normal distribution that would be expected if the differences were completely random [35].
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Fig. 3.7: Prediction of gene expression patterns (I). a, Calculated ratios between gene expression lev-

els during exponential growth on acetate vs. growth on glucose (•= outliers, see panel b) based

on all elementary modes versus experimentally determined transcript ratios reported in [186].

Lines indicate 95% confidence intervals for experimental data (horizontal lines), linear regres-

sion (—), perfect match (−−) and two-fold deviation from perfect match (· · ·). b, Distribution

of residuals with outliers (•) identified by the deviation from the normal distribution. The

straight line corresponds to the expected normal distribution when mean value and standard

deviation of the residuals are considered.

This test leads to identification of three presumable outliers (Fig. 3.7b). Two overestimated

transcript ratios are linked to genes involved in acetate metabolism (pta, ackA) and, hence,

expected to be up-regulated on acetate. This counter-intuitive finding has also been discussed

in [187]. It can be explained by the functionally related gene acs, which provides a parallel

pathway for conversion of acetate to the central metabolite acetyl coenzyme A. Experimental

observations [186] and the theoretical prediction agree in up-regulation of acs transcription

when the cells use acetate as sole substrate.

The transcript ratio of aspA encoding for aspartase was underestimated by the control-

effective flux method. The sets of elementary modes using or not involving this gene were

therefore studied in more detail. Elementary mode analysis suggests that aspartase is required

for an effective conversion of excess NADPH generated by the TCA cycle to NADH (Fig. 3.8),

since, for growth on acetate, transhdyrogenase and apartase occur mutually exclusively in the

elementary modes. This reaction cycle has also been detected earlier by analysis of a smaller

sub-system of the metabolic network [226].

Residual analysis thus sustained or generated hypotheses amenable to further experimental

investigation. Removal of the three outliers from a total of 50 data sets leads to a high correlation

between prediction and experiment (r2 = 0.60 ) with a linear regression close to perfect match.

For a judgment on the quality of the predictions, also the variability in microarray studies of

gene expression has to be taken into account. For instance, average expression ratios from

independent experimental studies of E. coli growing on acetate vs. glucose [186, 187] correlate

with r2 = 0.84 (not shown).
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Fig. 3.8: Transhydrogenation via aspartase. Transhydrogenase and aspartase play a mutually ex-

clusive role in growth-supporting elementary modes for acetate. Aspartase may thus be re-

quired for an effective transhydrogenase activity (i.e. the conversion of excess NADPH gen-

erated by the TCA cycle to NADH) via the reaction cycle shown here, which corresponds to

an elementary mode found earlier [226]. Metabolites are: ASP, aspartate; FUM, fumarate;

OAA, oxaloacetate; GLU, glutamate; ALKG, α-ketoglutarate. The cycle involves aspar-

tase (aspA), fumarase (fumA), malate dehydrogenase (mdh), glutamate-synthase (gdhA) and

aspartate-synthase (aspC).

The extent to which network flexibility or robustness is supported by the pattern of gene

regulation was assessed by varying the set of elementary modes underlying the calculation of

control-effective fluxes. As mentioned above, in an extreme case, which corresponds to the

approach followed by FBA or regulatory FBA [42], only the two flux modes with optimal

ATP and biomass yield were considered. A reasonable prediction quality for derivation of

gene expression from optimal fluxes alone would imply a strong influence of the objective of

efficiency on cellular regulation. It would result in extreme patterns of gene regulation tending

to switch genes ’on’ and ’off’ in a binary fashion. However, as shown in (Fig. 3.9a), these

predicted transcript ratios �opt.(Ac, Glc) displayed a weak correlation with experimental data.

Only 28 data points appear in the plot since many fluxes are zero and, hence, yield zero or

undefined predictions.

A systematic investigation into this issue was performed by calculating the number of suc-

cessfully predicted gene expression ratios and the number of outliers for varying mode optimal-

ity (Fig. 3.9b). Here, elementary flux modes were ordered according to their efficiency, and an

increasing fraction of sub-optimal modes was included in the analysis. These data indicate that

for a reliable prediction of the gene expression patterns observed in vivo, a significant fraction

of potential pathways, i.e. of network flexibility, has to be taken into account. Neglecting flex-

ibility may explain why FBA - even when supplied with information on regulatory circuits -

only provides qualitative predictions for a subset of genes [42].



3.4. Structural network analysis 41

10
−2

10
0

10
2

10
−2

10
0

10
2

Transcript ratio Ac / Glc

Θ
op

t.  ( 
A

c 
, G

lc
 )

0 0.5 1
25

30

35

40

45

50

Share optimal modes

P
re

di
ct

io
ns

 A
c 

/ G
lc

10
−1

10
0

10
1

10
−1

10
0

10
1

Transcript ratio Gly / Glc

Θ
 ( 

G
ly

 , 
G

lc
 )

10
−2

10
0

10
2

10
−2

10
0

10
2

Transcript ratio Ac / Glc

Θ
*  ( 

A
c 

, G
lc

 )
a b

dc

Fig. 3.9: Prediction of gene expression patterns (II). a, Predicted transcript ratios for acetate vs. glu-

cose based on the two elementary modes with highest biomass and ATP yield. For setup of

the panel, see Fig. 3.7. b, Prediction quality as a function of the share of elementary modes

used for calculation of control-effective fluxes. Modes were ordered descendingly with respect

to growth and ATP yield. Filled bars indicate the number of successfully predicted transcript

ratios, open bars denote the (additional) number of outliers identified. c, Transcript patterns ob-

tained by assuming an average biomass composition as reported in [183]. d, Gene expression

ratios for glycerol vs. glucose based on experimental data from [187].

For testing the validity of the structure-based predictions of cellular regulation, three addi-

tional cases were considered. First, as already mentioned in section 3.3, the assumptions on

cellular growth constitute a critical part of the stoichiometric model. Therefore, elementary flux

modes were calculated and analyzed assuming a different scenario for biomass composition

(Tab. 3.1). However, neither the number of elementary modes nor the predictions on mutant

phenotype (not shown), nor the theoretical values for transcript ratios (Fig. 3.9c; r 2 = 0.58)

were significantly influenced by this kind of modification. The overall metabolic network struc-

ture, hence, seems to dominate the results of the structural analysis, whereas they are insensitive

towards moderate variations in specific stoichiometric coefficients.

Secondly, in view of the fact that experimental errors are large compared to the effects of

changes in the medium, the predictions for the comparison of growth on glycerol with growth on

glucose also agree reasonably well with experiment (Fig. 3.9d). Finally, prediction quality was

poor when for elementary-mode analysis a simultaneous uptake of all substrates was enabled

(not shown).
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Fig. 3.10: Hierarchical control of metabolism. The cross-section of the flux cone that contains all

admissible flux distributions (edges correspond to elementary flux modes) is sub-divided into

regions involving the uptake of substrate ’A’, of substrate ’B’, or of both (“A+B’). With ’A’ and

’B’ present in the medium, but ’A’ being the preferred substrate, it is suggested that a ’genetic

operating point’ will be established in the center of the ’A’ region. Metabolic regulation serves

to optimize flux efficiency as illustrated by the arrow pointing to one (optimal) edge.

The combination of these findings points to a multi-level, hierarchical organization of

metabolic regulation [248] that is illustrated in Fig. 3.10. Transcriptional regulation for growth

on a specific substrate seems to rely on selection of this substrate regime by the cell, for in-

stance by catabolite repression. According to the substrate regime, gene expression levels are

adjusted to provide a general set-up for metabolic efficiency and flexibility, which leads to a

certain robustness of network function towards perturbations. At a lower level, short-term regu-

lation of fluxes for a specific situation, such as for one defined substrate concentration, can then

be achieved, for instance, by allosteric control of metabolic enzymes [57]. By providing the

optimal framework for lower levels of regulation, control of genes directly related to metabolic

function could thus serve as an intermediate layer of control between the top-level selection of

the substrate regime and the bottom-level fine-tuning of fluxes.

Finally, the question of whether robustness through redundancy mainly relies upon duplicate

genes, or on alternative pathways (see chapter 2.3.1) was addressed. It is known, that often

isoenzymes, that is, enzymes able to carry out identical reactions, are differentially regulated. A

large deviation between the gene expression patterns of isoenzymes could point to a minor role

for duplicate genes in conferring robustness, because it is unlikely that considerable functional

substitution would be achievable.

For this purpose, the isoforms of glycolytic (gapA, pfkA, pykA) and TCA cycle (acnA) en-

zymes, which under conditions of exponential growth contribute little to total enzymatic activ-

ity, were included in the comparison of predicted and theoretical transcript ratios (Fig. 3.11). In

agreement with previous experimental studies [46, 215], the respective genes epd, pfkB, pykA
and acnB turned out to be unregulated with respect to growth on acetate and glucose. Im-

portantly, two of the transcripts for isoenzymes of genes that according to elementary-mode
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Fig. 3.11: Gene expression patterns and isoenzymes. In comparison to Fig. 3.7, data points for the

previously not considered genes encoding for minor isoenzymes of pyruvate kinase (pykF),

phosphofructokinase (pfkB), aconitase (acnA) and glyceraldehyde-3-phosphate dehydroge-

nase (epd) were included.

analysis were predicted to be differentially regulated, here were identified as outliers. Neither

theoretical, nor experimental analysis of gene regulation for isoenzymes thus especially sup-

ports the assertion that cellular regulation is designed such as to provide robustness through

closely related duplicate genes.

3.5 Conclusions

Elementary-mode analysis decomposes complex metabolic networks into simpler units per-

forming a coherent function. The integrative analysis of elementary modes presented here

can be used to reconstruct key aspects of cellular behavior from metabolic network topology,

namely to reliably classify mutant phenotypes, to analyze network robustness, and to quanti-

tatively predict functional features of genetic regulation. Including additional knowledge, for

example, of newly annotated genes is straightforward [227].

For the model of E. coli central metabolism using identical network structures, elementary-

mode analysis and extreme-pathway analysis yield equivalent sets of functional entities and,

thus, identical results. Whereas these approaches characterize the spectrum of different, poten-

tial functionalities of the metabolic system, FBA focuses on a single flux distribution. FBA fails

whenever network flexibility - for instance in the analysis of pathway redundancy or in quantita-

tive prediction of gene expression - has to be taken into account. Similarly, the graph-theoretical

approach proved unsuitable for assessing network robustness.

In subsequent studies, it will be intriguing to apply the analysis developed here to organisms

other than E. coli and to further validate it with upcoming transcriptome and mutant data. More

generally, the results lead to the conclusion that robustness of metabolic networks is primarily

linked to pathway redundancy. Moreover, comparison of alternative theoretical models to ex-

perimental data strongly suggests that hierarchical genetic control supports this robustness by
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finding a trade-off between network efficiency and flexibility. In this context, differential regu-

lation of isoenzymes points to a minor role of redundant duplicate genes for robustness of the

metabolic network. Structural analysis of cellular networks, as a complementary approach to

the development of dynamic mathematical models, can thus contribute to elucidate fundamental

design principles of living cells.



4. GENETIC OSCILLATORS: DYNAMIC
ANALYSIS

4.1 Introduction

Complex dynamics in biological systems are most evident when considering rhythmic phenom-

ena such as oscillations in metabolism, intracellular calcium signaling or cardiac rhythms at

the organ level. Their interesting dynamic properties in combination with the essential role

of many of the underlying oscillators in establishing cell or organ functionality made these

systems prominent model systems for experimental and theoretical studies [94]. In general,

feedback processes and cooperativity are two important mechanisms leading to nonlinearities

in biological systems. They can force the systems to display instabilities which ultimately lead

to sustained oscillations instead of simply reaching a steady state. Since the ground-breaking

theoretical work of Goodwin in 1965 [96], it is clear that even a single gene may be suffi-

cient to establish a genetic oscillator, provided that its gene product negatively regulates its own

expression.

Genetic oscillators responsible for circadian rhythms represent the obvious manifestations

of this principle in a relevant biological example. Circadian clocks provide endogenously con-

trolled oscillations at the cellular level with a period of approximately 24 hours, which allow

the organism to adapt to the day-night rhythms imposed by the environment. In contrast to

other genetic oscillators, for instance, when compared to those underlying cell cycle regulation,

circadian clocks are characterized by their simplicity. The network consists of a handful of

components and their interactions. Furthermore, it is highly conserved between species such as

the fungus Neurospora, the fruit fly Drosophila melanogaster, and humans [287]. This situation

favorable to theoretical approaches elicited the development of a variety of different mathemati-

cal models for circadian oscillators, especially for the experimentally best investigated organism

Drosophila [92, 155, 157, 221, 243, 244, 260, 261].

Model-based analyses of the Drosophila network pointed out its remarkable robustness in

the presence of molecular noise [12, 95, 261]. Stochastic analysis showed that different models

display model-specific robustness and fragility properties [292]. For several models, also a re-

jection of parametric perturbances was observed. However, these investigations were confined

to analyzing the effect of parameter changes at one point in parameter space [243, 244], or to

establish bifurcation diagrams for selected model parameters [156]. For the field of circadian
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oscillators, moreover, few studies exist on the contribution of individual model parts such as

single control loops on robustness [244, 260]. In a more systematic approach, Morohashi and

colleagues recently focused on the comparative analysis of robustness in models of Xenopus
oocyte cell cycle regulation by parameter variation and determination of characteristic features

of the oscillatory region with the aim of assessing model - more specifically, parameter set -

plausibility [180]. However, none of the above mentioned studies relied on determination of

parameter sensitivities, which could, for example, provide a quantitative picture of how individ-

ual parameters contribute to model robustness - or fragility.

Taken together, at present a systematic investigation of the relationship between parameter

sensitivity, model structure and behavior for circadian oscillators is lacking. The present work

aims at addressing this topic by employing tools from systems engineering to perform a com-

parative analysis of global robustness and fragility properties of two published mathematical

models for circadian clocks. After a brief introduction into the molecular biology of circadian

clocks (4.2), the two related mathematical models describing this system in Drosophila will

be presented (4.3). Their analysis will rely on the determination of parameter sensitivities, the

methodological basis for which is outlined in (4.4). The discussion of the results obtained by

comparative model evaluation will emphasize their biological implications (4.5).

4.2 Molecular biology of circadian clocks

The evolutionary conserved period generator displays a complex architecture, in which delayed

negative feedback loops play a prominent role. Although the picture is not yet complete, it is

clear that in Drosophila, the regulatory network consists of at least two negative auto-regulatory

feedback loops controlling the expression of timeless (tim) and period (per) interlocked with a

positive feedback loop established via the clock (clk) and cyc genes [101, 189, 278]. Complex

formation, regulated translocation and degradation of several of these gene products, which are

additionally controlled (and delayed) by protein phosphorylation, add further levels of com-

plexity to the system [189]. The core interactions establishing the regulatory network in the

fruit fly are depicted in Fig. 4.1.

As long as PER and TIM protein levels are low, from the early part of the (subjective) day

until the beginning of evening, the transcription factors CLK and CYC (cycle, which is not

shown in the scheme, because, contrary to its name, its concentration remains constant) coor-

dinately activate per and tim gene expression. PER and TIM protein, however, accumulate in

the cytoplasm only after a time delay of approximately 6 hours. The time required for transcrip-

tion and translation alone can not account for this delay. It has been shown that both proteins

are phosphorylated at multiple sites [56]. For the case of PER, one kinase responsible for this

phosphorylation, and thereby rendering the protein instable, has been identified as double-time

(DBT) [199]. In a similar manner, TIM is modified post-translationally by the kinase encoded

by the shaggy gene [167]. Recent studies indicate that components of the ubiquitin-dependent
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Fig. 4.1: Molecular interactions governing circadian rhythms in Drosophila. The network scheme

connects protein products (shaded ellipses, names in upper case) and genes (double helices,

names in lower case) by regulatory interactions (solid lines, arrows indicate positive influences,

whereas bar heads mean repression) and substance flows (dashed lines). The inner box com-

prises all processes occurring in the nucleus, whereas the rest of the system is localized to the

cytoplasm. The figure was adapted from [101, 189].

protein degradation pathway, a general cellular machinery for controlled proteolysis, are in-

volved in the control of PER and TIM levels [98].

PER and TIM proteins accumulated in the cytoplasm are able to form heterodimeric com-

plexes and, as such, enter the nucleus. The exact control of this process, for instance, additional

requirements regarding phosphorylation of components or the role of DBT in it, await further

clarification [189]. In the nucleus, the PER-TIM-complex represses the expression of its own

genes, presumably by displacing the CLK-CYC transcriptional activator from the promoters.

Concomitantly, progressive repression of per and tim leads to reduced levels of the inhibitory

nuclear PER-TIM complex (in the night and early morning) such that a new cycle may start by

re-initiating gene expression. At the same time, the PER-TIM complex acts as a positive regu-

lator for clk, namely by relieving the auto-regulated repression of this gene. Recently, the prod-

ucts of the vri and pdp1 genes were shown to be involved in this second feedback loop. Both

genes are activated by the product of clk, and act as transcriptional repressors and activators

competing for the clk promoter, respectively [47]. As a consequence of this second feedback

loop, oscillations in CLK protein are in antiphase to those of PER and TIM, and regulation of

the limiting factor CLK, hence, additionally contributes to driving the next cycle [104, 287].

In the absence of external cues, these interactions establish autonomous sustained oscilla-

tions. External signals, in addition, have to have the ability to reset the clock in order to syn-

chronize internal and external time (entrainment). The most important entrainment concerns

matching of the circadian clock to the day-night cycle. This is achieved by light-dependent

induction of TIM degradation relying on additional factors. In constant darkness, however, cir-
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cadian rhythms exhibit extraordinary stability with deviations of period lengths in the order of

minutes [104, 287].

The network architectures of the circadian clock in the fly and in mammals are charac-

terized by identical elements at the level of feedback loops and their interconnections. Gene

orthologues were found for flies and mammals. Important variations, however, exist that point

to an independent evolutionary development of the circadian clocks [287]. Orthologues in dif-

ferent organisms possess different genetic and biochemical roles. For instance, the homologues

of clk (C L OC K ) and cyc (B M AL1) switched functions in mammals, and the homologue of

gene coding for a photoreceptor in Drosophila fulfils the role of tim in higher eukaryotes [189].

In different clocks, the relative roles of trancriptional control and post-translational regulation

also seem to vary [47]. Owing to the conservation of the key structural elements of circadian

clock in eukaryotes, however, the genetically tractable fruit fly is the prominent model organism

for studying circadian rhythms.

Beside many open questions concerning mechanistic detail of circadian clockworks, the

core structure of the network seems to have been elucidated. However, the contribution of

individual regulatory interactions or control loops to the precision and stability of the systems

still remains largely unclarified. For instance, by verbal reasoning, it has been argued that the

positive control loop enhances the robustness [104], whereas model-based analysis has been

unable to detect a significant degeneration when the positive feedback loop is removed [244].

The second feedback loop, hence, may not play a prominent role in conferring robustness to

the clock, but instead serve to generate antiphase outputs, or allow for integration of multiple

inputs [47]. Moreover, it is unclear, and has not been addressed yet, which additional purpose a

two-branched compared to a single negative feedback loop could serve. The two branches are

not simply redundant and their existence may, thus, not easily be explained by enhancement of

robustness.

4.3 Mathematical models

Many published mathematical models for circadian rhythms in Drosophila contain explicit time

delays, which leads to systems of time-delay differential equations [157, 221, 243, 244, 260].

This modeling approach fosters models of reduced complexity. It, however, abstracts from

biological reality. Furthermore, as time-delay differential equations are not easily amenable to

analysis of parameter sensitivities, this group of models was not further considered. Two models

for circadian clocks aiming at a more realistic, yet still concise representation were selected.

Both models rely upon negative auto-regulatory feedback for generating the oscillations. A

less complex model comprises only one branch [93] (single-feedback model) and the other

model includes two distinct branches of the control system for per and tim [155] (dual-feedback

model). Owing to the models’ analogous structural set-up, this choice enabled direct model

comparison.
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4.3.1 Single-feedback model

The single-feedback model as the first molecular model of the circadian clock in Drosophila
was proposed by Goldbeter in 1995 [92]. Its structure is depicted in Fig. 4.2.
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Fig. 4.2: Structure of the single-feedback model. The scheme was adapted from [92]. Description

and variable names of system-theoretic states are shown in gray boxes. Single and double

phosphorylation are indicated by ’-P’ and ’-PP’, respectively. Kinetic parameters (in italics)

were positioned adjacent to the biochemical reactions they are associated with in the model.

In an attempt to capture the biological knowledge available at that time, the model (only)

describes the negative control loop via PER. In brief, expression of per mRNA is assumed to be

repressed by nuclear PER protein (PN ) in a cooperative fashion (see model equations compiled

in Tab. B.1, Appendix B). Transcribed per mRNA (MP ) serves as a template for translation

yielding unphosphorylated PER protein (P0) and is subject to degradation. A cascade of two

coupled phosphorylation / dephosphorylation cycles - which is responsible for the required time

delay - leads to the formation of single-phosphorylated PER (P1) and double-phosphorylated

PER (P2), respectively. Whereas the other forms of the protein were modeled to be stable, P2

is proteolytically degraded. It can also be translocated from the cytoplasm to the nucleus via

a reversible transport reaction, where the double-phosphorylated PER exerts its function as a

transcriptional repressor. Altogether, the single-feedback model comprises five state variables

and 18 kinetic parameters (Tab. 4.1, see also Fig. 4.2).

One aim of the present study is to analyze the role of regulatory mechanisms in providing

robustness of the circadian clock, for example, to compare the importance of post-translational

protein modification and control of gene expression in this respect. Clearly, this requires an

analysis above the level of individual model parameters. Parameters were therefore grouped

according to their functional role, that is, the biochemical processes they are associated with.

Altogether, seven different functional classes were established (Tab. 4.1): transcription / trans-

lation (T), intracellular transport (TR), gene regulation (GR), phosphorylation (P), dephospho-

rylation (DP), and two classes of degradation parameters, namely those representing common

cellular processes (DG) and those specific for the (components of the) circadian clock (DL).
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Tab. 4.1: Parameters of the single-feedback model. Parameter functions are classified into the follow-

ing categories: M = maximal reaction rate, R1 = 1st order rate constant, MM = Michaelis-

Menten affinity constant, C = dimensionless coefficient. For description of the biochemical

reactions individual parameters are associated with, cellular compartments are abbreviated by

’Cp’ for cytoplasm and ’Nu’ for nucleus. Parameter values for the reference model were taken

from [92]. Entries in the columns for parameter status with respect to control hierarchy and to

functional grouping refer to the categories described in the text.

Nr. Name Cate- Biochemical process Reference Functional Global/

gory value group Local

1 vs M transcription 0.76 µM/h T G

2 vm M mRNA degradation 0.65 µM/h DG G

3 ks R1 translation 0.38 h−1 T G

4 vd M protein degradation 0.76 µM/h DG G

5 k1 R1 transport Cp →Nu 1.90 h−1 TR M

6 k2 R1 transport Nu →Cp 1.30 h−1 TR M

7 K I MM auto-inhibition gene expression 1.00 µM GR L

8 Km MM mRNA degradation 0.50 µM DL M

9 Kd MM protein degradation 0.20 µM DL M

10 K1 MM phosphorylation I 2.00 µM P L

11 K2 MM dephosphorylation I 2.00 µM DP L

12 K3 MM phosphorylation II 2.00 µM P L

13 K4 MM dephosphorylation II 2.00 µM DP L

14 V1 M phosphorylation I 3.20 µM/h P L

15 V2 M dephosphorylation I 1.58 µM/h DP L

16 V3 M phosphorylation II 5.00 µM/h P L

17 V4 M dephosphorylation II 2.50 µM/h DP L

18 n C transcriptional repression 4 GR L

(Hill coefficient)

The latter two groups point to a further classification that can be made at a higher level.

Kinetic parameters can be attributed to global cellular properties, that is, those features of cel-

lular regulation, that affect many regulatory processes besides the circadian clockwork. Exam-

ples include maximal transcription / translation rates determined by the properties of the cell’s

transcriptional and translational apparatus, respectively, and not by characteristics of an indi-

vidual gene or mRNA. Similar arguments hold for maximal rates of mRNA degradation and

of ubiquitin-dependent proteolysis. At the other end of the spectrum, many parameters in the

model reflect purely local functionality, for instance, repression of specific per gene expres-

sion. This parameter status with respect to hierarchical control, however, does not always allow

a unique grouping. Therefore, three classes were introduced: global (G), local (L) and mixed

(M) functionality.
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Fig. 4.3: Dynamic behavior: Limit cycle oscillations. The reference parameter set compiled in Tab. 4.1

was used for numerical integration of the model equations. a, time course of per mRNA during

sustained oscillations. b, corresponding total concentration of all species of the PER protein

(black), double-phosphorylated PER in the nucleus (dark gray), and the protein species in the

cytoplasm (light gray). c, phase plane plot for protein vs. mRNA concentration showing the

evolution towards a limit cycle when starting from arbitrary initial concentrations. The arrow

indicates the direction of time.

The model’s dynamic behavior describing an autonomous oscillator is shown in Fig. 4.3.

For the set of parameter values used in this simulation, starting from arbitrary initial conditions,

the system evolves towards a limit cycle, that is, sustained regular oscillations with a period

length of approximately 24 hours. Note that concentration units do not necessarily reflect intra-

cellular conditions [92]. When parameter values are changed to appropriate values, the model

generates a second type of behavior, namely excitable steady state for all components. Besides

this restriction to two behavioral regimes, the single-feedback model also does not account for

the effect of light on circadian rhythms (since TIM was not modeled) [94]. However, this simple

molecular model reflects the core of the circadian oscillator in Drosophila and, for this reason,

it continues to be used to study the robustness of the system [12, 95].

4.3.2 Dual-feedback model

Owing to the above mentioned limitations of the simple model, and to the discovery of tim
as the other major clock gene, Leloup and Goldbeter presented an extended model incorporat-

ing both feedback loops via per and tim [155]. Fig. 4.4 schematically represents the model

structure in analogy to that of the single-feedback model (Fig. 4.2).

Compared to the smaller model, this model contains a symmetric copy of the original PER

feedback loop for TIM. Note that by the choice of the standard parameter set given in [155], this

symmetry between the two branches is also retained (Tab. 4.2). Major differences in the models

occur regarding the nature of the transcriptional repressor. Here, the double-phosphorylated

forms of PER and TIM are assumed to form a heterodimeric complex, which shuttles be-

tween cytoplasm and nucleus. In contrast to the single-feedback model, the complex undergoes

proteolytic degradation in both compartments. Moreover, a general, unspecific degradation re-

action affecting each component has been introduced (described by kd , not shown). Altogether,
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Fig. 4.4: Structure of the dual-feedback model. The scheme was adapted from [155] according to the

same structuring principles as in Fig. 4.2.

this more realistic representation of the core circadian clock in Drosophila leads to a mathe-

matical model of moderate size, which comprises 10 state variables and 38 parameters (for the

model equations see Tab. B.3, Appendix B).

Interestingly, the higher degree of complexity of the dual-feedback model also generates a

richer dynamic behavior. Under conditions of constant darkness, in addition to steady state and
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Fig. 4.5: Dynamic behavior: Regular oscillations and chaos. a, Limit cycle generated by the model

in the phase plane spanned by per mRNA concentration (MP ), tim mRNA concentration (MT )

and the nuclear concentration of the PER/TIM complex (CN ), when setting all parameter values

to the reference values compiled in Tab. 4.2. b, Strange attractor corresponding to chaotic

oscillations obtained for vmT = 0.28 nM/h and vdT = 4.8 nM/h; all other parameter values

are identical to a [156].
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Tab. 4.2: Parameters of the dual-feedback model. Here, ’Nu’ refers to nuclear and ’Cp’ to cytoplasmic

reactions. Other abbreviations are explained in the legend to Tab. 4.1, p. 50. Parameter category

’R2’ refers to the rate constant for bi-molecular reactions. The parameter set from [155, 156]

was used as reference.

Nr. Name Cate- Biochemical process Reference Functional Global/

Name gory value group Local

1 vs P M PER transcription 1.00 nM/h T G

2 vsT M TIM transcription 1.00 nM/h T G

3 vm P M PER mRNA degradation 0.70 nM/h DG G

4 vmT M TIM mRNA degradation 0.70 nM/h DG G

5 vd P M PER protein degradation 2.00 nM/h DG G

6 vdT M TIM protein degradation 2.00 nM/h DG G

7 ks P R1 PER translation 0.90 h−1 T G

8 ksT R1 TIM translation 0.90 h−1 T G

9 k1 R1 transport Cp →Nu 0.60 h−1 TR M

10 k2 R1 transport Nu →Cp 0.20 h−1 TR M

11 k3 R2 PER-TIM association 1.20 nM−1h−1 TR M

12 k4 R1 complex dissociation 0.60 h−1 TR M

13 Km P MM PER mRNA degradation 0.20 nM DL M

14 KmT MM TIM mRNA degradation 0.20 nM DL M

15 K I P MM PER auto-inhibition gene expr. 1.00 nM GR L

16 K I T MM TIM auto-inhibition gene expr. 1.00 nM GR L

17 Kd P MM PER protein degradation 0.20 nM DL M

18 KdT MM TIM protein degradation 0.20 nM DL M

19 K1P MM PER phosphorylation I 2.00 nM P L

20 K1T MM TIM phosphorylation I 2.00 nM P L

21 K2P MM PER dephosphorylation I 2.00 nM DP L

22 K2T MM TIM dephosphorylation I 2.00 nM DP L

23 K3P MM PER phosphorylation II 2.00 nM P L

24 K3T MM TIM phosphorylation II 2.00 nM P L

25 K4P MM PER dephosphorylation II 2.00 nM DP L

26 K4T MM TIM dephosphorylation II 2.00 nM DP L

27 V1P M PER phosphorylation I 8.00 nM/h P L

28 V1T M TIM phosphorylation I 8.00 nM/h P L

29 V2P M PER dephosphorylation I 1.00 nM/h DP L

30 V2T M TIM dephosphorylation I 1.00 nM/h DP L

31 V3P M PER phosphorylation II 8.00 nM/h P L

32 V3T M TIM phosphorylation II 8.00 nM/h P L

33 V4P M PER dephosphorylation II 1.00 nM/h DP L

34 V4T M TIM dephosphorylation II 1.00 nM/h DP L

35 kd R1 unspecific degradation 0.01 h−1 DG M

36 kdC R1 degradation complex, Cp 0.01 h−1 DG M

37 kd N R1 degradation complex, Nu 0.01 h−1 DG M

38 n C transcriptional repression 4 GR L
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regular oscillations, chaotic behavior occurs in certain regions of parameter space (Fig. 4.5).

Although physiological implications of these chaotic oscillations are unclear, at least in the

model, autonomous chaos constitutes a rather robust phenomenon, as it is not confined to single

points (but smaller regions) in parameter space [156]. For other parameter combinations, the

model can also show birhythmicity, that is, the co-existence of two limit cycles or of a limit cycle

and a steady state; which of the behaviors is realized largely depends on the initial conditions

[156]. Regarding the robustness of the physiological function of the circadian clock, adding

a second branch of negative feedback might thus lead to instabilities. Hence, decision on the

(positive) contribution of additional control circuits to system robustness does not seem to be

possible a priori , but requires systematic investigation of sensitivities and model comparison.

4.4 Principles of parameter sensitivity analysis

Sensitivity analysis deals with the question, how variations in model output can be (qualitatively

or quantitatively) attributed to variations in model components such as parameters, inputs, or

others [217]. To gain insight into the structure-function relationship for the models of the circa-

dian clock, the deterministic models’ robustness towards internal perturbations, namely varia-

tions in parameter values (as opposed to assessing the effect of stochastic noise) will be studied.

The aim of this section is to outline the theoretical basis of this approach and its implications

regarding computational aspects and interpretation of results.

4.4.1 State and feature sensitivities

In a general form, the mathematical models considered here are formulated as systems of or-

dinary differential equations (ODEs). Each set of model equations has the form M(x, u, p, t)
depending on the state variables x (corresponding to the vector of concentrations c described by

the model), the inputs u, the model parameters p and time t . More precisely,

M(x(t), u(t), p, t) = ẋ − f(x(t), u(t), p, t) = 0 (4.1)

with the time variable t ≥ t0, the functional for the right hand sides f(x(t), u(t), p, t), and the

initial conditions x(t0) = x0.

State sensitivities, that is, the quantitative description of how changes in parameter values

locally influence model states, are defined as the partial derivatives of x with respect to p (first-

order local sensitivities):

S(t) = ∂x(t)
∂p

. (4.2)

The information obtained by this analysis is only locally valid, because it is a linear estimator

confined to a given point in parameter space. Furthermore, in the general case, local parameter

sensitivities have a double time dependence: they depend on the time at which parameters are

perturbed and on the time point, for which the sensitivities are defined. As a sensitivity measure
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that can efficiently be determined computationally, it is, however, often used for the explorative

investigation of model properties in parameter space [259].

Several methods exist for numerical calculation of local parameter sensitivities. The so-

called indirect (or brute-force) method simply relies upon computation of the state trajectories

when, one at a time, parameters are slightly (usually by 1%) varied around their nominal values.

Via this finite-difference approximation, the elements of the sensitivity matrix are determined

for all nS states and n P parameters according to

Si, j (t) ≈ xi (p j + �p j , t) − xi (p j , t)
�p j

∀ i = 1 . . . nS , j = 1 . . . n P . (4.3)

This method, however, may be associated with inaccuracies; results should therefore be com-

pared to those originating from other methods [259].

The direct method starts from the system equations (4.1) and, by simple differentiation,

arrives at the variation equation

d
dt

∂x
∂p

∣∣∣∣
p,ti

= Jx · ∂x
∂p

∣∣∣∣
p,ti

+ Jp , (4.4)

whereby the Jacobians Jx for the states and Jp for the parameters are given by

Jx = ∂ f(x, u, p, t)
∂x

∣∣∣∣
p,ti

and Jp = ∂ f(x, u, p, t)
∂p

∣∣∣∣
p,ti

. (4.5)

These differential equations and the initial conditions of zero for all sensitivities allow one to

directly solve the augmented system of ODEs containing the original system equations plus the

sensitivity differential equations to obtain the complete sensitivity matrix in one simulation run.

Again, it has to be underlined that the sensitivities are time dependent and local with respect to

parameter space.

The interpretation of parameter sensitivity information in terms of the questions addressed

in this study, however, requires additional definitions. For instance, raw sensitivities from (4.2)

do not enable one to directly compare the parameter-specific effects of perturbations. Model

parameters usually differ in orders of magnitude of the parameter values, and also in physical

meaning (units). One possibility to circumvent this problem is to analyze the normalized local

sensitivity matrix S′(t) [259], the elements of which are

S′
i, j (t) = p j

xi (t)
∂xi (t)
∂ p j

. (4.6)

Each element of this nS × n P matrix provides a linear estimate of the relative change in the

state variable xi owing to a relative change in the model parameter p j and, hence, allows for

comparison of model parameters.

Furthermore, it is desirable to calculate a single indicator that reflects how much changes

in single model parameters affect the overall model behavior. Such an indicator σ j (hereafter
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referred to as overall state sensitivity) for parameter p j can be derived by integration over

(discrete) time and over the state variables using

σ j = 1

nS
p j

( nT∑
k=2

nS∑
i=1

[
1

xi

∂xi (tk, t1)
∂p j

]2
)1/2

(4.7)

Here, t1 denotes a fixed time of perturbation of the system, the effect of which is tracked for

subsequent time points t2 . . . tnT . The number of time steps and number of state variables are

nT and nS, respectively. Normalization by the number of state variable accounts for differences

in model size. The exponent 1/2 in eq. 4.7 was introduced solely to facilitate computations; it

does not influence the results of forthcoming analyses.

Apart from state sensitivities, feature sensitivities describe the dependency of other char-

acteristics of model behavior on model parameters [259]. Period sensitivities and amplitude

sensitivities are the most important of these measures for oscillators. Period length τ and am-

plitude A represent time-independent model characteristics and, hence, so do the corresponding

sensitivities σ P
j and σ A

j . These partially normalized sensitivities are defined by

σ P
j = p j

∂τ

∂p j
and σ A

j = p j
∂ A
∂p j

. (4.8)

Again, as for state sensitivities, several methods exist for calculation of period sensitivities.

An approximation using the local state sensitivities has been proposed [55]:

σ P
j ≈

∂xi (t2)
∂p j (t1)

− ∂xi (t2+τ)
∂p j (t1)

dxi (t2)
dt

. (4.9)

However, due to numerical instabilities associated with implementation of equation (4.9), for

the study of circadian clock models, normalized period sensitivities were calculated through the

indirect method, i.e.

σ P
j ≈ p j

τ(p j + �p j ) − τ(p j )

�p j
. (4.10)

The determination of the feature (period τ or amplitude A) for the original and the perturbed

parameter set and the finite-difference approximation shown above were used for computation

of period and amplitude sensitivities in an equivalent manner.

4.4.2 Computational approach

For a global investigation of model properties, it would be highly desirable to systematically

determine parameter sensitivities in large regions of parameter space. Owing to the high dimen-

sionality of this space, however, combinatorial explosion of possible combinations of individual

parameter values impedes the direct approach of determining these model properties even for

a limited number of discrete values per parameter. For instance, discretizing the interval for

each parameter of the single-feedback model into only 10 grid points would require a total of
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Fig. 4.6: Systematic approach to evaluation of model properties. a, Illustration of systematic eval-

uation of parameter sensitivities in a quadratic section (lines) of the two-dimensional plane

spanned by parameters p1 and p2 around the reference point (large dot). Small dots indicate

discrete points at which analysis is performed to obtain sensitivities valid for the local neigh-

borhoods (circles). b, Extension of the approach to three dimensions in parameter space.

1810 = 3.6 · 1012 evaluations. Instead, two complementary methods were used: scanning the

parameter space on two-dimensional planes and random generation of parameter sets.

The systematic approach relying on two-dimensional sections of parameter space is depicted

in Fig. 4.6. Whereas all other parameters retain their reference values, two parameters are var-

ied within a limited interval, such that a regular, quadratic grid develops. In general, intervals

were chosen equal in logarithmic space to obtain equal fold variations. Relative parameter val-

ues prel
j were usually varied between 10−1 and 10+1 times the reference parameter value pre f

j .

Computation of parameter sensitivities then characterized the neighborhood of each grid point,

which, when extended to higher dimensions, leads to a systematic coverage of parameter space

(Fig. 4.6b). Depending on the number of model parameters n P , n P (n P−1)
2 planes - e.g. 703 plane

sections of 21 × 21 grid resolution for the dual-feedback model - had to be analyzed. However,

as the figure also shows, only certain directions of parameter variations can be included by this

approach. In complimentary analyses, therefore, parameter sets were generated randomly (fol-

lowing a normal distribution within the given intervals). Results obtained by two-dimensional

scanning and by analysis of random parameter vectors, respectively, will be compared in the

next section.

Each of the so defined points in parameter space was analyzed with respect to behavorial

parameters (oscillatory regime, period, amplitude), state and feature sensitivities (via the di-

rect or the indirect method for computation of parameter sensitivities, see section 4.4)). This

distinction of methods was made to ensure accurate computation of period sensitivities. Con-

sistency of state sensitivities obtained by the two methods was checked for selected cases (data

not shown).
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All calculations relied upon numerical integration of model and sensitivity equations using

Matlab (Mathworks, Inc.). Integration was performed on a compact time interval of 100h (ap-

proximately four times the reference period length) after discarding initial transients in the state

variables. Parameters were varied by 1% in each direction for the indirect method and the mean

value was further employed. Altogether, this construction of the study resulted in the genera-

tion of several million data points for each model, the major analysis results of which will be

presented in the following section.

4.5 Systems analysis

Systems analysis of the two models aimed at elucidating global functional properties to relate

them to structural features. Employing the computational methods outlined above, both models

will first be analyzed separately in sections 4.5.1 and 4.5.2. Model comparison will be the

subject of section 4.5.3.

4.5.1 Single-feedback model

For a first characterization of the mathematical model comprising a single feedback branch, its

behavior was analyzed with respect to the size of the domains in parameter space, in which it is

able to generate regular oscillations. An example of the model behavior is shown in Fig. 4.7.
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Fig. 4.7: Oscillatory behavior of the 5-state model in the vs × vm plane. a, Relative period compared

to the ≈ 24h period at the reference point. Grey lines indicate the parameters’ reference values.

In the white region, the system shows steady-state behavior. b, relative amplitude of oscillations

for per mRNA (MP ). Computations were performed on a regular 51 × 51 grid.

Here, the parameters vs and vm describing maximal transcription and mRNA degradation

rate, respectively, were varied according to the principles outlined in the previous section. Ob-

viously, the model behaves robust in the sense that the circadian clock oscillates in a wide range

of parameter values, although the two parameters chosen belong to the most sensitive ones

(see next paragraph). The shape of the oscillatory region points to the (intuitively foreseeable)
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requirement for a certain minimal net mRNA production rate for oscillations to occur. Further-

more, Fig. 4.7 illustrates that robustness of the system, when parameter values are adjusted in

a larger interval, is not absolute. For specific parameter combinations, periods attain lengths of

>100h; the amplitude of oscillations similarly shows considerable variability.

Similar observations were made regarding overall state sensitivities for this example section

in parameter space (Fig. 4.8). For each parameter, as well as concerning all model param-

eters, these sensitivities vary by several orders of magnitude. Oscillatory regions and those

corresponding to steady state model behavior do not show pronounced differences. In gen-

eral, however, this representation hardly allows for assessing the relative sensitivity of model

parameters.
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Fig. 4.8: Overall state sensitivities (log10 σj) in the vs × vm plane. Sensitivities normalized by the

maximal value are encoded by gray-levels (see color scale at the bottom) in one panel per

model parameter. The white line separates the oscillatory region from steady state behavior.

For each point in parameter space analyzed, parameters were therefore rank-ordered ac-

cording to their overall state sensitivities. This transformation for highly non-linear data simply

means assigning rank 1 to the largest value of a variable, rank 2 to the second largest, and so

on up to the parameter with lowest sensitivity [109]. Rank-ordered sensitivities are shown in

Fig. 4.9. For the individual model parameters, their rank with respect to sensitivities appears

relatively uniform. Furthermore, clearer distinctions between the parameters become visible.

Predominantly dark colors for vs , vm and others indicate the parameters’ important role in

providing sources of fragility for the system. In contrast, the degree of cooperativity for tran-

scriptional repression (n), in general, appears to be relatively insensitive, which corresponds to

previously published results of robustness analysis [95].



60 4. Genetic oscillators: Dynamic analysis

−1

0

1

lo
g 10

 v
mre

l. v
s

v
m

k
s

v
d

k
1

−1

0

1

lo
g 10

 v
mre

l. k
2

K
I

K
m1

K
d

K
1

−1

0

1

lo
g 10

 v
mre

l. K
2

K
3

K
4

V
1

V
2

−1 0 1
−1

0

1

lo
g 10

 v
mre

l.

log
10

 v
s
rel.

V
3

−1 0 1
log

10
 v

s
rel.

V
4

−1 0 1
log

10
 v

s
rel.

n

ra
nk

σ j

1

5

10

15
18

Fig. 4.9: Rank order of parameter sensitivities in the vs × vm plane. Data were obtained by ranking

the parameter sensitivities shown in Fig. 4.8 for each grid point.

As described in section 4.4.2, two-dimensional sensitivity analysis (on coarser grids of 11×
11 points) was subsequently performed for all possible parameter combinations in the 5-state

model. Specifically, 153 sections in parameter space were investigated, amounting to a total

of 1.8 · 104 parameter sets. To elucidate global sensitivity properties of the single-feedback

model, rank-ordered sensitivities were averaged over all points analyzed (Fig. 4.10). These

global indicators of robustness and fragility associated with the model parameters point to a

certain conservation of robustness properties, because most parameters show a relatively low

variation regarding their rank. This invariance is largely independent of the operating regime of

the system, namely oscillation or steady state (see below). For instance, the existence of broadly

two groups of parameters, namely those with higher sensitivity (low rank) and those with lower

sensitivity (high rank) becomes obvious.

Furthermore, it is important to note that functionally related groups of parameters exhibit

similar properties. Parameters associated with processes of transcription / translation, transport

and protein phosphorylation belong to the first group, whereas the other parameters fall into

the second group. The constant for inhibition of gene expression (K I ) constitutes an exception,

because its high standard deviation prevents unambiguous classification. However, owing to the

large samples, when assayed for the pair-wise significance of differences in the average ranks,

more than 90% of the combinations passed the Wilcoxon rank sum test (α = 5%, not shown).

Finally, overall state sensitivities for the single-feedback model were also analyzed by gen-

erating random parameter sets in order to address two issues. First, the comparison with sen-
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Fig. 4.10: Global sensitivity analysis according to parameter ranking (single-feedback model). Av-

erage rank of overall state sensitivities determined by ±1% variation of parameter values,

employing the indirect method. Data are based on all 153 possible two-dimensional analyses

in parameter space.

sitivity data from the two-dimensional scanning of parameter space should disclose whether

variations in only two parameters at a time will bias the analysis results. A good correlation

between the results would, secondly, enable one to investigate global model properties in a

computationally less expensive manner than by the systematic approach.

For different conditions, parameter sets were generated randomly within given minimal

and maximal parameter values. Each parameter was allowed to be varied independently and

the probability distributions of all individual deviations from the reference parameter values

followed normal distributions. Fig. 4.11 shows selected analysis results for a sampling size of

n = 500. In general, however, average values rapidly converged within approximately 100-200

iterations to the data presented in the figure.

Sensitivity analysis by random parameter variation was first performed using parameter

constraint conditions identical to those applied for the systematic analysis (ten-fold variation in

each direction, Fig. 4.11a-c). In this large domain in parameter space, only a few of the ran-

domly parameterized models generate oscillations, most show steady state. Average parameter

ranks as well as corresponding standard deviations correlate very well with the results from the

systematic scanning method.

For further analysis, a reduced domain (two-fold variation, Fig. 4.11d-f) was considered,

which leads to a higher presence of oscillatory regimes. It hardly influences the average relative

position of parameters. As would be expected, the rank variances in this more local approach

are, however, reduced. Intriguingly, conducting the analysis in the vicinity of a considerably

different reference point [95] (see Tab. B.2, Appendix B and Fig. 4.11g-i) leads to the same

observations. In all three cases, a regression coefficient of r > 0.94 was obtained for the linear

correlation between the average parameter ranks.

One can, hence, conclude that random search offers the possibility of rapidly assessing

global properties of the 5-state model, and that it is unlikely that the systematic method intro-
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Fig. 4.11: Comparison of systematic and random sampling method. Three different conditions were

considered: random generation of parameter vectors around the standard parameter set in the

interval 0.1pre f.
j . . . 10pre f.

j (a-c), in the interval 0.5pre f.
j . . . 2pre f.

j (d-f), and using the same in-

terval, around a modified reference parameter set reported in [95] (see Tab. B.2, Appendix B)

(g-i). a,d,g, Probability distribution of period lengths, that is, the probability P(τ ) to en-

counter a regime having period τ . Vertical lines mark the mean value (solid) and the 24h

period length (dashed). b,e,h, Correlation between average parameter ranks obtained by sys-

tematic scanning of two-dimensional planes in parameter space (cf. Fig. 4.10a) and by random

sampling. The solid line corresponds to perfect match, whereas the dashed line was obtained

by linear regression. c,f,i, Correlation of standard deviations of parameter ranks in analogy to

(b,e,h). Details on computations are given in the main text.

duced significant biases regarding these properties. These results also underline the relative con-

servation of robust and fragile model parts being a characteristic feature of the single-feedback

model for circadian rhythms. Analysis of the more complex dual-feedback model along the

same lines should allow one to elucidate whether this is a more general phenomenon or not.

4.5.2 Dual-feedback model

As mentioned above, the dual-feedback model for the circadian clock in Drosophila can exhibit

more complex dynamic behavior than the simpler model. Chaos and birhyhmicity, for instance,
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may occur in certain regions of parameter space. In analogy to the 5-state model, the 10-state

model of the circadian clock was therefore first inspected regarding the model behavior in the

vicinity of the reference parameter values. An example for such a systematic two-dimensional

simulation study is shown in Fig. 4.12. Here, a section of parameter space spanned by the

parameters for maximal mRNA production rate in per (vs P ) and tim (vsT ) gene expression,

respectively, was analyzed.
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Fig. 4.12: Oscillatory behavior of the 10-state model in the vsP × vsT plane. a, Relative period and b,
relative amplitude (per mRNA MP ) of sustained, regular oscillations .

Either regular oscillations, or simple steady state solutions (white regions) are generated by

the model in this parameter plane. The figure indicates that, compared to the single-feedback

model, the reference parameter set is located more distant from the border of the oscillatory

region. This region is not necessarily larger and variations in period and amplitude are not

smaller than for the less complex model. Hence, it does not indicate enhanced systems robust-

ness. The region’s shape reflects the symmetric character of the model structure (and of the

chosen parameter values), because it is symmetric to the diagonal. Torsion of the model, for in-

stance by changing PER-associated and corresponding TIM-associated parameters in different

directions, abrogates the functioning as rhythm generator. Indeed, it can be shown by singular-

value decomposition of the sensitivity matrix, that the most important direction for parametric

disturbances implies symmetry-breaking (F. Doyle, personal communication).

For assessing global model robustness properties, again, the systematic approach was ap-

plied to calculate parameter sensitivities for variations in all possible combinations of two model

parameters. Owing to the number of 38 model parameters, altogether 703 parameter planes

needed to be investigated by applying a coarse grid of 11 × 11 data points. For illustration

of the finally obtained rank-ordered overall state sensitivities, however, a higher resolution of

51 × 51 nodes was used (Fig. 4.13).

Three observations reminiscent to those resulting from the corresponding analysis of the

single-feedback model can be made. Average ranks of many model parameters, that is, the

general appearance of a panel with respect to its darkness, seem relatively uniform. Moreover,

there exists no sharp division between parameter sensitivities in oscillatory and steady-state
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Fig. 4.13: Rank order of parameter sensitivities in the vsP × vsT plane (10-state model) in analogy
to Fig. 4.9 (5-state model).
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regions, which is suggestive of a certain conservation of robustness and fragility properties

independent of the system’s operating regime. And finally, parameters such as vs P and vsT ,

which reflect properties of the cellular regulatory system as a whole, appear to be more impor-

tant sources of fragilities for the circadian clock as described by the dual-feedback model than

local characteristics such as kinetic parameters for PER and TIM protein phosphorylation and

dephosphorylation.

Systematic analysis of parameter sensitivities in all two-dimensional planes corroborates

these findings (Fig. 4.14). Model parameters show a significant conservation regarding their

relative position according to parameter sensitivity even if the system operates in very different

dynamic regimes such as steady state, regular oscillations, or chaos. The invariance in parameter

position for the 10-state model is more pronounced than for the 5-state model (compare to

Fig. 4.10). This is particularly evident for the highly sensitive global parameters associated with

transcription and translation (parameter numbers 1-8). Higher insensitivity and also variability

is observed for local parameters. More specifically, control of gene expression for per and tim
(parameters 15-16 and 38) turns out to be a source of fragility in the 10-state model, a position

that in the 5-state model was connected to protein phosphorylation. As for the single-feedback

model, independent sensitivity analysis by random generation of parameter vectors agreed very

well with the results from systematic investigation of parameter space (data not shown).
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Fig. 4.14: Global sensitivity analysis according to parameter ranking (dual-feedback model). Rank

according to indirect determination of overall state sensitivities averaged over all 703 two-

dimensional sections in parameter space.

Parameter sensitivity analysis indicates that for both models of the circadian clock inves-

tigated herein, a similar degree of conservation of robustness and fragility exists. At a first

glance, this also concerns the distinction of sensitive and less sensitive model parts according

to functionally related groups of parameters. To analyze this issue in more detail, and to di-

rectly connect it to the physiological function of the system, namely to generate stable circadian

rhythms, it seems sensible to directly compare the two models.
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4.5.3 Model comparison: Biological implications

For a comparison of the two models for the circadian clock relying on transcriptional feed-

back, it is important to note that the dual-feedback model provides an additional regulatory

circuit that is not redundant in a narrow sense. Splitting up the negative feedback into two

interconnected branches might enhance robustness of the circuit, especially when taking into

account the assertion of a direct link between complexity and robustness of cellular control sys-

tems. Higher complexity, however, involves more sources of fragility, for instance, owing to

the higher number of components involved. Relative robustness of the models, hence, can not

simply be deduced from the circuit structures, but requires detailed analysis.

For this purpose, local properties of the two models in the neighborhood of the reference

parameter sets were investigated. For instance, all state sensitivities from two-dimensional

analysis were compiled, and their probability distributions were analyzed. The mean values

of the respective distributions pointed to a higher robustness of the 10-state model (data not

shown). This observation was made either for all operation modes of the system, or for regular

oscillations only. Interestingly, this is caused by a high probability to encounter less sensitive

parameters, whereas highly sensitive parts of the models do not differ significantly. Robustness

of the oscillators described by the models was directly assessed through determination of period

and amplitude sensitivities. Results obtained by random sampling of parameter vectors are

summarized in Fig. 4.15.

In general, overall state sensitivities σ j and period sensitivities σ P
j are correlated to a cer-

tain degree, which lets one expect to find (similar) differences in model robustness. Note that

feature sensitivities were determined via the indirect method, and had to rely upon numerical

detection of period lengths. This explains, for instance, high period sensitivities that presum-

ably are artifacts. When comparing the probability distribution functions for period and state

sensitivities, again, the dual-feedback model according to both criteria shows higher robustness

than the single-feedback model. In contrast to the overall state sensitivities, this higher stability

additionally relies upon a shift in the distribution towards lower sensitivities. This is suggestive

of a robust design of the control circuit regarding its physiological function.

Analysis of robustness as a property of the structure of the regulatory circuits, in principle,

has to rely upon investigation of the entire parameter space. Local analysis as performed above

does not suffice to elucidate structural properties. Moreover, closer analysis of the types of

perturbations the systems may tolerate best was intended. Since true global analysis is compu-

tationally infeasible, subsequent studies were designed such as to diminish the effects of specific

locations in parameter space. For this purpose, starting from the published parameter sets, new

reference parameter sets pk were generated that enabled autonomous oscillations in the physio-

logical range (23hτ ≤ 25h). For each of the parametrized models (n = 37 for single-feedback

and n = 41 for dual-feedback), the effect of local normally distributed random perturbations

was analyzed (200 simulations). As a measure of oscillator precision, the normalized period
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Fig. 4.15: Local comparison of model robustness with respect to oscillator function. Identical plots

are provided for the single-feedback model (a-c) and the dual-feedback model (d-f). Data from

random sampling of parameter and feature sensitivities - simulations presented in Fig. 4.11a-f
and equivalent computations for the more complex model - were analyzed (n = 6.984 and

n = 11.932, respectively). a,d, Period sensitivities σ P
j plotted against relative parameter sen-

sitivities σ j with linear regression (line). b,e, Probability distribution of period sensitivities;

the horizontal line corresponds to the average value. c,f, Probability distribution of amplitude

sensitivities σ A
j with mean value.

deviation �τ k
l of the locally perturbed system pk

l was defined by:

�τ k
l =

∣∣∣∣∣τ(pk) − τ(pk
l )

τ (pk)

∣∣∣∣∣ . (4.11)

Accordingly, �τ k
l = 10−2 means a 1% change in period length relative to the reference value.

For each of the perturbation modes described below, simulation results (n ≥ 6, 000) for all

reference parameter sets were pooled, and the (cumulative) frequencies of encountering a given

or higher oscillator precision were calculated.

Both mathematical models were subject to this analysis under two regimes of random pa-

rameter variations, namely single-parametric disturbances and vectorial perturbations. The first

regime mimicks the effect of local disturbances in the control circuits, and involves identical

distributions of absolute parameter variations for both models. The assumption underlying the

second regime is that each function of the circuit may be mutated independently. As the number

of parameters is higher for the dual-feedback model than for the single-feedback model, it also

implies higher absolute parameter variation for the more complex model.
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The results of global robustness analysis summarized in Fig. 4.16 show that comparison of

the single- and dual-feedback models with respect to robustness requires more differentiated

judgements than those suggested by local analysis alone. An additional branch of feedback ap-

parently proves to be advantageous for the system in terms of buffering it against perturbations

in single components or underlying biochemical reactions (Fig. 4.16a). Enhanced robustness

primarily concerns the robustness of the precision of circadian rhythms. This finding is in agree-

ment with the physiological importance and experimental observations of extreme fine-tuning

of the circadian clock.
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Fig. 4.16: Comparison of oscillator precision. a, Frequencies of obtaining a circadian clock with a

given or higher precision (lower deviation of period length) averaged over all reference pa-

rameter sets after perturbation of single model parameters in the range of 0.5pk . . . 2pk for the

single-feedback model (circles) and the dual-feedback model (squares). b, Same as a for vec-

torial perturbations, that is, the cases in which all parameters were perturbed simultaneously

but independently in the given range. c, Differences between probability distributions result-

ing from single-parametric disturbances for the dual-feedback model vs. the single-feedback

model. Different perturbation strenghts were applied, namely in the ranges of 0.9pk . . . 1.1pk

(squares), 0.5pk . . . 2pk (circles) and 0.1pk . . . 10pk (triangles). In all cases, the data pre-

sented were obtained by substracting probabilities for the 5-state model from those calculated

for the 10-state model. d, Effect of perturbation strenght on relative oscillator precision in

analogy to c for multi-parametric variation.

For robustness with respect to generation of stable oscillations per se, however, the dual-

feedback structure of the more complex model shows higher fragility than the structure involv-
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ing only a single branch of feedback. This fact is illustrated by the lower probability of retaining

imprecise oscillations after single-parametric perturbations as well as the large differences in the

occurence of any type of oscillations when the models were subjected to vectorial perturbations

to the reference parameter values (Fig. 4.16b). In an additional series of analyses, the effects

caused by different absolute strengths of perturbations were examined by adjusting the ranges

of allowed parameter variations. As shown in Fig. 4.16c-d, the phenomenon of higher robust-

ness of precision for the dual-feedback model, but increased overall fragility was observed for

all cases examined. Importantly, larger differences in model behavior were consistently re-

vealed for disturbances of higher impact. Model behavior was barely distinguishable for slight

modifications of parameter values.

All analyses of this type covered a larger region in parameter space, subject to the condi-

tion that the models in their reference parametrizations reflected the physiological behavior of

circadian clocks. Comparing the two models, it can, thus, be concluded that the two-pronged

negative feedback structure as realized in biology confers robust precision to the circadian clock

under conditions when variations in only single (or few) parameters occur. The design, how-

ever, leads to increased fragiliy with respect to generation of unphysiological rhythms, and, in

general, for simultaneous disturbances in multiple parameters.

To elucidate the ‘control logic’ behind the two mathematical models, and to identify po-

tential reasons for the observed differences in model robustness and fragility properties, the

role of functionally related model parameters was analyzed. For this purpose, parameters were

classified either according to the type of biochemical processes they describe, or according to

their position in the control hierarchy, that is, their association with local or global processes.

Grouped sensitivities obtained from systematic two-dimensional analysis of paramater space

around the previously published parameter values are shown in Fig. 4.17. The abbreviations

used were explained in section 4.5.1.

When first regarding functional groups (panels a,b), the dominant role of parts of the model

concerned with transcription / translation (T), global degradation (DG) and, partially, transport

(TR) in sensitivity towards parameter variations becomes evident. A clearer separation of robust

and fragile model parts exists for the dual-feedback model, which means a concentration of

fragilities in few points. Moreover, as already recognized by separate model analysis, fragilities

in the 5-state model reside in phosphorylation (P), whereas in the 10-state model specific gene

regulation (GR) fulfills a corresponding role.

At the more abstract level of parameter status with respect to functional hierarchy, distinc-

tions between the two models for the circadian clock in Drosophila become even more evident

(panels c,d). In the single-feedback model, although these grouped parameter ranks have rel-

atively high variability, fragile parts of the model display the tendency to be associated with

parameters classified as being global. The dual-feedback model clearly shows this difference.

In other words, the additional branch of negative feedback incorporated in the more complex

model contributes to an even higher degree to separation of robustness and fragilities. This is
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Fig. 4.17: Classification of functionally related parameter groups. Average parameter ranks were

determined for parameter groups defined in Tabs. 4.1 and 4.2 by using systematically collected

data sets for all two-dimensional sections in parameter space of the 5-state model (a,c) and

the 10-state model (b,d). Functional categories (a,b) and classification according to control

hierarchy (c,d) constituted the criteria for grouping. Analysis was performed based on overall

state sensitivities (open bars).

consistent with the more extreme robustness properties of this model when subjected to para-

metric disturbances. In particular, highly sensitive parameters described globally controlled

processes like general transcription, translation or proteolysis. Interpreted in biological terms,

these results are suggestive of a design principle of cellular regulation, in which robustness of

specific (local) functions is achieved by delegation of fragilities to global control circuits.

To further investigate this possibility, overall state sensitivities for the two models were

grouped according to the same functional criteria as used above and compared to each other

(Fig. 4.18). This analysis reveals that, also in absolute terms, the second branch of negative

feedback contributes to making the interior of the regulatory module constituting the circadian

clock less sensitive to disturbances in parameter values. This concerns, in particular, post-

translational modifications of PER and TIM proteins, and also to a certain extent protein-specific

degradation parameters. Gene regulation constitutes an exception from this scheme, but in this

case smaller variability is indicative of a more focused role of these processes in the 10-state

model. This, in turn, could lead to enhanced controllability of the module.
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Fig. 4.18: Comparison of absolute influence of functionally related parameters. Overall state sen-

sitivities were grouped in analogy to parameter ranks shown in Fig. 4.17. Here, open bars

represent average values for the 5-state model. Filled bars refer to the 10-state model.
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Fig. 4.19: Robustness through hierarchical control. a, Effect of stabilization of the system by hier-

archical control under conditions of perturbations in single parameters (a) or vectorial per-

turbations (b) in analogy to Fig.4.16c (range of perturbations: 0.5pk . . . 2pk), but employing

1% variability of global parameters compared to all other model parameters. Differences

between the cumulative probability distributions for the single-feedback model (circles) and

dual-feedback model (squares) with and without hierarchical control are shown. As a control,

local parameters were stabilized for the dual-feedback model (triangles).
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Sensitivity towards disturbances in parameters associated with global cellular functions,

however, is not affected by differences in model structure. The concept of export of fragilities

to global control, hence, should be interpreted in relative terms. It means a concentration of

sensitivities of the control circuits in those parts, for which global regulatory networks are able

to provide well controlled-inputs to the particular regulatory sub-network by a locally improved

design that reduces the impact of perturbations in the ‘local’ parts of the model. As for the ex-

ample of gene regulation mentioned above, such a hierarchical control scheme could contribute

to enhance the controllability and, hence, the robustness of the cellular system as a whole.

The plausibility of this hypothesis was, finally, tested by comparison of model robustness

when reduced variability of global parameters was assumed (Fig. 4.19). Analysis relied on the

set of models parametrized such as to show nearly physiological behavior. It was carried out

as described for the global comparison of model robustness, but differed in the fact that global

- or for control purposes local - model parameters were allowed only to vary in a small range

compared to all other model parameters (1% relative variability). The general effect of thereby

simulated hierarchical control is an increase of robustness for both models. Interestingly, the

dual-feedback model shows a considerably higher enhancement of robustness compared to the

simpler model for multi-parametric perturbations, that is, its most important points of fragility.

In agreement with the results obtained from sensitivity analysis, stabilization of local parame-

ters leads to a less pronounced effect despite the higher number of local versus global model

parameters. Hierarchical control modes can, thus, substantially further enhance the precision of

the circadian clock when incorporating the dual-feedback loop, while also reducing the proba-

bility of the most severe failures of the system.

4.6 Conclusions

Systematic analysis of parametric sensitivity of two models based on negative transcriptional

feedback for the circadian clock in Drosophila revealed that robustness and fragility of the net-

work are largely determined by its structure, not by the actual operational regime. Concerning

differences between a simple model incorporating one branch of negative feedback and a more

complex model with two branches, according to all criteria applied, the dual-feedback model

showed higher robustness, especially with respect to its physiological role of an autonomous

oscillator.

In particular, the ordered sensitivity of model parameters as well as group-averaged abso-

lute sensitivities reveal that ‘global’ parameters are the most important, remarkably conserved

points of fragility. Adding a second control loop to the system does not change these fragili-

ties in absolute terms, but leads to enhanced robustness of model parts associated with only

local functionality and, hence, more focused control of the system by externally provided sig-

nals such as those originating from the general transcriptional apparatus. This observation was

made irrespective of the particular method of analysis (determination of state sensitivities vs.
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application of direct perturbations to the system) and of the way in which the parameter space

was investigated (two-dimensional planes vs. random search).

Based on these results, a design principle of cellular regulation, namely to ‘export’ a spe-

cialized control circuit’s points of fragility to global, well-controlled regulatory systems like

general transcription can be suggested. In future studies, it will be intriguing to test the method

presented herein using more complex models of oscillatory genetic circuits, for instance involv-

ing (interlocked) positive and negative feedback loops [243, 261]. Including other regulatory

networks could also serve to gain deeper insight into the relations between (hierarchical) con-

trol structures of cellular regulation and the key properties of robustness and fragility.





5. ROBUSTNESS VS. IDENTIFIABILITY OF
REGULATORY MODULES

5.1 Introduction

For a long time, cellular regulatory networks have been seen as overwhelmingly complex,

highly interacting assemblies of genes and their products. Only recently, it has been suggested,

that the architecture of these networks is in fact modular. Different tasks are fulfilled by spe-

cialized quasi-autonomous subsystems (modules), which perform functions analogous to con-

trollers in technical processes [151, 248]. In this context, one way to achieve fault tolerance for

a biological system is to evolve robust regulatory modules. Robustness is supposed to be an

essential feature of, for instance, control of cellular proliferation and of development, as there

robust control is closely linked to the organism’s survival.

This aspect of biological regulation has been examined by mathematical modeling, for ex-

ample, of the segment polarity network and of developmental regulatory circuits in Drosophila
[171, 272]. The models displayed the qualitative behavior observed in vivo and robustness of

this behavior. As for the models of circadian oscillators analyzed in the previous chapter, these

features turned out to be properties of the model structure, and only to a very limited degree

of the parameter values. If this finding would hold true in general, it would have important

implications for the understanding of cellular systems as a whole. The key characteristics of

modularity and robustness could greatly facilitate the mathematical modeling of larger regula-

tory networks [137].

However, for a quantitative understanding at the system level, finding the right model struc-

tures for small networks and then combining them will prove insufficient. Also the quantitative

aspects of cellular regulation have to be described in an appropriate way. Unless the quantitative

behavior is captured, a tight coupling of model and experiment, and the purpose-driven manip-

ulation of the system will be impossible. For the development of mathematical models, this

task implies identifying the model parameters as well as the structure. Identification of model

parameters can be complicated, as robustness and identifiability are contradictory system char-

acteristics. The input-output behavior of a robust module is almost invariant and, thus, could

provide little information on the internal working principles. The quantitative (internal) behav-

ior of robust systems nevertheless varies if perturbed. In control engineering, for instance, the

principles of dual (adaptive) control rely on controlling the process as well as possible, while
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injecting probing perturbations in order to improve the information on the system and, thereby,

future control action [69, 70]. In biology, systematic directed perturbations at the genetic level

were applied to elucidate control structures for (smaller) example systems such as the galac-

tose system in yeast, or by genome-scale generation of deletion mutants. There, as in most

current biological studies, however, only qualitative or semi-quantitative effects of the pertur-

bations were measured [119]. The most eminent difficulties in development of quantitative

mathematical models are therefore thought to arise from the combination of robustness and to-

day’s prevailing qualitative biological knowledge [105]. Under these circumstances, the correct

determination of internal parameters can be impeded, especially if robustness depends on the

cooperation of multiple, redundant pathways in order to achieve the control objectives [103].

As a more differentiated view on (cellular) systems, Doyle and co-workers recently intro-

duced the theory of highly optimized tolerance (HOT), which was discussed in chapter 2.2. In

brief, the concept points out the combination of generally robust input-output behavior, but ex-

treme sensitivity or fragility in the case of selective disturbances [29, 209]. As a consequence,

regulatory modules obeying these principles could be more easily captured in quantitative terms.

Theoretical concepts on robustness are thus directly linked with the development of acceptable

mathematical descriptions in cell biology.

This section, hence aims at both a preliminary distinction of the competing theories, and at

assessing to what extent quantitative mathematical modeling is possible given the current status

of biological knowledge. These issues can only be dealt with by studying specific biological

examples. Here, a complex regulatory system heavily relying on redundancy of sub-systems -

the control of mitotic events in cell cycle regulation of the budding yeast Saccharomyces cere-
visiae - will be analyzed. For this purpose, a mathematical model able to describe the system

under consideration in sufficient quantitative accuracy first needed to be established. Extending

the pioneering work of Tyson and colleagues [32] in this field, mathematical modeling aims at

providing a more detailed picture of the regulatory processes, both by regarding an enlarged

network and by using parameter estimation to adjust the model to experimental data. A dif-

ferentiated study of model robustness and model identifiability by means of sensitivity analysis

and determination of parameter estimation accuracy will then be performed.

5.2 Cell cycle regulation in budding yeast

Owing to its genetic accessibility, the budding yeast Saccharomyces cerevisiae is widely used

as an eukaryotic model organism. This is especially true for the biology of cell cycle regulation,

for which this yeast belongs to the best understood biological systems. As the control of cell

proliferation is also one of the most highly conserved intracellular regulatory networks, con-

siderable homologies to higher eukaryotes exist. The general regulatory scheme as well as the

molecular mechanisms to be described in the following can therefore be regarded as a blueprint

of eukaryotic cell cycle regulation. However, larger differences between yeast and mammals
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exist in the coordination of growth and cell cycle progression [38] that would require more

specific consideration if one was interested in this particular aspect of the field.

5.2.1 The general picture

In every eukaryotic cell, passage through the cell cycle is a tightly controlled process. Cell cycle

regulation, the control system, is essential for the coordination of cell growth and division. The

complexity of this task can be estimated from the fact that in budding yeast the transcription of

approximately 800 out of 6,300 genes is cell-cycle regulated [246].

At the physiological level, the cell division cycle is characterized by a fixed sequence of

cell cycle phases (Fig. 5.1). Cells starting the cycle in G1 phase have to accumulate sufficient

cellular material to reach a critical size for all subsequent processes to begin. Once this aim is

accomplished, a checkpoint called ’START’ (or ’restriction point’ in higher eukaryotes) enables

DNA replication in S (’synthesis’) phase. In parallel, bud formation is induced. During S phase,

surveillance mechanisms ensure that DNA is replicated completely, and only once.
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Fig. 5.1: Cell cycle regulation in budding yeast. The scheme shows the main cellular tasks in specific

cell cycle phases (outermost ring), the DNA content of the cell (middle) and the dominant cell

cycle regulators (center). Arrowheads indicate checkpoints.

The next important cell cycle phase is mitosis (M), during which chromosomes have to

be aligned and attached to the spindle apparatus in metaphase, before in anaphase sister chro-

matides are separated. Finally, telophase encompasses the processes for distribution of DNA

to mother and daughter cell, which are then separated by cytokinesis. Each of these steps

is controlled by checkpoints, for instance, sensing correct positioning of the mitotic spindle,

the macromolecular assembly that generates the mechanical forces necessary for chromosome

movement and positioning.
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At the molecular level, cyclin dependent kinases (CDKs), their activators called cyclins,

and their inhibitors (CKIs) form the core of the regulatory network. The yeast Saccharomyces
cerevisiae possesses one catalytically active CDK (Cdc28). It associates with nine different

cyclins, leading to activation of the kinase. A characteristic feature of these cyclins is their

periodic accumulation and destruction during the cell cycle (Fig. 5.2). Although, in principle,

periodic CDK activation alone could establish a minimal cell cycle regulation, strong evidence

suggests that in all eukaryotes, cyclins additionally function to target the activated CDKs to

stage-specific substrates [176].
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Fig. 5.2: Sequence of CDK activities. Phase-specific activities of cyclin-dependent kinase are given

qualitatively in terms of the time courses of cyclin concentrations. For corresponding cell cycle

phases see top bar.

In yeast, entry into S phase is induced by the G1 cyclins Cln1-3. The S phase cyclins Clb5-6

are responsible for controlling the processes of DNA replication and for initiating mitosis. Mito-

sis, finally, is controlled by the mitotic cyclins Clb1-4, of which Clb2 plays the most prominent

role [44]. Separation of these tasks, however, is not strict, because cyclins may confer overlap-

ping specificities to the CDK, and also show overlapping expression profiles. One mechanism

for controlling the phase-specific occurrence of CDK activity functions via the inhibitor Sic1,

which specifically inactivates B-type cyclins [173]. Control of cyclin abundance and additional

control circuits, thus, enable the cell to form distinct kinase complexes with different function-

ality.

The phase-specific cyclin fluctuation in yeast - as in all eukaryotic cells - relies upon inter-

connected control circuits. One important aspect of these circuits is the control of gene trans-

cription. Recently, it was shown for yeast that transcriptional activators form a fully connected

cycle driving the cell cycle into the forward direction. Transcription factors are by themselves

periodically expressed in such a way that activators required for one cell cycle phase contribute

to control of transcription factors fulfilling tasks in the next phase [23, 240].

Ubiquitin-dependent protein degradation represents another prominent mechanism for

phase-specific control of cyclin abundance. In general, the ubiquitin-proteasome pathway works
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in two steps: First, target proteins are marked for degradation by covalent attachment of the

small protein ubiquitin. The reactions are carried out by enzyme complexes called ubiquitin

ligases. Successively assembled poly-ubiquitin chain(s) then serve as recognition signals for

rapid proteolysis by the 26S proteasome [110]. From a control point of view, two types of ubi-

quitin ligases are most important for regulated protein destruction that is crucial to cell cycle

progression. The SCF system (named after its constituting components Skp1 / Cdc53 / F-box

protein) recognizes phosphorylated proteins, and mainly acts in the G1 and S phases. The

anaphase promoting complex (APC), via additional factors conferring substrate specificity, is

involved in the turnover of mitotic regulators [128, 142].

Evidently, the interaction between such diverse processes leads to a highly complex and

interconnected regulatory network [173]. The sub-system governing mitosis, which is to be

captured in close correspondence to biological reality by the mathematical model, will therefore

be described in more mechanistic detail in the following section.

5.2.2 Controlling mitosis

The two main regulatory tasks to be accomplished at the end of the cell cycle are first to activate

late mitotic CDK, especially Clb2-CDK to drive mitotic events. As this activity also blocks

the exit of mitosis, the cell secondly has to get rid of the mitotic CDK activities for a new cell

cycle round to begin. These processes are mainly regulated by transcriptional control and by

selective protein degradation. An overview of the most important processes involved in the

control of mitosis is given in Fig. 5.3.

In the yeast cell cycle, transcription factors form an interconnected regulatory network that,

owing to the activation of transcriptional activators in one cell cycle phase by those from a pre-

ceding phase, is itself organized as a cycle [240]. The transcription factors MBF (Mbp1 / Swi4)

and SBF (Swi4 / Swi6) are responsible for expression of late G1 phase genes, and, in turn,

depend on (late) G1 cyclin-CDKs such as Clb5–Cdc28 for activation. In G2/M, these tran-

scriptional activators contribute to the induction of the CLB2 gene. More importantly, the ex-

pression of SFF as the key regulator for the CLB2 gene cluster is induced by MBF and SBF

activity [23, 240].

SFF itself is a protein complex composed of the transcriptional activator Ndd1 as its limiting

component, the forkhead transcription factors Fkh1 and Fkh2 that recruit Ndd1 to its target

genes, and of the protein Mcm1, which is constitutively bound to DNA [5, 145, 149, 162, 170,

197, 295]. Activation of gene expression by SFF requires post-translational modification of its

components. Although the exact mechanism is not known yet, it has been shown that Ndd1 and

Fkh2 are phospho-proteins, and that expression of target genes correlates with phosphorylation

of the proteins [145, 197]. Since both proteins contain Cdc28 consensus sites, and are likely

targets of Clb2-CDK [49, 207], this may explain for the early observation of an autocatalytic

positive feedback loop for CLB2 gene expression [7, 129]. Additional complexity, however,

stems from the fact that Fkh1 and Fkh2 are transcriptional repressors as well as activators [145].
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Fig. 5.3: Molecular interactions governing mitosis. a, Overview of key regulators. Positive and neg-

ative regulatory interactions are denoted by arrowheads and bars, respectively. The lower part

shows changes in cell phenotype during cell cycle progression, including the localization of

the genetic material (dark circles) and the spindle apparatus (vertical lines). b, Detailed control

system. Rectangles and ellipses indicate genes and proteins, respectively. Bold arrows stand

for the processes of transcription / translation and protein degradation. Transcription factors

for control of the individual genes are shown in gray. Regulatory input signals from cell cycle

checkpoints or from G1 control circuits are indicated accordingly. Question marks point to

uncertain or hypothetical interactions. The subsystem for control of sister chromatid cohesion

was omitted.
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The presence of Clb2-CDK activity for promoting mitosis relies on several other factors

besides the control of CLB2 gene expression. Two proteolytic systems for Clb2 exist that are

inactivated in mitosis. Earlier CDK activity, as well as Clb2-CDK inactivate one branch of

the degradation machinery. Hct1 recognizes Clb2 protein and targets it for ubiquitylation by

the anaphase promoting complex (APC) [230, 231]. The modified protein can subsequently be

degraded by the proteasome. As Hct1 phosphorylation carried out by Clb5-CDK and Clb2-

CDK abolishes the Hct1-APC interaction, the kinases inhibit the pathway [291]. The second

branch of controlled proteolysis relies upon a Hct1 homologue termed Cdc20. Although the

corresponding gene is expressed in the CLB2 gene cluster, the activity of APCCdc20 remains

inhibited by the spindle assembly checkpoint (SAC) until anaphase [68, 159, 270].

Additionally, mitotic cyclin-dependent kinases prevent the action of two systems for their

inactivation through competitive inhibition. After initiation of the process by late G1 CDK

activity, they sustain the phosphorylation of the CDK inhibitor Sic1 thereby targeting it for

degradation by the SCF (Skp1 / Cdc53 / F-box complex) proteasome pathway [71, 120, 232].

This functionality is also suppressed at the level of transcription, namely by phosphorylation of

the transcription factor Swi5 that is contained in the CLB2 gene cluster and activates SIC1 gene

expression [1, 141, 246, 256]. Its modification leads to export to the cytoplasm and, thereby, to

inactivation [179]. Finally, the DNA replication factor Cdc6 associates with CDK complexes

and presumably directly contributes to their inactivation [25, 65]. Like for the case of Sic1,

however, mitotic cyclin-CDKs negatively regulate Cdc6 protein stability [53, 64, 193]. In early

mitosis, CDC6 gene expression is also blocked by the closely related transcriptional repressors

Yox1 / Yhp1, which are themselves subject to cell cycle regulated transcription [198]. As a

consequence, Cdc6 as well as Sic1 protein are not present in early mitosis. Through a com-

bination of mechanisms acting at the transcriptional and the post-transcriptional level, thus, a

self-sustaining state of high mitotic kinase activity establishes.

In early mitosis (metaphase), replicated chromosomes have to be attached to spindle mi-

crotubules that act as molecular motors for distribution of the genetic material to mother and

daughter cell, respectively. Until this process is completed, or when cells are treated with the

spindle depolymerizing agent nocodazole, the spindle assembly checkpoint delays entry into

anaphase by blocking the APCCdc20 proteolytic system. For this purpose, a number of proteins

forms inhibitory complexes with Cdc20; the exact nature of the inhibiting signal, however, has

yet to be determined [288]. Upon checkpoint inactivation, Cdc20 is responsible for abolish-

ing sister chromatid cohesion via destruction of the anaphase inhibitor Pds1 [34, 36, 37, 159].

Concomitantly, active APCCdc20 leads to proteolysis of Clb5 cyclin, and to partial degradation

of Clb2 cyclin. The latter process proved to be a necessary precondition for subsequent total

elimination of late mitotic kinase activity [24, 282].

The next step of Clb2 inactivation begins after the segregated chromosomes have been dis-

tributed to mother and daughter cell, which is equivalent to a correct positioning of the elongated

spindle. The phosphatase Cdc14 plays a prominent role in the exit from mitosis, as it reverses
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inhibitory phosphorylation caused by mitotic CDK activity [122, 268]. Until early anaphase,

the competitive inhibitor Net1 retains Cdc14 in the nucleolus. This inactivation is partially

relieved after inactivation of the SAC through a regulatory network termed the FEAR (Cdc

fourteen early anaphase release) network [247]. However, only a signal for correct spindle po-

sition transduced by the mitotic exit network (MEN) enables its full release during telophase

and early G1 phase [239,258]. Mutants carrying defects in MEN proteins arrest in late anaphase

with high Clb2-CDK activity and fail to initiate cytokinesis [123]. Cell cycle progression thus

depends on a further checkpoint. The MEN, in principle, is organized as a GTPase-controlled

protein kinase cascade similar to signal transduction pathways in higher eukaryotes. The exact

mechanism of signal generation and signal propagation remains to be determined [169]. Ex-

perimental evidence suggests that ultimately phosphorylation of Net1 and / or Cdc14 by MEN

kinases induces disassembly of the Cdc14 / Net1 complex [166, 238, 271, 286], which can be

reversed by Cdc14 phosphatase activity. This negative feedback loop may be partly responsible

for the fact that activation of Cdc14 at the end of mitosis is only transient [239].

The effect of Cdc14 activation is at least threefold: The phosphatase is able to influence the

activity of the MEN pathway positively via the kinase Cdc15 [124], but may also attenuate the

signal through dephosphorylation of the regulator Bfa1 [192]. It can not be excluded that addi-

tional targets for Cdc14 exist that also serve to restrict the activity of MEN and, hence, Cdc14

phosphatase to a short window in late mitosis [85]. Once released from the nucleolus, Cdc14

removes the inhibitory phosphorylation from the APC regulator Hct1 and, as a consequence

switches on proteolysis of the remaining Clb2 protein [122]. Additionally, the phosphatase is

responsible for the accumulation of the CDK inhibitor Sic1. Upon de-phosphorylation of the

transcription factor Swi5, the protein can enter the nucleus and induce SIC1 gene expression.

De-phosphorylation of Sic1 protein counter-acts its targeting for ubiquitin-dependent proteoly-

sis by mitotic CDK activity, and, thus, eventually leads to stabilization of the inhibitor [268].

Moreover, in late mitosis, the protein Cdc6 is expressed, which cooperates with Sic1 in inac-

tivation of Clb2-CDK. How the cells accomplish to alleviate transcriptional repression of the

CDC6 gene by Yox1 / Yhp1, and which mechanisms determine the subsequent stabilization of

the protein, however, have to be elucidated [25,198]. Jointly, these regulatory interactions bring

the cell into a G1 state characterized by low Clb2-CDK activity and high Sic1 levels.

In addition to the control scheme as already described, major gaps in the current knowledge

on the regulatory network exist. Question marks in Fig. 5.3 indicate some of these areas. This

concerns, in particular, the exact mechanisms for transcriptional control of the CLB2 gene clus-

ter. It has been shown that gene regulation in this case relies on a complex interplay between

the factors Mcm1, Fkh1/2 and Ndd1, involving controlled expression, phosphorylation and pre-

sumably also degradation of the proteins. Apart from correlations such as the fact that Fkh2

phosphorylation coincides with SWI5 expression [197], sources and significance of these reg-

ulatory interactions remain unresolved. Redundancy in transcriptional regulation, for instance,

owing to combinatorial control of the genes, activation by mitotic cyclin-dependent kinases,
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and regulated accumulation of the transcription factors themselves seem to be important for the

system’s dynamics [23, 81].

Controlled protein degradation provides another area that requires additional knowledge.

Conflicting conclusion were reached with respect to the proteolysis of Cdc20, and the role the

APCHct1 pathway plays in it [91, 117, 201, 237]. For Cdc6, different modes of proteolysis spe-

cific for different cell cycle phases, and their modulation by phase-specific CDK activities have

been described. The ubiquitin-dependent pathway via SCF clearly is involved in some of these

modes, but an additional role for APC-dependent pathways can not be ruled out [53, 64, 193].

It is unknown, whether degradation of the transcriptional activator Swi5 occurs constitutively,

or in a regulated fashion; at least, experimental evidence suggests that APCHct1 does not par-

ticipate in this process [W. Seufert, personal communication]. Proteolysis of the only recently

identified components of SFF, finally, has not yet been a subject of direct experimental in-

vestigation. Observations such as an onset of rapid Ndd1 degradation that coincides with the

activation of APCHct1 at the end of mitosis point to controlled protein degradation as a signifi-

cant regulatory mechanism to be characterized [145]. Altogether, these uncertainties represent

challenges for model development, but in turn mathematical modeling could provide clues on

the function of the mitotic control network, if being successful.

Tab. 5.1: Genotype - phenotype relations. ”Partial proteolysis” of Clb2 refers to initial protein degra-

dation by APCCdc20, whereas ”complete” removal of the protein requires APCHct1 activity.

According to standard yeast nomenclature, ”GAL1,10-XXX” and ”xxx�” specify the over-

expression of gene ”X X X” by using the GAL1-10 promoter, and the deletion of this gene,

respectively. Addition of the spindle poison nocodazole is abbreviated by ”Noc”.

Genotype and Clb2 active Cdc14 Clb2 degradation Clb2/CDK

additional treatment in mitosis release partial complete inactivation

wild type + + + + +

wild type + Noc + – – – –

men (mitotic exit network mutant) + –a + – –

hct1� + + + – +

sic1� + + + + +

hct1� + Noc + GAL1,10-SIC1 + – – – +

hct1� + Noc + GAL1,10-CDC6 + – – – +
a In MEN-deficient cells, Cdc14 release occurs only transiently in early anaphase [247].

The existence of parallel pathways for controlling the initiation as well as the termination

of late mitotic CDK activity lets one expect a robust behavior of the system. It is observed in
vivo that many perturbations do not abolish the ability to enter and exit mitosis. For instance,

deletion of either one of the three major counter-players of CLB2 – HCT1, SIC1 and CDC6
– has little effect on the qualitative behavior. Yeast cells are still able to exit mitosis, albeit

either Clb2 levels stay high in G1, or inactivation relies completely on Clb2 degradation, re-
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spectively (see Table 5.1). In quantitative terms, however, these changes are detectable, as, for

example, hct1� strains display a delay in completing mitosis and therefore grow more slowly

than wild type [231]. Additionally, by manipulating mitotic checkpoint mechanisms, yeast cells

can be blocked at different points in mitosis. Over-expression of appropriate genes reverses this

situation again. Altogether, such controlled perturbations of the system, which correspond to

standard experiments in cell cycle research, could offer the possibility to sufficiently identify

the operating principles of mitotic control despite the system’s robustness.

5.3 A mitosis control module

Development of mathematical models involves structural model setup, definition of behavioral

characteristics (kinetics), and finally estimation of kinetic parameters based on experimental

data. Starting with a brief survey of the modular modeling approach pursued herein for estab-

lishing the model for control of mitosis in budding yeast, these steps will be described in the

following sections.

5.3.1 Modular modeling approach

Cellular systems composed of modules offer the possibility to develop mathematical models

for each module separately and then to obtain the system model by connecting the modules.

The modular approach furthermore tries to implement re-usable model entities that enable a

mathematical description, which is close to the biological processes. These principles are ap-

plied at the most elementary level of biological regulation by developing and employing sub-

models for processes such as transcription, translation, enzymatic conversions, protein-protein-

interactions, and others. These submodels and higher aggregated models are then used to build

up a standardized library for the convenient modeling of cellular systems [147, 148, 248]. In

brief, at the most fundamental level, a finite and disjunct set of so-called ”elementary modeling

objects” (Fig. 5.4) was defined. They are used to represent substance formation, degradation

and storage as well as the corresponding signal transformation processes that determine, for

example, the control of transcription initiation via specific DNA-protein interactions.

The organization of these modeling objects in an object-oriented class hierarchy lays the

basis for computer-aided model development as described in the next section. Elementary

modeling objects can subsequently be interconnected to form higher aggregated structures. A

modeling object for gene expression, for instance, comprises transcription and translation. In

summary, this approach enables to progressively obtain a holistic description of more complex

functional units.

A prototype gene expression unit used in the mitotic control module may serve as an ex-

ample for these submodels. The biochemical reaction scheme shown in Tab. 5.2 represents a

simplified description for this functional unit. It comprises the binding of a transcription factor
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Control of poly-
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Protein/DNA/RNA-
interactions

Elementary Modeling Object
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S

.    .    .

.    .    .

Coordinator

control signal
control signal

polymer flux

control signal

input signal

control signal

monomer flux

input signal

control signal

Fig. 5.4: Hierarchy of elementary modeling objects for cellular systems.

Tab. 5.2: Simplified biochemical reaction network for a single gene. RNA polymerase II, ribosomes,

the proteasome pathway and a specific transcription factor j binding on the promoter of gene

i are abbreviated by ”R P”, ”RI ”, ”P R” and ”T F j ”, respectively.

transcription
factor binding
to promoter

[T F j ]+ [G E N Ei, j ]
K X A,T Fj��K X D,T Fj

[T F j · G E N Ei, j ]

transcription [T F j · G E N Ei, j ] +
[R P]

K APol��
K D Pol

[T F j · G E N Ei, j · R P] KT K� [m RN Ai ] + [T F j ·
G E N Ei, j ] + [R P]

translation [m RN Ai ] + [RI ] K ARib��
K DRib

[m RN Ai · RI ] KT L� [Proteini ] + [m RN Ai ] +
[RI ]

mRNA [m RN Ai ] K DMi� []

degradation [m RN Ai · RI ] K DMi� [RI ]

proteolysis via
the proteasome

[Proteini ] + [P R] K A,P Ri��K D,P Ri
[Proteini · P R] K P,P R� [] + [P R]

to DNA. The resulting protein-DNA complex serves as the basis for formation of the initiation

complex with RNA polymerase and finally for messenger RNA (mRNA) production. Transla-

tion is described accordingly with ribosomes directly binding to mRNA. Degradation pathways

for mRNA and protein (via the proteasome) complete the module.

Capturing the processes at this level of detail results in mathematical models that seem to

be of unnecessary complexity. However, as one important advantage, this approach allows to

integrate knowledge on well-characterized processes, for instance in the form of structural char-

acteristic of genes, or of experimentally determined transcription and translation rates. More-

over, the number of model parameters and, thus, the parameter search space are reduced and

physically meaningful. In the simplified module described above, for example, only one para-

meter for the DNA-transcription factor interaction and the transcription factor-RNA polymerase

interaction, respectively, is used. Both features facilitate estimation of the remaining parame-
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ters. Also the interplay of global and local control is considered, which proves important for a

system-wide perspective [248].

To derive the mathematical equations, the entire biochemical reaction system with n mole-

cular species X i is decomposed into r elementary reactions j = 1 . . . r of the form

α1, j · X1 + . . . + αn, j · Xn
k j� β1, j · X1 + . . . + βn, j · Xn (5.1)

Here, k j is the kinetic constant of the reaction, whereas αi, j and βi, j are the stoichiometric coef-

ficients for substance X i ’s involvement as educt or as product, respectively. The mathematical

equations (ODEs) for the description of the reaction dynamics are derived straightforwardly

from this scheme by application of mass action kinetics. In a canonical form like the one

proposed in [234], the differential equations for the ns concentrations of the components ci

(i = 1 . . . ns) can be written as:

dci

dt
=

r∑
j=1

k j · (βi, j − αi, j ) ·
∏
l∈S j

c
αl, j
l (5.2)

with S j being the set of species actually participating in reaction j as educts, i.e. αl, j > 0 ∀ l ∈
S j . Here, the vector c corresponds to the vector of state variables x for a general ODE system

(see equation 4.1).

Two major reasons justify the reference to the elementary chemical reactions instead of em-

ploying formal kinetics such as Michaelis-Menten rate laws. Formal kinetics essentially are

approximations of networks of elementary reaction steps. However, they imply assumptions

on relative velocities for the elementary reactions and / or on relative concentrations of com-

ponents participating in the reactions [108]. In particular for regulatory networks, time-scale

separations are not as common as in metabolic networks, and the regulators usually are present

in concentrations of comparable magnitude. Formal kinetic descriptions may, thus, not be ap-

plicable, especially for a system for which parameter values are largely unknown beforehand.

Model reduction in this case should be preceded by careful analysis of the detailed model. Ad-

ditionally, the system of ODEs given in (5.2) is easily amendable to automatic model generation

and analysis as well as to efficient numerical solution. Details on model implementation will be

given in the next section after a description of the structure of the model for control of mitosis.

5.3.2 Model structure and implementation

One aim of this study was to establish a mathematical model for the control of mitosis in bud-

ding yeast, which is as close as possible to the biological mode of regulation. For this purpose,

the well-established biological facts on this regulatory network as described in section 5.2.2

were included in development of the model structure. The high number of components and in-

teractions between them, however, required an a priori restriction of the level of detail in which

the regulatory processes were captured in order to obtain a dynamic model of manageable size.

The following simplifying assumptions were employed:
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(1) Focus on the core regulatory network. Since the aim of this study was to capture the

core mitotic control mechanisms, signals generated by preceding cell cycle phases and

by checkpoints within mitosis were modeled as discrete events at fixed time points. They

include the activities of the G1 transcription factor MBF and of the early mitotic cyclin

Clb5, for which initial concentrations were given, and decay of the signals was incor-

porated explicitly. Furthermore, licensing of Cdc20 activation by the spindle assembly

checkpoint, and release of Cdc14 from the nucleolus in early anaphase as well as in late

mitosis resulting from the activation of the FEAR and MEN networks were incorporated

through changes in parameter values. In particular, a competitive inhibitor for Cdc20

was included that mimics the action of the spindle assembly checkpoint. The release of

Cdc14 was modeled by using two kinases for early and late phosphorylation of Net1.

The activities of these kinases representing the outputs of the FEAR and MEN networks,

respectively, were modulated externally according to the cell cycle position.

(2) Single-compartment model. Most of the reactions involved in control of mitosis take

place in the cell’s nucleus. Therefore, the model was restricted to describe this com-

partment. However, in vivo translation is performed in the cytoplasm after export of the

mRNAs from the nucleus. As a consequence, kinetic constants in the model do not reflect

the true parameter values, but would have to be adapted according to the ratio of nuclear

and cytoplasmic volume. Additionally, it has been shown that controlled protein localiza-

tion of, for instance, Swi5 [179], Cdc14 [268] and potentially Hct1 [121] is important for

the function of the regulatory network. In these cases, differential localization controlled

by processes such as protein phosphorylation corresponds to activation or inactivation

of protein function. The effects of controlled localization could, hence, be mirrored by

assigning differential activities to modified and unmodified protein species, respectively.

Again, protein concentrations (and kinetic parameters) would have to be scaled in order

to obtain the ’true’ values.

(3) Combination of regulators into single model species. Regulators with similar function-

ality and regulation in the cell cycle were lumped into one representative model species

in order to reduce the number of components (state variables) to be tracked. This con-

cerns the largely redundant pairs of transcriptional effectors Swi5 / Ace2 (model species

’Swi5’), Fkh1 / Fkh2 (’Fkh12’), and Yox1 / Yhp1 (’Yox1’). Based on a similar rea-

soning, the activity of all S-phase and early mitotic cyclins was subsumed under ’Clb5’,

which apparently is the most important of these cyclins with respect to the initiation of

mitosis [280]. In general, the cyclin-dependent kinase Cdc28 was not modeled explicitly,

since the protein is available in excess over its phase-specific activators [44]. The presen-

ce of a cyclin was, thus, assumed to translate directly into corresponding CDK activity.

Finally, a coarse model was used for the description of ubiquitin-dependent proteolysis.

The process in reality involves several steps of protein modification until the ubiquiti-
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nated substrate is degraded by the proteasome. Here, however, this chain of reactions

was incorporated into a single reaction carried out by the ubiquitin ligases APC and SCF,

respectively, because they seem to catalyze the rate-limiting steps in the pathway.

(4) Omission of cooperative effects and multi-site protein modification. This point con-

cerns cooperative transcription factor binding to DNA, for example by the forkhead tran-

scription factor Fkh2 [111]. Additionally, multiple regulatory phosphorylation of pro-

teins involved in cell cycle control occurs frequently. For instance, the APC regulator

Hct1 [231], the nucleolar protein Net1 [238], and the CDK inhibitor Sic1 [265] are modi-

fied by cyclin-dependent kinases at several sites. Multi-site modification, instead of mod-

ification at a single, optimal site may serve to set thresholds for processes such as timely

protein degradation because it determines a switch-like response to an input signal [182].

Although being of potential importance for the detailed dynamics of the system, in deve-

lopment of the model, these effects were not considered in order to avoid a combinatorial

explosion of system states. Moreover, it can be shown that non-linearities owing to the

complex interactions at these network nodes can bring about a similar dynamic behavior.

(5) Constant total amounts of selected proteins. Experimental evidence suggests that the

total concentrations of several mitotic regulators do not fluctuate during the cell cycle.

Controlled expression, thus, does not contribute to regulation of their activity. In particu-

lar, total amounts of Hct1 [201], SCF [83], APC [214, 290], Cdc14 and Net1 [268] could

be represented by appropriate initial values. The amounts of Mcm1 and forkhead tran-

scription factors are cell-cycle controlled, but the regulators constitutively bind to the pro-

moters of genes in the CLB2 cluster [5, 145]. As a consequence, Mcm1 was not included

in the model, while for Fkh1 / Fkh2 only post-translational modifications that may con-

tribute to control of gene expression [81,197] were described. Changes in highly abundant

cellular components such as ribosomes and RNA polymerase should not severely affect

the mitotic control system. Concentrations of these components were therefore assumed

to be constant as well.

(6) Selective protein degradation. In general, presumably the basal stability of proteins

and messenger RNA is not affected by interactions of the components with other species.

For model development, however, this would imply that degradation reactions for the

components in all the complexes they participate in would have to be captured, which

would increase model size considerably. Here, these processes were included in a reduced

form, namely by only considering the degradation of free, uncomplexed forms of most

components. However, for example, for Sic1 it has been reported that the protein can

be selectively recognized and targeted for proteolysis even when it is associated with

CDKs [266]. In such cases, explicit degradation reactions for the bound components

were included in the model.
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Additionally, several assumptions needed to be made regarding the incompletely charac-

terized interactions described in section 5.2.2. The most important of these interactions con-

cern protein phosphorylation / dephosphorylation and proteolysis. The Mcm1 / Fkh1/2 / Ndd1

complex, necessary for expression of genes in the CLB2 cluster, is by itself regulated by phos-

phorylation. Since the effects of protein modification on complex formation and activity are

only partially clarified, parameters for the efficiency of these processes depending on the pro-

tein state were included that, in principle, allow for the description of all possible combinations

of activating and inhibiting effects. Since additionally the modifying enzymes have not been

identified yet, but it seems likely that CDKs and Cdc14 play opposing roles in the regulation of

SFF, the corresponding hypothetical reactions were introduced into the model. Moreover, for

several phosphorylation reactions without known counter-parts, dephosphorylation by Cdc14

as well as constitutive dephosphorylation were assumed. Finally, the questions of how exactly

Cdc6, Cdc20, Swi5 and (parts of) the SFF complex are degraded is unresolved. For these pro-

teins, an array of possible degradation pathways, namely via SFC, APCCdc20, and APCHct1 as

well as constitutive degradation were incorporated into the model. Estimation of the associated

efficiency and kinetic parameters based on experimental data could, thus, lead to the generation

of hypotheses on the control mechanisms involved (see section 5.4.1).

An overview of the resulting model structure in terms of its modular composition according

to the modeling concept is shown in Fig. 5.5. In brief, the model contains three expression units

for the effectors of gene expression (upper part of the figure), and four units for the genes they

control (lower part). Additional model parts not represented in the scheme serve to generate

input signals, for instance, to describe the concentration of S phase cyclins. The activity of mi-

totic CDK constitutes the major output signal of the module. As can be seen from the figure, the

model structure reflects the various feedback and feed-forward loops present in the regulatory

network.

Together with the general components (RNA polymerase, ribosomes, APC and SCF) and

proteins at constant level (such as Hct1 and Fkh1/2), the model comprises 18 different un-

modified and uncomplexed protein species. A considerable part of the model’s complexity,

however, relies on complicated interactions between the cell cycle regulators that are repre-

sented by the ”coordinator” (for protein-protein interactions) and ”signal processor” units (for

protein-DNA interactions). Owing to the high network interconnectivity, the representation of

altogether 834 elementary reactions finally results in a model with 360 state variables and 242

kinetic parameters. These numbers also cover the control modules for extra- and intra-mitotic

events, and additional modules for the simulation of gene overexpression experiments using the

GAL1-10 promoter. Table C.1 in the appendix gives a full account of the elementary reaction

steps modeled, including the references to the experimental literature reporting the regulatory

mechanisms.
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The full network of reactions can be visualized in the form of an undirected graph (Fig. 5.6).

Each node represents a species in the model. Whenever two species participate in the same

biochemical reaction, they are connected by a link. The graph, thus, gives an overview of the

model’s main connectivities.

Net1

Cdc14
Hct1Swi5

Sic1

Cdc6

Fkh12

Ndd1

Clb2

CLB2F

RP

mCLB2

RI

MBF

CLB2M

Cdc20

APC
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mSIC1

SCF
Clb5
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mNDD1
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GalCDC6
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GalCDC20
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GalCDC14
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Fig. 5.6: Model structure: Connectivities. Connections between components described by the model

(vertices) were introduced whenever two components participated in the same biochemical re-

action, either as educts or products. Only nodes representing free, unmodified components

(black circles) were labeled for clarity. Promoter sites of a gene ’XXX’ were designated

’XXXF’ or ’XXXM’. The gene’s mRNA and protein products appear as ’mXXX’ and ’Xxx’,

respectively. Unlabeled (gray) vertices correspond to, for instance, protein complexes and / or

post-translationally modified proteins. The software package ”Pajek” [14] was used for graph-

ical representation of the network.

As can be seen in Fig. 5.6 for the energy-optimized graph, two main clusters exist. One

involves predominantly transcriptional control (upper left corner), the other cluster comprises

proteolytic reactions (lower right corner). The fact that input signals such as ’MEN’ and ’SAC’

occupy positions at the margins, concurs with them impinging on few specific reactions. Further

indications can be derived from this graphical representation that correspond to the biological

picture of the overall control scheme. For instance, cyclins, their inhibitors and degradation fac-
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tors appear in close proximity; the phosphatase Cdc14 connects transcriptional and proteolytic

control.

The model was implemented as a set of ordinary differential equations in MATLAB (Math-

works, Inc.) for numerical integration and parameter estimation. In parallel, automatic con-

version of the equations into the simulation environment DIVA [89] served to verify numerical

accuracy of the solutions. In particular for the implementation into MATLAB, which provides

efficient numerical routines especially for matrix operations, the fact that the reaction network

was composed out of elementary reaction steps alone proved advantageous. Since it is assumed

that in an elementary reaction at maximum two components interact, all terms in the right hand

side functionals of the ODEs are at maximum bi-linear. Therefore, a compact matrix notation

for the calculation of the time derivatives of the states can be introduced as

dx
dt

= M1 + [M2 + x · V · M3] · x + B (5.3)

with the ns × 1 vectors of states x and constant terms M1, two ns × ns square matrices for

the linear (M2) and a fraction of the bi-linear (M3) terms, and the 1 × ns identity vector V.

Those bi-linear terms for the time derivative of state i that do not depend on xi itself, had to be

captured separately by the ns × 1 vector B, the elements of which are:

Bi =
∑

j

M4i, j · x I Ai, j · x I Bi, j (5.4)

Here, M4 contains the kinetic parameters for the bi-molecular reactions, and elements of the

index matrices IA and IB designate the components participating in the j-th reaction. The

system’s stoichiometric matrix S and the parameter vector p were used to construct M1 to M4,

IA and IB. In a similar way, analytically derived Jacobian matrices for the states and the partial

derivatives needed for sensitivity analysis (see chapter 4.4) can be described. Altogether, this

implementation then allowed for carrying out the time-consuming task of parameter estimation

based on experimental data for this large model.

5.3.3 Experimental data and parameter estimation

For the particular system of budding yeast cell cycle regulation, one major challenge is to iden-

tify the model parameters. Only a very limited number of kinetic parameters such as average

translation rates [82] and specific mRNA half-lives [112] have been determined experimentally.

Thus, few parameters could be taken directly from literature, whereas most of the model param-

eters had to be estimated on the basis of experimental data. Parameter estimation then faced the

problem – as encountered in a recent study by Tyson and colleagues [32] – of rare and partially

incoherent quantitative data on yeast cell cycle regulators [44, 86].

Also owing to technical limitations, no single quantitative data set for all relevant regulators

and conditions (mutations, treatments) in yeast cell cycle regulation exists. For this reason,

experimental data had to be gathered from different studies. The risk of potentially incoherent
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data associated with such an approach is illustrated in Fig. 5.7 a. Time courses of Clb2 protein

concentration in cells released from G1 arrest from four different studies are compared. Pairs of

two studies show very similar dynamic behavior, whereas between these pairs, large differences

in the onset and duration of Clb2 presence become obvious. The different dynamics could

be explained by the fact that in [282, 283] a strain was used that – in contrast to [75, 250] –

contained an epitope-tagged version of Hct1 that, however, does not influence the qualitative

behavior of the cell. For establishing the mitotic control model, therefore, only data determined

in cells with as identical as possible genetic background were considered.

As the very similar quantitative Clb2 protein data for the untagged strains show, quantifica-

tion of, for instance, Western Blots used for protein detection might be of minor importance for

errors in quantitative experimental data. To investigate this possibility, Western Blots of Cdc28

protein over the cell cycle reported in [3] were analyzed by means of digital image analysis.

CDK concentrations are known to be constant during the cell cycle. This is reflected by the pro-

tein quantifications for two independent experiments shown in Fig. 5.7 b. Standard deviations

of relative protein concentrations of approximately 10% were calculated and none of the mea-

surements deviates by more than 20% from the mean value. Protein quantification and other

steps in experimentation such as liquid handling, thus, seem to contribute little to experimental

variations. The analysis, moreover, gives an estimate of the standard measurement errors for

this type of experimental investigations.

It is important to note that these considerations only apply to relative protein concentra-

tions, whereas for realistic mathematical modeling, absolute concentrations are required. Only
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Fig. 5.7: Evaluation of experimental data quality. a, Comparison of experimentally determined con-

centrations of Clb2 protein in cells released from α-factor arrest a time t = 0 min. The

following studies were considered: [75] (open circles), [250] (closed circles), [282] (squares)

and [283] (diamonds). Data were normalized by their maximal values. The solid line connects

the averages of the first two data sets, while the time courses for the two other data sets are visu-

alized by dashed lines. b, Accuracy of protein quantification. Cdc28 protein used as a loading

control for two time course analyses of cell cycle proteins [3] was quantified by digital image

analysis of Western blots. Data were normalized by their mean values. Dashed lines indicate

± 20 % deviation from the average relative Cdc28 concentration (solid line).
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a handful of experimental studies exist that addresses this problem (bearing as caveat the use

of diploid and / or asynchronous cells) [44, 86]. Specifically investigating cell cycle regulators,

the authors of [44] determined ≈ 2.400 copies of Clb2 protein per cell, which corresponds to

a cellular concentration of ≈ 35 nM. The preferential nuclear localization of this protein, how-

ever, implies a higher effective concentration. Image analysis of data from [115] suggested that

the nuclear concentration is at least 3-fold higher than the cytoplasmic concentration (data not

shown). For model development, hence, an approximate peak Clb2 concentration of 100 nM

was employed as unique reference value for all other protein concentrations. This estimate

presumably constitutes a lower bound of the real abundance, however, it reflects physiologi-

cal conditions, and the model can be adjusted once experiments reliably determine the cyclin

concentration. For messenger RNAs, fortunately, absolute copy numbers from a genome-wide

analysis [112] could be employed as reference values.
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Fig. 5.8: Mitotic kinase in MEN-deficient cells. In two independent experimental studies [250] (filled

circles) and [282] (open circles), cells carrying a mutation in a MEN gene (cdc15-2 mutants)

were released from α-factor arrest and time courses of mitotic cyclin concentration and the cor-

responding CDK activity were followed until the cells arrested again in late mitosis. The dashed

line indicates the estimated onset of anaphase. a, concentrations of Clb2 protein, normalized to

the peak values (t = 0 min: start of Clb2 accumulation); b, normalized activity of Clb2-CDK

and c, specific CDK activity, that is, the ratio of CDK activity and cyclin concentration; solid

lines denote piecewise linear regressions for the combined data.

Another critical issue regarding quantitative experimental data concerns the relation of dif-

ferent system’s outputs, for instance kinase concentrations and activities, even if they were

determined in the same experiment. A comparison of time courses for Clb2 protein concen-

tration and associated CDK activity in MEN-deficient cells shown in Fig. 5.8 illustrates this

point. In general, because the two signals are highly correlated in unperturbed mitosis, cyclin

availability is assumed to be the limiting factor for kinase activation. The reproducible, statis-

tically significant (r2 = 0.65 for linear regression in anaphase / telophase) increase in specific

kinase activity (Fig. 5.8c), however, indicates that additional regulatory mechanisms, poten-

tially slowly degraded remnants from earlier cell cycle phases, inhibit the kinase. Alternatively,
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quantification of the Western blot signals may not be correct. The important consequence in

the context discussed here is that, apart from late convergence to full specific activation, kinase

activity data in MEN-deficient cells could not be used for parameter estimation. They do not

seem to simply reflect the amount of Clb2 protein in mitosis, even though the inhibitor Sic1 is

not present in this cell cycle phase.

Based on these considerations, an experimental data basis for parameter estimation was

set up that also seemed promising with respect to the identification of a maximum of param-

eter values, using a minimum of experimental conditions. For this purpose, the wild type, for

which relatively many time courses of system variables (total protein and mRNA concentra-

tions, complex concentrations, phosphorylation states) are reported, played an important role.

For dissecting the contributions of individual branches of redundant regulatory pathway, addi-

tionally, most of the perturbation experiments included in Tab. 5.1 were incorporated, although,

in general, there are only few, predominantly qualitative data available for this type of experi-

ments. The concentration of Clb2 determined in all experiments was used to check consistency

of the data. A complete specification of this data is contained in Tab. C.2 in the appendix, and

the experimental conditions will be described in more detail in conjunction with the simulation

results in the next section.

Simulation furthermore requires definition of initial conditions and of input signals. The

model is supposed to be valid between S phase, coinciding with Clb5 protein accumulation,

and the next pre-START G1 phase. Initial values for mRNA concentrations were calculated

from the relative data given in [149] and absolute mRNA amounts in asynchronous cell popu-

lations reported in [112]. Initial protein concentrations for species with time-varying amounts

were based on [44]. For proteins with constant total concentrations, experimentally determined

ratios of protein abundance were employed [W. Seufert, unpublished data]. Slightly differ-

ent time delays between α-factor release and initiation of mitosis in the different experiments

were accounted for by adjusting to the time course of Clb2 protein concentration. From [75],

the window of ≈15 min duration, in which the MEN is active could be determined directly.

Regarding the timing of SAC and FEAR activity, the fact was exploited that yeast cells need ap-

proximately another 15 min between onset of anaphase and complete elongation of the mitotic

spindle [130, 281].

As outlined in the beginning of this section, only few values of kinetic parameters for yeast

cell cycle control can be taken from the literature. Owing to potential inconsistencies in these

values, and to enable an a posteriori check of the plausibility of the estimated parameters,

however, these parameters were estimated as well. The modeling approach allowed for the in-

tegration of well–known structural parameters such as gene lengths. With additional external

input parameters (e.g. for control of gene overexpression) in the model, from a total number of

242, the number of parameters to be estimated was reduced to 191. In parameter estimation,

boundaries of parameter values were chosen such as to reflect the broad range of physically

plausible values the kinetic parameters could attain (see Tab. C.3). For instance, constants
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for (diffusion-limited) protein–protein interactions were allowed to be varied in the range of

10−3 . . . 102 µM−1s−1 and 10−4 . . . 100 s−1 for association (kass.) and dissociation (kdiss) con-

stants [76], respectively. Similarly, catalytic constants for enzymatic reactions (kcat.) could lie

between 10−3 s−1 and 10+2 s−1, whereby the fact that phosphatases, in general, have lower

catalytic efficiencies than kinases (e.g. [122, 251, 268] vs. [18, 175]) was incorporated. In cases

where reliable experimental data – for example concerning mRNA degradation [112], or general

transcription and translation [82] – existed, narrower intervals could be chosen.

Finally, an evolutionary strategy based on the theories of Rechenberg [204] was used to es-

timate the model parameters (free coefficients). In brief, the algorithm mimics natural evolution

in that properties of species (a set of parameter values) are subject to mutation, recombina-

tion and selection during a process where these properties are inherited from parent to children

generations. By relying on the principle that only the fittest individuals (best solutions of the

optimization problem) survive from generation to generation, evolutionary methods generate

increasingly better solutions. Since evolutionary strategies are stochastic optimization meth-

ods, the algorithms less likely gets stuck in local optima than gradient-based (deterministic)

methods. In a recent comparison of global optimization methods applied to parameter estima-

tion in models of biochemical networks, for instance, only evolutionary strategies turned out to

be capable to solve the optimization problem, and to provide rapid convergence [178].

Compared to deterministic optimization methods, however, stochastic algorithms in general

require higher computation time because the fitness of many randomly generated individuals

has to be assessed. Here, implementation of the algorithm started from a Pascal version of the

program [206] that was transferred to MATLAB and parallelized using the MATLAB TCP / IP

toolbox [available at: www.mathworks.nl/matlabcentral/fileexchange/]. A single simulation

of all experiments in MATLAB requires approximately 150 s (Pentium PC, 2.4 GHz), when

integration of the ODEs is carried out by the built-in Adams / Gear method for stiff systems

(ODE15s routine). Solution of the model in DIVA turned out to be ≈ 4 times faster. Parameter

estimation, however, required ≈ 10.000 simulations, and only by distribution of the task on up

to 20 computers, parameter values could be obtained in a reasonable amount of time. Obviously,

parallelization of the corresponding routine in DIVA would be the best option for large-scale

parameter estimation. Furthermore, different starting guesses for the parameters were used to

enhance convergence toward a globally optimal parameter set. The thus obtained reference

parameter set is compiled in Tab. C.3 in the appendix. It is important to note that, except for

experiment-specific conditions, this parameter set was used for all simulations described in the

next section without any further adjustments.

5.4 Assessing model quality

In general, the quality of a mathematical model can, and should be assessed in several ways.

A summary of approaches to the evaluation of mathematical models is depicted in Fig. 5.9.



5.4. Assessing model quality 97

(experiments/strains)
Model predictionsModel

&
Experiment

Alternative model structures Parameter estimation accuracy

Internal consistency:
  − unmeasured variables
  − kinetic parameters

(Statistical model validation)
"Goodness of fit"

Fig. 5.9: Approaches to evaluation of model quality.

Most of these methods involve the comparison of model behavior to experimental data. This

applies to judgments on the ”goodness of fit”, where the central criterion is in how far the

model behavior matches the experimental data that were used in constructing the model. In

a statistically rigorous sense, but relying on the same combination of experimental data and

parametrized model, tests on the distribution of residuals are commonly used for model valida-

tion in control engineering [161]. Obviously, additional, independent evaluations of the model

such as the prediction of the system’s behavior under different (experimental) conditions are re-

quired. In practice, however, many studies constrain themselves on the first evaluation method.

For a model of cell cycle regulation in yeast that was adapted to describe a large variety of mu-

tants [32], for instance, only an a posteriori experimental analysis of model predictions revealed

certain aspects of the model that needed to be improved [44].

Further tests include the analysis of the model’s consistency in terms of the detailed beha-

vior, but also with respect to the plausibility of the estimated values of kinetic parameters. In

both cases, a comparison to independent (qualitative) experimental observations may support

or question the suitability of the model. Parameter estimation accuracies as described in sec-

tion 5.5.1, finally, can be employed to analyze the robustness and identifiability of a specific

system. The application of these methods (in a slightly different ordering) for validation of the

mitotic control module will be the subject of the following sections.

5.4.1 Descriptive qualities and consistency

The first step in assessing the model quality, its descriptive and predictive character, is to deter-

mine in how far the simulations fit the experimental data used for estimating the model parame-

ters. Here, the focus will be on a discussion of the ”goodness of fit” in qualitative terms because

residual analysis for model validation did not reveal significant deviations from normal distri-

bution and lack of correlation of the residuals (data not shown). For the wild type yeast with

undisturbed cell cycle progression after release from a block in the G1 phase, all the quantitative

experimental data employed, and corresponding simulation results are shown in Fig. 5.10.
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Fig. 5.10: Experiment and simulation for unperturbed cell cycle progression. Combined experi-

mental data (symbols, see Tab. C.2 in the appendix) and simulation results (lines) for selected

variables in wild type after release from α-factor arrest. Time t = 0 corresponds to S phase.

At the time points indicated by the arrows, the spindle assembly checkpoint is inactivated with

concomitant activation of the FEAR network (60 min), and MEN activity is switched on (75

min) or off (90 min), respectively. The panels show time courses for all concentrations, for

which experimental data were available, namely a, Clb5 protein, b, Cdc14 / Net1 complex, c,
phosphorylated Hct1, d, CLB2 mRNA, e, Clb2 protein, f, active Clb2-CDK, g, Cdc20 protein,

h, SWI5 mRNA, and i, Sic1 protein.

The mitotic control model was designed such as to describe cell cycle control starting from

the induction of mitotic cyclin. Initial values for all trajectories were, thus, set according to

those observed in S phase, where earlier cyclins such as Clb5 are already present (Fig. 5.10a).

In late S phase and early mitosis (t ≤ 60 min), simulations and experimental data describe rapid

degradation of the inhibitor Sic1 (Fig. 5.10i), inactivation of the APCHct1 (Fig. 5.10c), and the

induction of the co-regulated genes CLB2 (Fig. 5.10d) and SWI5 (Fig. 5.10h). Concomitantly,

Clb2 protein concentration (Fig. 5.10e) and associated kinase activity (Fig. 5.10f) rise, which

leads to entry into mitosis. Initiation of chromosome segregation (t = 60 min) abolishes the

block of Cdc20 activity by the spindle assembly checkpoint, which was modeled as a discrete

event, and an initial release of Cdc14 phosphatase from the nucleolus induced by the FEAR
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network (Fig. 5.10b). The degradation of Clb5 by APCCdc20 (Fig. 5.10a,g), and an onset of the

repression of CLB2 cluster genes and their protein products are consequences of these events.

Only during the time, at which the mitotic exit network is active after successful chromo-

some distribution (75 min ≤ t ≤ 90 min, based on the activity profile of the MEN kinase

Dbf2 [75]), however, the most important processes for exit of mitosis are induced. These in-

clude full release of Cdc14, activation of the APCHct1 proteolytic pathway, CLB2 mRNA and

protein degradation, and accumulation of Sic1 protein. Consequently, the cell will be reset into

a G1 state with low mitotic kinase activity and high levels of Sic1 that is stable in the further

absence of G1 cell cycle control mechanisms (or, in vivo, in the presence of α factor leading to

a block in the early G1 phase).

From comparison of experimental data and simulation results shown in Fig. 5.10, it is evi-

dent that the mitotic control module is able to capture most aspects of the cell’s behavior while

progressing through mitosis both qualitatively and quantitatively. Minor discrepancies exist in

the dynamics of Clb5 protein concentration (panel a), and the time courses of Clb2 protein

degradation and the prior onset of inactivation of Clb2-CDK (panels e,f). This may indicate

shortcomings of the model, for instance, a too coarse description of processes involving mul-

tiple protein modification [182]. It has to be considered, however, that the experimental data

employed in parameter estimation originated from different studies. The need to adjust the time

courses, as done by normalizing concentrations and time axes for the maximum of Clb2 protein

concentration, provides an uncertainty with respect to the experimental data basis.

Similar conclusions can be drawn for the conditions of perturbed cell cycle progression that

were employed in the adjustment of the mathematical model to the cells’ observable behavior

(Fig. 5.11). There, four different experiments were considered. The first case is a strain de-

fective in MEN activation that arrests in late mitosis (telophase) with approximately half of the

peak Clb2-CDK activity (Fig. 5.11a). In a second experimental study, cells were arrested in

mitosis by adding nocodazole, and then GAL1-10 SIC1 gene expression was induced leading to

a rapid exit from mitosis (Fig. 5.11b). A HCT1 deletion mutant (hct1�) behaves like the wild

type with respect to Clb2-CDK inactivation, but Clb2 protein can not be completely degraded

(Fig. 5.11c). Finally, in this strain background, overproduction of Cdc6 protein in nocodazole-

arrested yeast using the same promoter as for SIC1 above induces a slower decline of mitotic

kinase activity, while Clb2 protein levels remain unchanged (Fig. 5.11d).

In all four instances, the model could be fitted to the experimental data, with the notable

exception of the dynamics of Clb2 protein and associated kinase activity in Sic1-overproducing

cells. The deviation accounts for approximately 40% of the total identification functional that

characterizes the match between simulation and experimental data. Presumably, this insuf-

ficiency is linked to the simplifying assumptions employed with respect to multi-site post-

translational protein modifications already discussed above. In this context, it is important to

note that, compared to the size of the model and the number of model parameters estimated,

only comparably few experimental data were available. For the wild type, for instance, only
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Fig. 5.11: Experiment and simulation for the disturbed system. The four mutants and / or otherwise

perturbed conditions used in parameter estimation are shown in the following order (rows

of panels): a, MEN-defective mutant, b, GAL-SIC1 overexpression in nocodazole-arrested

wild type cells, c, hct1� strain, and d, GAL-CDC6 overexpression in nocodazole arrest of a

hct1� mutant. All experiments start with release from α factor arrest, as for the wild type

in Fig. 5.10. In cells with non-functional MEN, release of the spindle checkpoint is the only

discrete event considered. In nocodazole-arrested cells, the arrow denotes the time of gene

induction by addition of galactose to the culture. In each row, from left to right, the following

system variables are shown: (1) Cdc14 / Net1 complex concentration, (2) total Clb2 protein

concentration, (3) Clb2-CDK activity, (4) concentration of phosphorylated Hct1, and (5) total

Sic1 protein, respectively. The sources of experimental data (circles) are specified in Tab. C.2.
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7 out of the 16 time courses for total protein or mRNA concentrations of cell cycle regulators

mirrored by the model were used in parameter estimation. This ratio was even more severe for

the cases with perturbed cell cycle progression.

The overall level of coincidence between simulation results and in vivo behavior, thus, indi-

cates that the structure of the mitotic control module captures the essential control mechanisms.

Otherwise, as observed in the mathematical modeling of other complex regulatory networks,

it would be highly unlikely that even a complex model with many degrees of freedom could

display the (qualitative) behavior correctly [171, 272]. For the mitotic control module, quali-

tatively correct simulation results that were unsubstantiated by experimental data in parameter

estimation, such as remaining Clb2 protein in the hct1� mutant [231], or the exit from mitosis

induced by GAL-CDC6 expression without the help of Sic1 protein accumulation [25], support

this assertion. Furthermore, the difficulties with the exact dynamics of Clb2-CDK inactivation

point to the importance of model structure as compared to the number of model parameters.

As noted above, experimental data suitable for model adjustment was only available for a

very limited number of (aggregate) system states. In section 5.5.2, the model will be analyzed

with respect to the quality of the thus identified parameters. Here, a first check of the model’s

consistency will be an analysis, if the model as a whole, including the unconstrained states,

would show physiologically plausible behavior. Although the mitotic control module is char-

acterized by strong internal connectivity through multiple feedback and feed-forward loops, it

is conceivable that parts of the model act largely autonomously, and only certain aspects of the

(potentially disintegrated) network behavior reflect the progression through mitosis as observ-

able in vivo.
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Fig. 5.12: Complete systems dynamics. Time courses of all state variables (gray lines) starting in S

phase for the wild type in a, an undisturbed cell cycle, and b, with added nocodazole. In order

to facilitate comparison with preceeding figures, the trajectory of mitotic CDK activity (bold

line) and the timing of external signals (arrows) was included.

The complete systems dynamics is shown for two cases in Fig. 5.12, namely the wild type

cell culture with or without addition of nocodazole to the medium. In reality, both cases are



102 5. Robustness vs. identifiability of regulatory modules

characterized by the evolution towards stable steady states of low (if the G1 control is blocked)

and high mitotic CDK activity, respectively. This is largely reflected by the model behavior,

because most trajectories rapidly tend to such a steady state. In nocodazole-arrested cells, the

decline of certain concentrations despite already constant mitotic CDK activity can be attributed

to the gradual degradation of products of genes such as CLB5 that are only induced in S phase.

In the unperturbed cell cycle, vertical gray lines originating from the intersection of trajectories

point to a highly concerted dynamics, which is in agreement with discrete transitions between

cell cycle phases caused by the highly non-linear dynamics. Overall, thus, this survey is sug-

gestive of a high degree of internal consistency of the mitotic control module, and additionally

helps in the identification of targets for model improvement.

Furthermore, investigation of the estimated model parameters allows one to assess the plau-

sibility of the mathematical model. Formal parameter sensitivity analysis will be at the core of

section 5.5. Here, the estimated parameter values in relation to experimentally obtained qualita-

tive and quantitative data will be of primary interest. Given that all model parameters – besides

those describing structural characteristics such as mRNA lengths – were subject to the estima-

tion, one criterion for model evaluation is, in how far estimated parameter values match with

experimentally determined kinetic constants. Additionally, relative values of kinetic constants

allow for qualitative comparisons, for instance, regarding the substrate preferences or relative

contributions of pathways controlling gene expression. For this purpose, in complex models

it is sensible to aggregate parameters such as dissociation constants K D. Fig. 5.13 provides

an overview of the estimated parameters grouped according to the type of regulatory processes

they are associated with.

Parameters involved in transcriptional control are summarized in Fig 5.13a in terms of the

affinities between RNA polymerase (POL), transcription factors, and promoters of cell-cycle

regulated genes, respectively. Although, in the model, for these genes constitutive expression

was provided as one possibility, the low affinities in the cases of SWI5 and CLB2 indicated a

predominant role of regulated transcription. Regarding the action of the transcriptional activator

MBF, estimated affinities for the cyclin genes with well-described MCB binding sites are in

the order of magnitude of the experimentally determined value for the consensus cognate site

[252]. A similar conclusion is reached for the forkhead transcription factors (FKH12) with

respect to the control of SWI5 expression. Additionally, relative affinities of these transcriptional

regulators for promoter sequences in mitotic genes are SWI5 > CLB2 > CDC20 [111]. For the

first two genes, the estimated parameters reflect this ordering. Differences in the mechanism of

control for the CDC20 gene, however, are known that lead to a lower dependency on the Ndd1

transcription factor [162], and involve mitotic CDK and the proteasome as negative and positive

regulators, respectively [181]. In future versions of the model, these control mechanisms should

be incorporated. The interactions between Fkh1/2 and Ndd1, however, correspond to the in vivo
situation, where phosphorylation of the latter protein is required for effective gene induction

[207].
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Fig. 5.13: Summary of estimated parameters. Aggregate parameter values for processes of a, tran-

scriptional control, b, controlled proteolysis, c, constitutive protein degradation, d, compet-

itive inhibition of CDK activity, and e, protein phosphorylation / dephosphorylation. The

types of parameters shown are binding affinities (K D = kdiss./kass.), protein half lives (t1/2),

and catalytic constants for enzymatic reactions (Kcat.), respectively. In the case of enzymatic

reactions, the first component denotes the substrate, the name after the colon indicates the

enzyme (’C’ for constitutive processes). Small vertical bars show boundaries on parame-

ter space during estimation. Experimentally determined parameter values (circles) were in-

cluded for: affinities of MBF for a generic cognate site [252], of Fkh1/2 for the SWI5 pro-

moter [111], and of Hct1 / Hct1P for the APC [122]; constitutive Clb2 turnover [270]; con-

stants for Clb2–Sic1 [172] and Cdc14–Net1 complex formation [268]; phosphorylation rate

of Sic1 as a prototype CDK substrate [175]; dephosphorylation rates of the Cdc14 substrates

Sic1P, Swi5P [268], and Hct1P [122].
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Controlled proteolysis is another regulatory mechanism of paramount importance to mitotic

control. There (Fig 5.13b), analysis of parameter values first reveals the experimentally ob-

served nature of Cdc20 and unphosphorylated Hct1 as being specific substrate-targeting factors

for the APC [230]. Whereas the estimate for this affinity agrees well with experimental data

for unmodified Hct1, this is not the case for its phosphorylated counter-part. The difference in

SCF binding affinities of phosphorylated vs. unphosphorylated Sic1 by at least one order of

magnitude corresponds to observations made in an in vitro reconstituted SCF system [242], and

when comparing the in vitro ubiquitination of wild type and phosphorylation-site deficient Sic1

protein [265]. Parameter values for degradation of Cdc20 protein suggest a role of APCHct1,

but not of APCCdc20 in this process, which is the situation inXenopus [196]. Parameters in-

dicate that APCCdc20 might be of particular importance for the complicated control of Cdc6

abundance. For the other proteins, these data indicate the improbability (for Ndd1), or possi-

bility (for Swi5, Yox1) of regulated, ubiquitin-dependent proteolysis. Independent simulations

carried out with each single of the mechanisms switched off could be used to confirm these

predictions.

As an alternative to ubiquitin-dependent proteolysis, proteins may be constitutively de-

graded. Protein half-lives shown in Fig 5.13c denote the status of these processes in the model.

Again, high stability of the cyclins, and the characterization of Cdc20 as a short-lived protein in

all phases of the cell cycle match experimental observations [201]. Swi5 protein half-lives com-

ply with the – mechanistically not yet understood – fact of rapid destruction of Swi5 upon entry

of the unphosphorylated form of the protein into the nucleus in late mitosis [179]. Interestingly,

Ndd1 shows a a relatively low half-life irrespective of its phosphorylation state, indicating that

transcriptional control may be mainly responsible for the regulation of the protein’s abundance.

Parameters related to the competitive inhibition of CDK and Cdc14 phosphatase activity, re-

spectively, are compiled in Fig 5.13d. Estimated parameters show suitable agreement with the

available data from in vitro assays. When comparing the inhibitory potentials of Sic1 and Cdc6,

only one out of two aspects of the mitotic control module concur with experimental observa-

tions, namely a higher affinity of Sic1 than Cdc6 towards Clb5-CDK as judged by the ability of

Sic1 to block the binding of Cdc6, and nearly identical binding affinities of both inhibitors for

Clb2-CDK [65]. In the model, apparently, the phosphorylation status of Cdc6 matters for these

interactions. This hypothesis has been discussed in, for instance, [25]. Discrepancies could

result from the model’s underlying assumptions, because the (barely characterized) influence of

Clb5 on the G2/M inhibitory role of Cdc6 [13] was not explicitly included.

Finally, Fig 5.13e gives an overview of phosphorylation and dephosphorylation processes

in terms of the maximal reaction rates. There, it is evident that the estimated parameters for

Cdc14-dependent dephosphorylation as wells for Clb2-dependent phosphorylation deviate by

several orders of magnitude from those measured in vitro. It is unlikely that the disagreement

was caused by highly inaccurate protein concentrations in the model, because the relative con-

centrations of kinases and phosphatases were based on experimental data. Presumably, the

fact that the measured activities for both classes of proteins show considerable variation with
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substrates and experimental conditions (see e.g. [18, 175], or [122]) plays an important role.

Additionally, analysis of parameter estimation accuracies pointed to a linear dependency of the

parameters, which implies that absolute parameter values can not be estimated together. Re-

garding the biological implications of these parameter values, it is important to note that the

known Cdc14 substrates (Sic1, Hct1 and Swi5) were correctly assigned high reaction rates.

Net1 dephosphorylation by Cdc14 was only detected in vitro [258], and its physiological role

remains unclear. Except for the Ndd1 transcription factor, Cdc14-mediated dephosphorylation

does not seem to be crucial for any of the other potential substrates, for which the (hypothetical)

reactions form part of the model.

Overall, the aspects of model validation discussed in this section showed a considerable

ability of the mitotic control module to describe the experiments used in parameter estimation,

internal consistency of the model behavior, as well as agreement of the estimated parameters

with independent experimental observations. Analysis results, however, point to shortcomings

of the model in minor aspects. They uncover facets of the biological system to be captured

in more detail, and targets for model reduction. As discussed above, the model parameters

rarely corresponded exactly to the kinetic constants measured. However, given the range of

parameter values opened up in the estimation step, the match within approximately one order of

magnitude seems acceptable. A judgment on whether the deviations in absolute terms are due

to the robustness of the network, or result from inaccurate absolute parameter estimates has to

await the quantitative parameter sensitivity analysis to be described in section 5.5.

5.4.2 Independent model predictions

Whereas so far the interpretation of model quality was based on the set of experiments used

for parameter estimation, this section will discuss the decisive test-cases of true model predic-

tions. Focusing on simulations that correspond to experiments with known outcome regarding

the control system’s dynamics allowed for a critical evaluation of the model’s predictive power

in qualitative, and – provided that experimental data was available – in quantitative terms. It is

important to note that all simulations employed the set of parameters that resulted from the pa-

rameter estimation based on a small set of experiments (section 5.3.3). Only kinetic parameters

or initial conditions necessary for mirroring specific strains or conditions were modified, for in-

stance, by setting the promoter concentration of a gene to zero in order to reflect the properties

of a deletion mutant.

One series of model predictions concerns the behavior of in silico deletion mutant strains.

The protein concentration of the mitotic cyclin Clb2 and its associated kinase activity serve as

key indicators for interpreting the results in terms of the physiological effects of the genetic

alterations (Fig. 5.14). The behavior of the wild type (Fig. 5.14a) and of the hct1� mutant

(Fig. 5.14e), being parts of the original experimental data basis for model development, were

included for easier comparison.
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Fig. 5.14: Model predictions: Mutant phenotypes. In silico mutant strains were released from α-

factor arrest. Discrete events at identical time points as for the wild type are denoted by the

arrows as in Fig. 5.10. Lines indicate total Clb2 protein concentration (solid) and Clb2-CDK

activity (dashed). Each panel refers to either a, wild type, or to a different mutant: b, clb5�

c, C L B5�db, d, C L B2�db, e, hct1�, f, cdc20�, g, sic1�, h, �47C DC6, i, net1�, j,
non-phosphorylatable APC (APC-A), k, clb5� hct1�, l, sic1� hct1�, m, sic1� cdc6�,

n, f kh1� f kh2�, o, ndd1�, and p, yox1� yhp1�, respectively. With the exceptions

of the �47C DC6 strain (inactivation of the reactions describing Cdc6 phosphorylation and

interactions with Clb2), and the APC-A mutant (block of its phosphorylation by Clb2-CDK),

simulations were performed by setting the corresponding initial concentrations of the promo-

ters, mRNAs and proteins to zero.
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First, the effects of modifications in cyclin-encoding genes were investigated. From ex-

periment, it is known that deletion of the C L B5/6 genes leads to shortening of the G2 / M

phases [13], and to less efficient accumulation of Clb2 protein that completely depends on the

remaining early cyclins Clb3-6. Presumably, impeded Clb2 accumulation is linked to defects

in the inactivation of the APCHct1-dependent proteolytic system [283]. Keeping in mind that

in the mitotic control module all early cyclins are lumped into ’Clb5’, simulation results for a

clb5� strain (Fig. 5.14b) agree with the experimentally observed inability to induce mitosis.

Contrary, in vivo the deletion of the proteolytic recognition signal (D box) from endogenous

CLB5 has little effect on the phenotype. In particular, its ability to exit from mitosis indicates

that Clb5 degradation is not an essential task of APCCdc20 [280]. Similar to the experimental

results, simulation of a C L B5�db mutant shows wild type behavior in mitosis, and inactivation

of the mitotic cyclin-dependent kinase at the end of mitosis (Fig. 5.14c). Later re-accumulation

of Clb2 protein in the predictions may be due to the lack of G1-specific control mechanisms in

the model. A removal of the destruction boxes in the C L B2 gene (C L B2�db) in vivo results

in a block of mitotic exit with higher Clb2 protein levels than in the hct1�sic1� double mu-

tant [280]. For the in silico mutant, a corresponding behavior can be observed (Fig. 5.14d; see

also panel l for the double mutant mentioned above).

Further sets of analyses of single-gene deletion mutants concerned components of the pro-

teolytic machinery as well as competitive inhibitors. As discussed in previous sections, the in-

activation of the HCT1 gene elicits only a minor phenotype, namely a moderate delay of mitotic

exit, and a continuous presence of Clb2 protein throughout the cell cycle [231,280] (Fig. 5.14e).

In contrast, deletion of the gene for its counterpart in the control of APC-dependent proteolysis,

CDC20, is lethal; strains harboring conditional alleles of CDC20 arrest in early mitosis [270].

The simulations reflect these observations as characterized by the continuous accumulation of

mitotic CDK activity over the time span considered (Fig. 5.14f), which indicates that the model

correctly captures the slight differences in the two parallel pathways for proteolytic control of

Clb2. Nearly wild-type control of mitosis was obtained for two strains with defects in Clb2-

CDK inhibitors, encoded by the SIC1 (Fig. 5.14g) and CDC6 (Fig. 5.14h) genes. In the latter

case, the effect of an N-terminally truncated protein that lacks the CDK interaction domain

(�47cdc6). Both simulations provide independent confirmations of the model [25]. Deletion

of the Cdc14 inhibitor Net1 (net1�) leads to a defect in the accumulation of Clb2 protein, and

strongly affects Clb2-CDK activity owing to active Hct1 and Sic1 [269], which corresponds to

the (qualitative) model-based prediction (Fig. 5.14i).

Next, a mutant strain was investigated, in which the APC can not be phosphorylated

(APC − A). Since Cdc20 preferably binds to phosphorylated APC, this set of mutations causes

a considerable delay (> 40 minutes) in the exit from mitosis in vivo [214]. Simulation results

contained in Fig. 5.14j show this prolongation of the phase in which Clb2-CDK is active, but a

complete inactivation of the kinase that would correspond to exit from mitosis is not predicted.

The fact that in the model, APC binding of Cdc20 entirely depends on the phosphorylation,
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while under the experimental conditions, residual binding to the modified APC can be observed

might account for this discrepancy. It is not clear, however, whether the mitotic control module

needs to be modified, or if phosphorylation sites remained in the experimental strain [214].

Another set of model predictions aimed at describing the behavior of double mutants. In

contrast to the lack of Clb2 accumulation in the clb5� strain, simulations showed functional

mitotic entry upon additional deletion of the HCT1 gene (Fig. 5.14k). The exit from mito-

sis is nevertheless impaired in the double mutant. The results are supported by experimental

observations which describe the cells as being able to carry out mitosis but having a reduced

viability [283]. The primary role of Clb5 in the initiation of mitosis, thus, seems to be the

inactivation of the proteolytic system for Clb2 [280]. Such predictions are not obvious since

theoretically the low Clb2-CDK activity present in S phase could drive Clb2 protein accumu-

lation via the positive auto-regulation of CLB2 transcription without the initial help of S phase

cyclin-dependent kinase.

An in silico hct1�sic1� mutant showed a behavior similar to cells with defective mitotic

exit network, namely relatively high levels of Clb2 protein and associated kinase activity after

initial degradation of the protein (Fig. 5.14l). This observation is consistent with the experi-

mental finding of a biphasic degradation of Clb2 protein owing to APCCdc20, and subsequent

APCHct1 action [282]. Phenotypically, synthetic lethality of the two gene deletions was de-

tected [231, 270]. Exit from mitosis as judged by disassembly of the mitotic spindle under

specific experimental conditions (Sic1-depleted cells), however, occurred albeit Clb2 protein

concentration, and the associated kinase activity remained constant [280]. At large, thus model

predictions and experimental results coincide, but closer investigation of this particular double

mutant seems necessary.

Contradictory experimental evidence also exists in the literature concerning the combina-

tion of sic1�with a deletion in the N-terminal domain of Cdc6 that is responsible for interac-

tions with Clb2-CDK. Whereas in [25], the double mutant was found to be inviable under all

conditions tested, the construction of viable strains in different backgrounds that had no ob-

servable defect in mitosis is reported as well [8]. This difference may result from side-effects

of the method chosen for strain construction in the first study [8]. Model predictions shown

in Fig. 5.14m support this interpretation. Moreover, when one compares the simulation results

for wild type, the sic1� mutant, and the double mutant, it becomes obvious that Cdc6, but not

Sic1 is responsible for the competitive inhibition of Clb2-CDK activity at the end of mitosis.

Independent biochemical analyses of the system reached the same conclusion [8].

To round off the evaluation of model predictions for cells released from α-factor arrest,

strains defective for transcriptional regulators were analyzed. It is noteworthy that for this

class of proteins neither experimental data, nor perturbed conditions were included in the set of

experiments used in parameter estimation. Inactivation of the forkhead transcription factor in

living cells ( f kh1/2�) leads to cessation of the oscillations in C L B2 and SW I 5 mRNA [295]

and to increased basal levels of transcripts when compared to the wild type in the G1 phase of the
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cell cycle [145]. Model predictions agree with these observations as judged by the concentration

of Clb2 protein (Fig. 5.14n). The essential function of Ndd1 for transcriptional activation of

the CLB2 gene cluster [162], however, is not adequately captured by the model (Fig. 5.14o).

Future refinements of the mitotic control module should therefore consider, for instance, the

qualitative behavior of the ndd1� strain in the course of model development. Finally, in vivo,

deletion of the transcriptional repressors YOX1 and YHP1 that are responsible for the control

of CDC20 and CDC6 gene expression has no effect on cell cycle progression in mitosis [198].

A similar qualitative behavior is predicted by the model (Fig. 5.14o), although the simulation

results clearly indicate an influence of the released transcriptional repression of CDC6 on the

dynamics of Clb2-CDK activity.

Tab. 5.3: Mitosis characteristics of in silico strains. Cases of monotonic increase of Clb2-CDK ac-

tivity are denoted by ’>’, giving the values at the end of a simulation. Timing of mitotic

exit (relative to wild type) was defined as the time point when decreasing Clb2-CDK activity

reached a threshold of 25% of the peak activity in wild type.

Strain max. Clb2-CDK rel. timing of

activity [nM] mitotic exit [min]
wild type 107 0

clb5� 2 –

C L B5�db 107 +14

C L B2�db > 507 –

hct1� 119 +8

cdc20� > 549 –

sic1� 120 +2

�47C DC6 107 +1

net1� 2 –

APC-A 177 –

clb5� hct1� 31 –

sic1� hct1� 123 –

sic1� cdc6� 119 +5

f kh1� f kh2� > 20 –

ndd1� > 18 –

yox1� yhp1� 75 -9

More quantitative characteristics of the in silico strains in terms of the peak CDK activity

and the timing of the exit from mitosis are compiled in Tab. 5.3. Comparison of the maximal

activities of mitotic CDK reveals that the mutants that turned out to have no phenotype in the

experiment, also showed little variation in this characteristic in the simulations. While under-

lining the robustness of the control system, these data indicate that a more exact quantification

of the kinase activity alone probably would not contribute much to a higher accuracy of model

parameters. It, however, seems sensible to closer investigate this parameter in the other mu-
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tants, because they show a considerable deviation from the wild type in this respect. The model

is in agreement with experimental observations in that for the viable mutants, with the excep-

tion of the APC-A strain discussed above, only a limited variation in the timing of mitotic exit

is observed. The order of magnitude of potential delays in the exit from mitosis, however, is

correctly predicted by the model, although the experimental data employed in model adaptation

do not provide clues on this quantitative feature. In vivo, for instance the �47cdc6 strain be-

haved identical to the wild type [25], whereas the cells lacking SIC1 and HCT1 showed slower

division by up to 10 min [256], and by 10–20 min [231], respectively.

An approach that is often employed in experimental studies addressing the properties of

regulators that are involved in the control of mitosis is to arrest the cells in anaphase with the

help of nocodazole, and to overexpress genes of interest in the arrested cells. Experiments of

this type were already used for model development, for instance, regarding the induction of

GAL1-10 SIC1 in wild type (see Fig. 5.11). To further assess the model’s prediction qualities,

similar in silico experiments were performed for cases of gene induction in wild type cells with

known outcome, which could also partially be corroborated by quantitative time courses of

mitotic cyclin concentration and associated kinase activity (Fig. 5.15).

Simulation results for the wild type show a steady state of high Clb2 protein concentration

and mitotic CDK activity in nocodazole-treated yeast cells. This situation corresponds to an

arrest owing to a blocked spindle assembly checkpoint (Fig. 5.15a). Independent model pre-

dictions were obtained for the induction of three positive regulators of mitotic exit, namely

GAL1-10 CDC14, GAL1-10 HCT1, and GAL1-10 CDC20, respectively (Fig. 5.15b–d). As ob-

served in vivo, overexpression of all three genes leads to exit of mitosis as indicated by the

degradation of Clb2 protein and inactivation of the associated kinase. The quantitative dynam-

ics of these processes show a moderate agreement between simulation results and experimental

data. It is important to note that (additional) parameters for mRNA degradation and for consti-

tutive proteolysis were set to standard values without further parameter estimation. Moreover,

identical induction characteristics were assumed for all constructs based upon the GAL1-10 pro-

moter. Qualitatively, however, model predictions agree with the experiments in that both show

a faster Clb2-CDK inactivation for GAL1-10 CDC20 overexpression than for GAL1-10 HCT1
(and GAL1-10 SIC1, see Fig. 5.15e) induction. The direct impact of Cdc20 on Clb2 proteoly-

sis, whereas phosphorylation by Clb2-CDK functions as a counter-acting process in the case of

Hct1-mediated protein degradation, may explain the distinct dynamics.

As discussed above, the importance of Cdc6 as a competitive inhibitor of mitotic CDKs cur-

rently is subject of controversies. CDC6 overexpression in Hct1-deficient, nocodazole-treated

yeast cells allows for exit from mitosis (see Fig. 5.11). This was interpreted to reveal an impact

of Cdc6 on mitotic progression [25]. An experimental study that received little attention so far,

however, showed that in the wild type genetic background, nocodazole-treated cells with GAL1-
10 CDC6 remain in the arrest after 3 hours of induction [64], which points to only a minor role

of Cdc6 in ’normal’ control of mitosis. Corresponding simulations favor the latter alternative,

because although induction of CDC6 leads to a reduction of the level of active mitotic kinase,
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Fig. 5.15: Model predictions: Gene induction in nocodazole-arrested cells. Gene over-expression

using the G AL1 − 10 promoter was simulated after a prolonged cell cycle arrest induced

by nocodazole. Arrows indicate the time point of gene induction. Simulation results for to-

tal Clb2 protein concentration (solid lines) and Clb2-CDK activity (dashed lines) are shown.

Experimental data from the sources specified below was included for Clb2 protein (solid cir-

cles) and mitotic CDK activity (open circles), respectively. Panels refer to a, wild type, and

to the over-expression of different genes involved in exit from mitosis, namely b, CDC14
[268][Fig. 7C, cdc15-1 strain, 3 copies of GAL1-10 CDC14], c, HCT1 [231][Fig. 7C], d,
CDC20 [270][Fig. 2C], e, SIC1 [6][Fig. 2, 5 copies of GAL1-10 SIC1], f, CDC6, g, CDC6 in

a sic1� background, and h, CDC6 carrying a N-terminal deletion (�47C DC6)). For com-

parison of model predictions to experimental data, quantification by digital image analysis of

western blots was employed in selected cases (panels b-d).

a steady state kinase activity is approached similar to that observed in MEN-deficient mutants,

that is, of cells that prove unable to exit from mitosis (Fig. 5.15f). Moreover, in silico overex-

pression of GAL1-10 CDC6 in nocodazole-treated yeast that lacks the SIC1 gene shows a similar

behavior. A possible indirect effect of Cdc6 on mitosis, namely by competition of this regu-

lator with Sic1 for the SCF-dependent proteolytic pathway is discussed in the literature [65].

The model, however, provides evidence for a potential role of Cdc6 in Clb2-CDK inhibition

that is independent of a ’primary’ inhibition through Sic1 (Fig. 5.15g). Overexpression of a

CDC6 mutant without the N-terminal domain responsible for the interaction with Clb2 that is

ineffective in suppressing mitotic CDK activity (Fig. 5.15h) further supports this conclusion.

Another experimental approach to the analysis of mitotic regulation in yeast consists in

arresting the cells with the help of the spindle poison nocodazole, and after resuspension of the

cells in nocodazole-free medium, to follow their recovery – or their inability to subsequently
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Fig. 5.16: Model predictions: Release from nocodazole arrest. In these simulations, cells were first

arrested by nocodazole, and at t = 0, withdrawal of the spindle poison was mimicked. Here,

the same symbols are used as in the preceding Fig. 5.15. The following strains were included

in this analysis: a, wild type [26] [supplementary Fig. 2], b, hct1� [26] [supplementary

Fig. 2], c, �47cdc6 [26] [supplementary Fig. 2], and d, CDC28-VF that has only ≈ 50% of

wild type Cdc28 kinase activity [213][Fig. 1].

complete mitosis. Arrest–release experiments had not been covered by the set of experiments

employed for model adjustment, and therefore could be expected to pose greater challenges for

model predictions. Dynamics of Clb2 protein content and associated kinase activity as available

in the literature are compared to simulation results in Fig. 5.16.

For generating the model predictions, it was assumed that the cells immediately resume a

normal cell cycle progression in terms of the timing of SAC, FEAR and MEN signals. The exact

dynamics in the real system, however, have not yet been characterized. Taking this uncertainty

into account, experimental data and simulation results agree reasonably well for the wild type

(Fig. 5.16a). The situation is quite different for the hct1� mutant (Fig. 5.16b), for which in the

experiment the level of Clb2 protein remained constant after the release [26], whereas in the

model, degradation of the protein occurs. In this context, it is unclear, why in the experimental

analysis obviously no proteolysis by the intact APCCdc20 pathway was detected as in other,

corresponding studies [282, 283].

Similarly, simulation results show only a slight delay in the exit of mitosis of a strain carry-

ing a N-terminally truncated CDC6 gene when compared to the wild type (Fig. 5.16c). In the
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in vivo data, however, a certain amount of Clb2 protein remains in the modified strain, which is

not predicted by the model. It therefore seems sensible to include this experimentally observed

behavior into a more broadened parameter estimation in order to elucidate whether the model,

in principle, could reflect these dynamics. As for the case of the hct1� strain analyzed by the

same group, however, it could be worthwhile to critically re-investigate the strain’s behavior

because unanticipated side-effects of the genetic manipulations can not be excluded (see above

for the discussion of the cdc6� strain).

In another arrest–release experiment, finally, a strain totally unrelated to the mutants con-

sidered hitherto was analyzed. A specific point mutation in the CDC28 gene encoding for the

cyclin-dependent kinase in yeast reduces the protein’s activity by ≈ 50% (CDC28-VF mutant).

This leads to a strong delay in recovery from the arrest in vivo [213], in contrast to the simula-

tion results. Although the qualitative behavior of the cells is captured by the model in all cases,

this series of model analyses, thus, points to potential inaccuracies in the model as well as to the

need for a closer experimental characterization of the strains. Both fields could warrant further

studies.

Altogether, the model for mitotic control was tested in several, independent ways. These

tests proved a correspondence between the model characteristics or behavior with experimental

observations in many cases, pointed to and could partially clarify inconsistencies in the liter-

ature in some cases, but also indicated failures of the mitotic control module in quantitatively

describing the cell cycle behavior under other conditions. Summarizing the results of the model

validation performed here, it seems justified to conclude that a mathematical model of relatively

high descriptive and predictive character was developed. Further, quantitative examination of

the model’s robustness and identifiability in order to gain insight into these structural character-

istics of complex regulatory networks through the example of mitotic control in yeast will be

described in the following section.

5.5 Robustness and identifiability

The analysis of robustness and identifiability of the mitotic control module will rely upon the

investigation of the system’s behavior when random perturbations to the parameters are applied,

and on approximations of the errors in the estimated model parameters, respectively. The latter

estimates have been termed ’parameter estimation accuracies’. The theoretical basis for their

calculation as well as the scope of the method will be briefly described in the following section.

5.5.1 Parameter estimation accuracy

Parameter estimation accuracy refers to an estimate of the errors associated with the model pa-

rameters when these have been determined from noisy experimental (or synthetic) data. Low

accuracies mean that the corresponding parameters may be varied to a larger extent - and still
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describe the reference trajectories - than is possible for parameters with high estimation accu-

racy (low associated error). Estimation accuracies as measures for identifiability, thus, combine

information on parameter sensitivities and on the errors in the data employed in parameter esti-

mation.

The estimation of model parameters basically relies on the comparison of model behavior

and the real system’s behavior. For this purpose, an identification functional (p) has to be

minimized by variation of parameter values. The formulation of this functional in turn needs

the error for each out of N measurements ei , which is the difference between measurement

xM(ti , u) and model x(ti , u, p) at a discrete time point ti . The differences are furthermore

weighted by the inverse of the standard deviation of the measurement Qi . The entire optimiza-

tion problem thus reads

(p) =
N∑

i=1

[
eT

i · Qi · ei
] → min

with ei = ei (ti , u, p) = x(ti , u, p) − xM(ti , u) . (5.5)

Parameter estimation is supposed to lead to a set of optimal parameters p∗. Assessing the

quality of this parameter set requires knowledge of the state sensitivities, which may be obtained

using the variation equation (4.4). The Fisher information matrix F(p∗) (FIM) [66] for the given

parameter values links model and experiment via the state sensitivities and the inverse of the

measurement covariance matrix C(ti )
−1, respectively, by

F(p∗) =
N∑

i=1

[
∂x
∂p

∣∣∣∣ T

p∗,ti
C−1(ti )

∂x
∂p

∣∣∣∣
p∗,ti

]
. (5.6)

Usually for identification purposes, the diagonal elements of the covariance matrix contain the

standard deviation of the measurement. They may, however, alternatively stem from the tra-

jectories generated at the nominal parameter values by assuming fixed absolute and relative

errors. This latter approach using ’synthetic’ data generated from the deterministic models will

be followed here for studying the mitotic control module. Alternatively, a stochastic model

version could be employed for obtaining more realistic, noisy data. In future studies, it will be

intriguing to compare these methods.

Under the condition that the parameter vector p∗ is an unbiased estimator of the true sys-

tem’s parameters p̂, the Cramér-Rao theorem establishes a lower bound for the covariance error

matrix according to

E
{
(p∗ − p̂)(p∗ − p̂)T } ≥ F(p∗)−1 (5.7)

with E {. . .} being the expected value of the difference between the sets of parameters. When

the inverse of the FIM (Cramér-Rao matrix) is denoted as

S(p∗) = F(p∗)−1 (5.8)
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and its elements as si, j , it directly follows that the lower bound for the estimation error σi of

each model parameter i is given by

σi ≥ √
si,i . (5.9)

In other words, the parameter estimation accuracies can readily be obtained from the main

diagonal of the inverse of the FIM. It has to be noted that, strictly speaking, this derivation

is based on the assumptions of an unbiased estimator as well as of additive and independent

Gaussian measurement errors. For practical purposes, however, the relation yields reasonable

approximations even if the first condition is violated, and the second condition holds for many

real systems [66].

One problem often encountered in applications is that sub–sets of parameters can not be

estimated using the given data. Additionally, combinations of parameters may exist that can not

be estimated together. In these cases, the FIM becomes (close to) singular. For the treatment

of this problem, an iterative ’top–down’ classification scheme has been proposed to identify

groups of parameters that can be estimated with a given accuracy (Fig. 5.17) [225]. Essentially,

it implies a coordinate transformation in parameter space using the eigenvalues and eigenvectors

of the FIM, and applying Eqns. 5.7–5.9 to the transformed system. A small eigenvalue indicates

that parameter perturbations in the direction of its associated eigenvector will have little effect

on model behavior. Consequently, the estimation accuracy in the direction of the eigenvector

will be poor. Parameters causing small eigenvalues are iteratively eliminated from the FIM, until

all remaining parameters fulfill the criterion of showing at least a given estimation accuracy.

This group of parameters may be estimated together; other groups may contain parameters of

similar accuracy, which, however, are linearly dependent on parameters in other groups and,

hence, can not be estimated in the same run.

A more detailed description of the theoretical foundations of the Fisher information matrix

is provided in [66, 225]. It should be kept in mind that eq. 5.9 can only provide a lower bound

for, not an exact solution to the problem of estimation accuracy. Furthermore, the results always

depend on the experimental (or synthetic) data involved. These restrictions associated with the

method will be of particular importance for judgements on the effects of additional experimental

data on the identifiability of the system that are to be described in the next section.

5.5.2 Systems analysis

Already the simulation studies of the mitotic control module pointed to a certain robustness of

the regulatory network. Deletion of many of the regulatory genes hardly affected the ability of

the network to control the initiation of mitosis, and the passage through this phase of the cell

cycle. For a systematic analysis of the module’s robustness, series of random perturbations were

applied to the model parameters as for the two models of the circadian clock in Drosophila (sec-

tion 4.5.3). Here, three key properties of mitotic control were assessed for the wild type as well

as for two in silico mutant strains: the timing and magnitude of maximal Clb2-CDK activity as
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Fig. 5.17: Analysis of parameter estimation accuracies using the Fisher information matrix. The

scheme illustrates the top-down classification approach proposed in [225].

indicators for the induction of mitotic processes, and the timing of mitotic exit measured by the

decline of this activity below a pre-defined threshold. Again, scalar and vectorial perturbations

were applied, respectively, in order to allow for statistical evaluation of the (relative) impact of

variations in parameter values on the model behavior (Fig. 5.18; see legend for details of the

method).

In all cases, in which only a single model parameter was varied by up to 10–fold, the

wild type shows remarkably robust behavior for all three characteristics of mitotic control

(Fig. 5.18a–c). In particular, deviations in the time at which mitotic entry and exit occur re-

main on the order of a few minutes in most simulations. Similar observations are made for

changes in the maximal Clb2-CDK activity. In 1.5% of the simulations, however, perturbation

of a single model parameter entrained complete failure of the control system, indicating major

sources of fragility. The behavior of the sic1� mutant was indistinguishable from wild type,

which may provide evidence for a recent proposition that, under otherwise ’normal’ conditions,

the regulator Sic1 mainly functions in the control of G1, and not of mitosis [8]. Slightly higher

sensitivity of the hct1� strain – in particular regarding the exit from mitosis – is consistent with

the important, yet dispensable role of that protein in the degradation of Clb2 [231, 280].
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Fig. 5.18: Perturbation analysis of the mitotic control module. Characterization of the model behav-

ior after application of normally distributed random perturbations to the reference parameter

sets for wild type and mutants in the range of 0.1pk . . . 10pk either to a single, randomly

selected parameter (a–c), or to each of the parameters (d–f). In parallel, the in silico wild

type (filled circles), the hct1� mutant (open circles), and the sic1� mutant (squares) were

analyzed. In all cases, n = 1, 000 simulations were carried out in order to determine the

cumulative frequencies of deviations in the model behavior. a,d, Absolute differences in the

timing of maximal Clb2-CDK activity of the perturbed system relative to the unperturbed

system (�tmax ). b,e, Deviation of maximal Clb2-CDK activity (�CDK-Act.max ). c,f, Effect

of the perturbations on the relative timing of mitotic exit (�tE O M ) as defined by the time of

crossing a threshold of 25% of the maximal activity in the reference wild type.

Considerably higher absolute perturbations of the system through the application of random

variations in all model parameters, as would be expected, result in a high frequency of cases

in which the in silico cells are unable to control mitotic processes. Interestingly, regarding the

characteristics of mitotic control analyzed, no gradual degradation of this ability is observed.

Shifts towards highly imprecise control were rarely encountered. In contrast, only a few per-

turbed systems operate largely similar to the parent strains, whereas in most cases, the system

entirely fails. Gene deletions for SIC1 or HCT1, again, do not change this behavior drastically.

It is tempting to speculate that in vivo, catastrophic breakdown after accumulation of severe

damages performs a physiological function (at the population level) by preventing these cells

from replicating.

As described in detail in section 5.5.1, the parameter estimation accuracy σ quantitatively

captures the sensitivity of the system’s behavior towards variances in the (optimal) parameters.

It can therefore be used to determine the system’s identifiability on the basis of the given data,

and provide an indicator for robustness against parameter perturbations. Here, the inverses of
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the estimation accuracies σ−1 of the mitotic control module were calculated using the same

experimental data as in the parameter optimization. In Fig. 5.19, bars indicate an estimation

accuracy of σ ≤ 100%, whereby higher values stand for better estimates. Within the set of
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Fig. 5.19: Parameter estimation accuracies for the mitotic control module. Vertical bars show the

inverse parameter estimation accuracies of all estimated model parameters, for which an ac-

curacy below the critical value of σcri t. = 100% was obtained via analysis of the Fisher infor-

mation matrix employing all experimental data sets. The vertical line indicates 1% estimation

accuracy.

parameters, the estimation accuracies vary to a large extent, but the variation is not random.

Some of the parameters reach an estimation accuracy of ≤ 10 %, that is, they are highly sensi-

tive. These parameters seem to be clustered, as the parameter numbers are ordered according to

the genes and proteins included in the network. Most of the highly sensitive parameters are in-

volved in the description of Cdc14 (parameter numbers 1–30) and of Clb2-CDK (31–90), which

represent the central phosphatase and kinase activities for the control of mitosis, respectively.

High sensitivity, however, is not linked to all of the interactions of these proteins, but only to

specific ones, for example the biologically essential inhibition of Cdc14 by Net1. The same

observation can be made for the parameters that could not be estimated within the given accu-

racy range. Regarding the system’s robustness, these findings provide evidence for the concept

of highly optimized tolerance (HOT). Robustness in biology, according to the theory, does not

exclude that specific parts of the system are extremely sensitive and, thus, can lead to overall

fragility [28, 29].

For the practical purpose of conducting experiments to identify a regulatory module, the

parameter estimation quality gives clues on the information content of the experiments. In

Fig. 5.20a, the cumulative distribution of the number of parameters with a given accuracy in

terms of quantitatively describing the measurements is shown as a function of this (critical) ac-

curacy. Parameters with an accuracy of σ > 100 % were not considered, so that this distribution

does not reach the value of one for the limit of σ → ∞.
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Fig. 5.20: Comparison of estimation accuracies for wild type and set of perturbed conditions. a,
Cumulative distribution of parameter estimation accuracies based on the experimental data

for wild type alone (filled circles), the set of perturbed conditions such as gene deletion mu-

tants used in parameter estimation (open circles), and for the combined data (squares). b,
Comparison of estimation accuracies for the parameters that occurred in both the analysis of

the wild type (σW T ), and of the set of mutants / externally influenced conditions (σPerturbed),

respectively. The diagonal indicates perfect match between the two data sets.

Approximately 50% of the model parameters could be estimated within a margin of ± 90%,

that is, within less than two orders of magnitude when all experimental data was taken into

consideration (Fig. 5.20a). Given the size of the mathematical model (360 state variables and

191 adjustable parameters) compared to the size of the data set available (120 data points for

altogether 9 different aggregate system variables), it comes as no surprise that not all parameters

were identifiable. For instance, recent theoretical analysis indicates an upper limit of 2n p + 1

error-free measurements to be required for the exact identification of n p parameters in smooth

ODE systems of arbitrary structure [245]. For the mitotic control module, parameter estimation

would have to rely on (at most) ≈ 400 data points. The experimental data basis used in this

study, thus, carried much more information on the particular system of mitotic control in yeast

than is expected from simply comparing data quantity to model complexity.

Beyond the set of identifiable parameters, two major reasons may explain the failure of pa-

rameter estimation within acceptable error bounds. The remaining parameters could require

more experiments to be determined, for example, the measurement of additional states, or dif-

ferent perturbation conditions. The possibility of enhancing parameter identification by means

of improved data quantity as well as quality will be investigated in detail later in this section.

An alternative explanation is that certain parameters can generally not be estimated, because

the reactions they are used to describe are insignificant for the dynamic behavior of the system.

Note that the mitotic control module contains a set of hypothetical reactions based on suspected

network connections, or on alternative mechanisms. Determination of parameter sensitivities

could yield information on regulatory interactions that are not likely to operate in vivo, or on

candidates for the elimination of model parts for model reduction. Although they represent
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promising lines of further research, these topics reach beyond the central questions addressed

herein, and therefore will not be further considered.

By variation of the set of experimental data used in determination of the Fisher information

matrix, calculation of parameter estimation accuracies allows for an assessment of the infor-

mation content of sub–sets of the data provided. This will necessarily be an approximation,

because it can not be guaranteed that the estimated parameter values would be identical for dif-

ferent sets of underlying data. In a first step, the wild type, and the set of perturbed conditions

were analyzed separately (Fig. 5.20a). The distribution for the perturbed conditions shows a

higher absolute number of parameters that could be identified within the given error bounds,

although for the wild type, the set of measured variables was considerably larger than for the

latter set of experimental data (9 vs. at maximum 4 variables). A similar number of data points,

however, was available in both cases. Interpretation of the data in Fig. 5.20a leads to the con-

clusion that the sets of parameters rendered identifiable by the two sets of experiments show

considerable overlap. Further combination of the data results in higher identifiability than is

achievable by either set alone. Interestingly, partially higher accuracies for the set of estimates

based on perturbed operation modes of the system are observed when compared to the wild type.

Closer analysis of the parameters occurring in both sets reinforces this notion (Fig. 5.20b). In

approximately half of the cases, lower estimation errors were obtained for the set of perturbed

conditions. For identification of the mitotic control module, thus, this analysis points to the

inclusion of more mutants or otherwise ’un-normal’ operation modes of the system in parame-

ter estimation as a promising way to increase model quality and, finally, to allow for model

verification.

For an increased reliance on perturbed conditions to be a viable strategy for reverse–

engineering, it is of interest, to which extent a particular choice of mutants may have influenced

the analysis results described above. For this purpose, parameter estimation accuracies were

determined separately for each experiment. Compared to the rich data set provided for the wild

type, the other experiments show a relatively high, and rather homogeneous information con-

tent (Fig. 5.21a). According to the overall number of parameters that can be determined for the

given accuracies, data for the externally forced system – resulting in a behavior different from

that observed in wild type – does not prove advantageous over the data for mutants showing no

particular phenotype. An intuitively appealing notion that highly informative experiments have

to involve a distinct phenotype is furthermore contradicted by the fact that neither for yielding

the best estimate for a particular parameter (Fig. 5.21b), nor for a high degree of identifiability

per data used (Fig. 5.21c), this has to be the case. Exclusive identification of some parameters

on the basis of the wild type data (Fig. 5.21b), however, shows that a broader set of measured

variables can be essential for parameter identification, at least in the case studied here.

These considerations directly relate to the question, which of the measured variables were

most responsible for the estimation of model parameters for the mitotic control module. Sim-

ilarly to the investigation of the information content of the experiments, only single variables
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Fig. 5.21: Information content of single experiments. a, Relative number of identifiable parameters.

Filled bars indicate the share of model parameters with an estimation accuracy of ≤ 10%
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estimation as denoted on the ordinate. b, Relative number of parameters, for which only in

a specific out of all experiments available an estimation accuracy of σ ≤ 100% (filled bars),
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parameters as in a, but normalized by the number of measured data per experiment.
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Fig. 5.22: Information content according to measured variables. Distribution of parameter estima-

tion accuracies separated by types of experimental data provided in model adjustment (see

ordinates). The color-coding scheme corresponds to Fig. 5.21. a, Absolute and b, relative

(with respect to the number of measurements) shares of identifiable parameters.
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such as concentrations of a particular regulator protein were used to determine the parameter

estimation accuracies for the entire set of experiments. Analysis results are shown in Fig. 5.22.

Here, it is important to note that the quantity as well as the quality of the data available for the

different (aggregated) states of the system largely differed. For instance, whereas the concen-

tration of the mitotic cyclin Clb2 and / or its associated kinase activity could be obtained from

the experimental literature for nearly all conditions considered, only partial time courses were

provided for variables such as the total concentration of the Cdc20 protein. This fact is largely

reflected by the distribution of the share of identifiable parameters with respect to the exper-

imental data types (Fig. 5.22a). The absolute numbers of parameters that can be determined

using all the variables – again – indicate a considerable overlap of the information accessible

through them, as for the case of the experiments. More detailed analysis reveals that this overlap

primarily results in better estimates for the parameter values (data not shown). For the purpose

of identification, however, this observation could imply that full identification will become in-

creasingly difficult when adding new measured variables, but also that it could be necessary to

determine every detail experimentally when relying only on a very limited set of experiments.

These alternatives will be discussed later in the section.

In addition to these general considerations, it is obvious that the data on the dynamics of

complex formation between the Cdc14 phosphatase and the inhibitor Net1 used in parameter

estimation hardly gave any clues on the internal working principles of the system in quantita-

tive terms. In sharp contrast, the parameters associated with these two regulators in the model

belonged to those with lowest estimation errors (see Fig. 5.19). Providing more accurate time

courses for this regulatory mechanism, thus, could be a suitable approach towards enhanced

estimation of model parameters. Additionally, the normalized data shown in Fig. 5.22b indicate

a relatively high information content of the mRNA measurements when compared to the (ab-

solute) protein concentrations except for Sic1. Two factors may contribute to this observation,

namely total mRNA concentrations being a more detailed variable in the system because of the

only limited degrees of freedom of distributing the total amount of these species between dif-

ferent complexes (as opposed to the highly interacting proteins). Measurements of transcripts

could also cover a large proportion of the parameters involved in transcriptional regulation. Ad-

ditional mRNA measurements, however, do not necessarily result in better identification of the

parameters for the mitotic control module (see below).

The fact that only few selected (aggregate) states of the system are described by the exper-

imental data, and the differences in the information content of these data should result in an

uneven distribution of parameter identifiability across the model. In order to investigate, which

parts of the mitotic control module could best (or least) be identified based on the available

data, parameters were classified by the cell cycle regulators or checkpoint mechanisms they

are associated with. All kinetic parameters for reactions that involve a particular regulator’s

gene, mRNA or protein formed a parameter sub-set for this regulator. Obviously, the resulting

parameters sub-sets are not disjointed. For interactions between regulators, or for all reactions
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using complex species as educts or products, parameters were assigned to more than one class

by this method. Characteristics of the distributions of parameter estimation accuracies for these

parameters sets are shown in Fig. 5.23.
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Fig. 5.23: Parameter identifiability classified by cell cycle regulators or checkpoints. Parameters

that affect elementary reactions in which the cell cycle regulators or checkpoint functions

participate at the gene, mRNA or protein level, were grouped together. This procedure re-

sulted in overlapping parameter sets because, for instance, parameters describing the complex

formation between two proteins belong to two sub-sets. The number of parameters with ac-

curacies below the defined critical values is shown relative to the size of the sub-set of model

parameters for each regulator or checkpoint. The dashed line indicates the average ratio of

parameters with estimation accuracy σ ≤ 100%.

As expected, the shares of identifiable parameters with respect to the regulators participat-

ing in mitotic control differ considerably. Contrary to intuition, however, the degree to which

a particular sub-aspect of the control system could be identified does not reflect the types of

measurements provided for estimating the parameters. Transcriptional regulation (via Yox1,

Ndd1, Swi5, and the forkhead transcription factors), for instance, shows higher reliability of

parameter values than the regulatory mechanisms employing the mitotic cyclin Clb2 as the best

represented regulator in the experimental data set. Qualitatively, it is interesting to note that

highly connected nodes in the regulatory network such as Cdc14, the cyclins, and general cellu-

lar components (APC, SCF, RNA polymerase and ribosomes) are in general under–represented

in the set of identifiable parameters. The predominance of hypothetical mechanisms accumu-

lated in these parts of the model gives one explanation for this finding; by systematic model

reduction, one could, thus, aim at improving parameter identification. It seems more likely,

however, that a closer characterization of the detailed dynamics of the highly connected regula-

tor may require equally detailed measurements or perturbations for the differentiation between

the properties of parallel or competing regulatory mechanisms. An average identifiability of the
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classified parameters that is significantly higher than for the unique set of all model parameters

(see Fig. 5.20), however, is consistent with an interpretation that ’central’ parameters, for ex-

ample, describing maximal turnover rates of Clb2–CDK and Cdc14 may nevertheless be highly

sensitive. Regarding the checkpoint mechanisms that are represented in the model at only a

rudimentary level, similar observations can be made. There, moreover, it may be necessary to

provide for a more elaborate representation of the control mechanisms to allow for a direct refer-

ence to experimental observations. This should preferably be achieved by connecting modules

that contain detailed mathematical submodels for the signaling pathways.

The investigation of model identifiability so far relied on the experimental data basis used

for model adjustment. It indicates an incomplete and fragmented capacity to validate the model

with respect to the accuracy of parameter values, despite the unexpectedly high information

content of the experimental data available. Already, the analysis indicated that the considera-

tion of additional perturbed conditions of the mitotic control network may improve parameter

identifiability. Conducting detailed experimental analyses of the complex network requires con-

siderable effort and time. Therefore, it will be of importance to systematically devise strategies

for efficient improvement of parameter identification.

In principle, the analysis of parameter estimation accuracies can be employed for this pur-

pose, namely by investigating the effects of providing additional data, or data of higher qual-

ity [66]. For assessment of such effects, however, several restrictions apply. Sensitivity analyses

using the Fisher information matrix require that parameter values are globally optimal with re-

spect to the minimization of the identification functional. Changes in the experimental data

basis for the calculations will tend to violate this condition. Additional experimental data or,

more precisely, estimates of measurement errors employed in constructing the FIM, moreover,

will have to be derived from simulations that could not be validated in every detail. The aim

of the following studies, hence, will be to derive qualitative conclusions on valid strategies for

experimental design in an iterative cycle of experimental and theoretical investigations [137].

An obvious strategy for gathering more detailed information on the system consists in mea-

suring additional system properties, namely time courses of other variables than the few ones

currently forming the reference data set. As a basis for judgments on different strategies for

improvement of parameter estimation, it was of interest to first assess the hypothetical case

that all state variables (concentrations of species) of the model were accessible experimentally.

Here, simulation data were employed to mimic the additional experimental data. For each

species concentration occurring in the mitotic control module, time courses were generated for

all experimental conditions used for parameter estimation, yielding data and associated error

estimates for all time points for which ’real’ measurements existed. The effects of the assumed

complete observability of the system’s dynamic behavior on parameter identifiability are shown

in Fig. 5.24.

Despite the fact that under these conditions, the data basis was enriched by several thousand

additional in silico measurements, it was not possible to identify all model parameters. As dis-
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Fig. 5.24: Effect of observability of all system states on identifiability. The experimental data sets for

wild type and mutants were augmented by simulation results for all state variables, using all

time points provided in the original time courses. Absolute and relative measurement errors

for the data generated in silico were assumed to be identical to those of the experimental

data. These ’artificial’ data sets were employed in the determination of parameter estimation

accuracies for the wild type alone (open circles), or the wild type plus perturbed conditions

(squares). Additionally, the distribution of estimation accuracies for the original data set (filled

circles) is shown.

cussed above, dependencies of parameters as well as irrelevance of the introduced hypothetical

mechanisms may render parameter values inaccessible; these intrinsic obstacles to identification

will have to be dealt with by model analysis and subsequent systematic model reduction. The

results obtained by means of the scenario of complete observability, however, point to pertur-

bations of the systems as an important factor influencing the quality of parameter identification.

In terms of the share of parameters that could be identified, the results for the wild type alone

proved to be inferior to those obtained by using the sparse original data set for wild type and

mutants. As would be expected, additional consideration of the perturbed conditions lead to

an improved outcome. This complies with the earlier observation of the unexpectedly high

information content of the (combined) behavior of the perturbed system. In the following, be-

sides analyzing the effects of data quantity and quality, also the impact of including additional

mutants for assessing parameter identifiability will be investigated.

From the viewpoint of experimental biology, simultaneous measurement of all system vari-

ables at the levels of genes, mRNAs, proteins and their complexes is a highly artificial scenario.

The determination of total concentrations of proteins and messenger RNAs, however, could be

carried out with established experimental methods. One could, for instance, make use of specif-

ically tagged protein variants [44, 86] and of DNA micro-arrays [33, 246] for the quantification

of protein and mRNA concentrations, respectively. Here, simulation data for each single total

protein or mRNA concentration were employed to separately calculate parameter estimation

accuracies for the original data augmented by each of the in silico variables. Compared to the

original data set, however, including additional data on total protein or mRNA concentrations
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Fig. 5.25: Additionally measured total regulator concentrations and identifiability. Similar to

Fig. 5.24, simulation data for each of the total concentrations of the regulators indicated was

used to broaden the original data basis. For comparison, results for the original data (with the

total number of identifiable parameters denoted by the dashed line) are included.

does not significantly increase the identifiability of the mitotic control system under the con-

ditions considered (Fig. 5.25). Notably, few of the additional data lead to a better estimation

of model parameters with respect to their number or accuracy. Measurements of the concen-

trations of the transcriptional regulator Yox1, and of the Clb2–CDK inhibitor Cdc6 would lead

to the highest improvements in parameter identification, but still result in few parameters that

could be estimated with a higher confidence than by using only the original data set. For the

case of the mitotic control module, it can, hence, be concluded that the most evident approach

to an improvement in parameter estimation – including additional measurements for the most

accessible system variables – will presumably not be a viable strategy.

Instead of addressing the quantity of experimental data in order to enhance identification of

the mitotic control module, one could aim at improving the data quality. Two possible ways

that lead to higher accuracy of time course data were investigated, namely diminishing the mea-

surement errors, and increasing the sampling rate. In the first case, the error estimates for the

original experimental data were systematically modified. For the second case, additional data

for all originally measured variables were generated at time points corresponding to measure-

ment intervals that were varied within experimentally feasible limits.

Regarding the impact of measurement accuracy on identifiability, results from sensitivity

analysis comply with the expectation that diminishing the measurement error will result in

better estimates of parameter values (Fig. 5.26a). Parameter estimation accuracies, however,

indicated that this influence is rather moderate. Through a four–fold reduction of the measure-

ment error for the reference data set, the share of model parameters with a lower bound for the
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Fig. 5.26: Data quality and parameter identification. a, Variation of measurement error using the es-

timates of absolute and relative errors divided by the factors shown at the ordinate to change

the relative data accuracy. Accordingly, entries for one correspond to the reference data. b,
Simulation of increased sampling rate for measurements. Simulation results were employed

to generate ’synthetic’ data for all measured variables of the reference data set. Values on the

ordinate indicate the time intervals for the sampling of additional data; ’-’ refers to the deter-

mination of parameter estimation accuracies based on the original experimental data alone.

estimation error of σ ≤ 100% would remain below 60%. But this would imply, for instance,

that the relative error in the determination of protein concentrations could be lowered from 20%

as assumed for the original data to only 5% by employing more precise experimental analy-

sis methods and / or increasing the number of replicates. When also taking into account the

effect of lowering the measurement accuracy, it becomes evident that the efforts required for

improving the identification of parameters in the mitotic control module by means of higher

accuracy of data acquisition alone may outweigh the potential benefits. The analysis of the

effects of higher–resolution time–course data (with otherwise unchanged data accuracy) yields

qualitatively similar results (Fig. 5.26b). There, it has to be noted that decreasing the measure-

ment intervals to 5 mins. implies an approximately ten–fold increase of the number of protein

or mRNA analyses to be carried out (≈ 1,200 vs. the original 120 data points). To summa-

rize, with respect to the efforts required to obtain experimental data of higher quality, neither

of the two approaches seems to be feasible to pursue the complete identification of the kinetic

parameters in the yeast mitotic control, and model validation.

Given the influence of systematic perturbations in the mitotic control network on identifia-

bility observed in several instances, finally, the effect of considering the behavior of additional

mutant strains was analyzed. For this purpose, a set of mutant strains was chosen, for which

model predictions were in agreement with the experimentally observed behavior, namely the

C L B5�db, cdc20�, sic1�, and �47cdc6 strains (see section 5.4.2, Fig. 5.14). In order to

allow for easy reproduction of the model-based investigations in real experiments, only the to-

tal concentration of the mitotic cyclin Clb2, and its associated CDK activity were derived from

simulation results by sampling in time intervals of 30 min. Altogether, 64 in silico measurement

data were generated. Fig. 5.27 shows aggregate indicators of parameter identifiability for the

cases of the single mutants, and for the combination of this data with the original data set.
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Fig. 5.27: Analysis of additional mutant strains. For the mutant strains indicated, time course data

for total Clb2 protein concentration and for Clb2–CDK activity were obtained at sampling

intervals of �t =30 min. Parameter estimation accuracies were determined employing either

the single in silico experiments, the set of the newly generated mutant data (’All additional

mutants’), or its combination with the original data basis for parameter estimation (’Combined

data’).

When the qualities of parameter identification based on the new mutant data are considered

separately, the information content of these experiments varies to a large extent. Interestingly,

differences in the behavior of the strains resulting from the specific defects in the regulatory net-

work can not be related to this outcome in an obvious manner. For instance, all mutants except

for the cdc20� strain proceed through mitosis with nearly wild–type kinetics (see Fig. 5.14).

Similar to the case of choosing appropriate additional variables to be measured, one approach

could consist in a systematic, yet time–consuming analysis of all relevant mutants in order to

refine the model. Preferably, however, experimental design based on sensitivity analyses as

shown here would be performed. Consistent with previous results, combining the new data en-

ables one to identify a relatively high number of parameters when compared to the original data

set. Again, however, the set of parameters thus rendered identifiable largely overlaps with the

one already established, because in total, an experimental data basis broadened by the additional

perturbed conditions increases the share of identifiable parameters by only a few per cent.

An inherent problem for all strategies tested with respect to their ability to lead to better

identification of parameters in the mitotic control module, thus, consists in the increasingly dif-

ficult accessibility of parameter values beyond a ’core’ parameter set covered by all approaches.

Increasing the number of measured variables, measurements of higher accuracy, as well as the

consideration of the basic behavior of the system under an enlarged set of perturbed conditions

brought about similar, small improvements in the accuracy of parameter estimates. For all cases,

it has to be taken into account that the methods of sensitivity analysis employed here only allow

for an approximate assessment of the effects that additional data would have on the system’s

identifiability.
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Consistently, however, it was shown that perturbations applied to the mitotic control net-

work allow for identification of model parameters at relatively high accuracy. Regarding the

experimental feasibility, improvements in identification through, for instance, data acquisition

for additional mutant strains can be achieved by using only a very limited amount of informa-

tion on the system’s behavior in terms of the measured variables and the number of data points.

Systematic investigation of the already available sets of yeast single and double deletion mu-

tants [127, 255, 279], or applying methods for externally induced perturbations of the mitotic

control network will therefore likely be most efficient for model identification and validation.

This does not preclude the combination with other methods for better characterization of the

control system such as system–wide measurements or high sampling rates, if experimentally

feasible. Systematic model analysis and model reduction where appropriate could then close

the iterative cycle between experimentation and theory in order to finally obtain a validated,

detailed representation of mitotic control in yeast.

5.6 Conclusions

The central motivation for a detailed model-based analysis of the mitotic control network in

yeast was to examine the relation of robustness and identifiability of complex regulatory mod-

ules, using cell cycle regulation as an example system. A mathematical model for this regula-

tory module was developed on the basis of a modular modeling approach that aims at a close

representation of the mechanisms operating in the biological system. Several simplifying as-

sumptions nevertheless needed to be introduced in order to constrain the model’s complexity.

Compared to previous models [32, 248], the mitotic control module provides a higher resolu-

tion of this subsystem. For instance, parallel regulatory pathways in transcriptional control and

in competitive inhibition of the mitotic cyclin–dependent kinase were included. Checkpoint

mechanisms and important, recently discovered control mechanisms for CDC20 transcriptional

regulation [181] and Cdc14 release [271] will have to be considered in future versions.

Estimation of the model parameters from selected experimental data with only few assump-

tions on absolute concentrations was intended to narrow the usual gaps between model and

experiment [105]. Model validation relied on a set of independent criteria, pointing to a high

degree of descriptive quality, internal consistency, and prediction capabilities of the model. For

instance, a variety of different experimentally observed behaviors of the system could be repro-

duced with the mitotic control module, employing a unique set of model parameters. Discrep-

ancies between model predictions and experimental data nevertheless occurred and will provide

starting points for further model improvement.

Direct perturbation studies as well as analysis of parameter estimation accuracies clearly

showed robustness of the network’s behavior owing, for example, to the operation of redun-

dant pathways. There exist, however, few spots of high sensitivity in the model. The analysis

therefore strongly supports the concept of highly optimized tolerance, i.e. of the co-existence
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of robustness and fragility in cellular control as opposed to uniform insensitivity of the net-

work. Parameter estimation accuracies additionally showed that the information content of the

scarce quantitative data available was much higher than generally expected. For the complex

model, approximately half of the 191 kinetic parameters could be estimated from time course

data for few variables and experimental conditions. Analysis also proved that the combination

of data from the unperturbed regulatory module in wild type with data from mutants or other-

wise disturbed cells was essential for this outcome. The existence of less accessible parameters

that do not occur in the largely overlapping sets of identifiable parameters for the experiments

employed, however, provides a challenge.

With reservations, sensitivity analyses allow for judgments on the ’best’ (combination of)

experimental approaches for further identification, and subsequent experiment design [66].

Comparison of different scenarios indicated the need to apply such tools for the purpose-driven

selection of experiments. For instance, if a characterization of the dynamics of all species repre-

sented in the model was experimentally feasible, system–wide measurement of the wild type’s

behavior alone would be useless for improved parameter identification. Sensitivity analysis

highlighted the use of even rough characterizations of the system’s behavior under internally

or externally perturbed conditions as the most efficient strategy for reverse–engineering of the

complex regulatory network. Such an approach will have to be accompanied by model anal-

ysis and model reduction. In an iterative process encompassing theory and experimentation,

hence, it seems possible to develop realistic models of complex cellular control circuits based

on limited quantitative data, and despite robust network behavior.
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Robustness refers to the ability of a system to maintain specific functionalities despite external

or internal perturbations. It is thought to be a key property of living systems. Current ap-

proaches to the analysis of robustness in cellular networks, however, either provide high-level

abstractions that are barely backed up by specific examples from biology, or involve the se-

lective investigation of small example networks, which hardly allows for generalizations that

apply to systems of realistic complexity. In particular, the relation between structural and func-

tional properties of complex cellular networks with respect to robustness remains largely un-

clear. Therefore, the motivating question for this work was whether model-based analysis of

representative cellular sub–systems could help to further elucidate general design principles un-

derlying robustness in biological systems, and implications of this property for the ability to

understand complex cellular networks at the system level.

For this purpose, three largely different examples of cellular metabolic and regulatory net-

works were analyzed, using different theoretical approaches. Structural network analysis of the

central metabolism of E. coli relied on network decomposition via elementary flux modes. For

published mathematical models of the circadian clock in Drosophila as an example for small

genetic circuits that are able to show complex dynamic behavior, systematic analyses of pa-

rameter sensitivities were performed. Finally, mathematical modeling for a complex regulatory

network involved in S. cerevisiae cell cycle regulation – the mitotic control system – allowed to

address the influence of robustness on identifiability. For E. coli metabolism and yeast mitotic

control, mathematical models had to be developed prior to robustness analysis. In those case,

a variety of approaches for model validation was pursued in order to ensure that the models

reflect the most important aspects of the systems’ structures and behaviors.

All three systems investigated showed robust behavior upon internal or external disturbances

with respect to their core functionalities such as sustaining bacterial growth, providing an ac-

curate time–tracking mechanism, and switching between cell cycle phases, respectively. A re-

curring theme encountered in the analysis of these networks was the combination of few highly

sensitive model parts with a majority of largely insensitive parts. Hence, independent observa-

tions provide strong evidence for the concept of highly optimized tolerance, stressing a highly

structured character of sensitivities that results in a co-existence of robustness and fragility in

cellular networks [28, 29]. For the bacterial metabolic network, these results were obtained

from purely structural analysis. In the case of the circadian oscillators, a certain conservation

of parametric sensitivities across operating regimes could be detected. Robustness and fragility
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properties of cellular networks, hence, may largely be determined by the network structure. This

can in turn allow for a more general identification of structural features of biological systems

that confer robustness.

Current hypotheses on mechanisms that cause robustness in biology include redundancy of

components or pathways, feedback control, as well as modular and hierarchical organization

of cellular networks [45]. Structural analysis indicated that a primary cause for robustness in

metabolic networks is pathway redundancy; redundant components such as iso–enzymes seem

to provide degrees of freedom for cellular regulation, while not contributing significantly to

the stability of steady–state operation. Systematic comparison of feedback control structures in

circadian clock models revealed an advantage of more complex over simpler regulatory struc-

tures with respect to the robustness of the physiological function the oscillators are intended to

provide. As for advanced engineered systems, however, increased complexity of the circadian

rhythm generator may make the system more vulnerable towards unexpected disturbances.

Closer analysis of the relations between network structure, function and control substanti-

ated the conjecture that hierarchical organization is an important design feature of biological

networks affecting, among other system properties, their robustness [148, 203]. Theoretical

models for the control of metabolic genes explain the available experimental data only when a

hierarchy of control levels is taken into account. A combination of results from pathway ana-

lysis of the example network suggests that a hierarchy incorporating regulation at the genetic

and the flux level allows for finding a trade-off between efficiency of network operation, and

robustness in terms of pathway diversity. In circadian clock models, parameters linked to the

general regulatory apparatus of the cell such as general transcription turned out to be the most

important points of sensitivity, with this effect being more pronounced in the more complex

control structure investigated. These observations suggest a hierarchical design principle of cel-

lular regulation, namely to ‘export’ a specialized control circuit’s points of fragility to global,

well-controlled regulatory systems to enhance overall robustness as well as to integrate cellular

functionality. As a drawback, if the central components are affected by perturbations, the entire

system collapses. A similar, deliberate concentration of fragilities is used in technical systems

such as jet fighters. There, the most sensitive electronic components are installed directly under

the pilot’s seat.

Robustness of biological systems can render their quantitative description difficult, in par-

ticular regarding kinetic parameters. Two opposite approaches to the identification problem in

general are currently favored: experimental determination of (most) parameters separately in
vitro [152], or large–scale perturbation studies and parameter identification based on compre-

hensive genomic and proteomic data [119]. For the complex mitotic control system in budding

yeast, however, model–based analysis indicated an unexpectedly high information content of

the scarce quantitative data available. A combination of data from the unperturbed regulatory

network with data obtained from the system perturbed, for instance, by gene deletions was es-

sential. An evaluation of strategies for further model identification – in particular regarding less
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accessible parameters – favored the determination of time courses for (few) key variables in

the systematically perturbed system. Additional detailed measurement of parameters may be

required, but with respect to experimental feasibility and effort, this strategy could allow for an

efficient model development for complex cellular networks, even when they are robust.

The general approach followed in this work was a model-based analysis of cellular sub–

systems with respect to their robustness properties, underlying mechanisms, and consequences

of the robustness for their system–level understanding. The systems were chosen as well–

characterized representatives for classes of biological networks in order to derive more general

design principles of cellular networks. The scope of analyses by few example systems nec-

essarily is limited, but this drawback seems to be unavoidable. Sufficiently detailed models

and analyses are a prerequisite to enable one to make testable and realistic predictions. Model

development and / or selection, however, sought to minimize the complexity to be handled in

order to investigate (aspects of) robustness in cellular networks. Applying the approaches to, for

instance, genome–scale metabolic network representations [205], or to more realistic models of

the circadian clock in mammals [77, 154] would be next logical steps. Analysis at multiple

levels, using a combination of methods as pursued herein, may ultimately lead to a deeper un-

derstanding of complex cellular networks [22]. With this in mind, the convergence of results on

design principles for achieving robustness, and the potential of efficient iterative combination

of experimentation and theory seem to be encouraging.



ZUSAMMENFASSUNG

Robustheit bezieht sich auf die Fähigkeit eines Systems, spezifische Funktionen trotz externer

oder interner Störungen aufrecht zu erhalten. Sie wird als eine zentrale Eigenschaft biolo-

gischer Systeme angesehen. Gegenwärtige Ansätze zur Analyse von Robustheit in zellulären

Netzwerken bieten jedoch entweder Abstraktionen auf hoher Ebene, die kaum durch spezifi-

sche Beispiele aus der Biologie belegt sind, oder sie beruhen auf der beispielhaften Unter-

suchung kleiner Netzwerke, was kaum Generalisierungen ermöglicht, die auch auf Systeme

realistischer Komplexität anwendbar sind. Insbesondere das Verhältnis von strukturellen und

funktionellen Eigenschaften komplexer zellulärer Netzwerke in Bezug auf deren Robustheit

ist größtenteils unverstanden. Aus diesem Grund bestand die Ausgangsfrage dieser Arbeit

darin, inwiefern eine modellbasierte Analyse repräsentativer zellulärer Teilsysteme dabei helfen

könnte, grundlegende Designprinzipien, die der Robustheit biologischer Systeme zugrunde

liegen, weiter aufzuklären und welche Auswirkungen diese Eigenschaft auf unsere Fähigkeit

hat, komplexe zelluläre Netzwerke auf der Systemebene zu verstehen.

Mit dieser Zielsetzung wurden drei stark unterschiedliche Beispiele zellulärer metaboli-

scher und regulatorischer Netzwerke analysiert. Eine strukturelle Netzwerkanalyse des Zen-

tralstoffwechsels von E. coli basierte auf der Zerlegung des Netzwerkes mit Hilfe elementarer

Flussmoden. Für publizierte mathematische Modelle des circadianen Oszillators in Drosophila
als einem Beispiel für kleine genetische Schaltkreise, die komplexes dynamisches Verhalten

zeigen können, wurden systematische Analysen von Parametersensitivitäten durchgeführt. Die

mathematische Modellierung eines komplexen Regulationsnetzwerkes, das in die Zellzyklus-

regulation von S. cerevisiae involviert ist – das Kontrollsystem der Mitose – erlaubte schließlich,

den Einfluss der Robustheit auf die Identifizierbarkeit des Systems zu behandeln. Für den Stoff-

wechsel von E. coli und für die Mitosekontrolle in Hefe mussten zunächst mathematische Mod-

elle als Basis für die Robustheitsanalyse entwickelt werden. In beiden Fällen wurde eine Vielfalt

von Ansätzen zur Modellvalidierung verfolgt, um abzusichern, dass die Modelle die wichtigsten

Aspekte von Struktur und Verhalten der Systeme abbilden.

Alle drei untersuchten Systeme zeigten bei externen oder internen Störungen ein robustes

Verhalten bezüglich ihrer zentralen Funktionen wie der Aufrechterhaltung des bakteriellen

Wachstums, der Bereitstellung eines präzisen Zeitgebers und der sequentiellen Steuerung von

Zellzyklusphasen. Ein bei der Analyse dieser Systeme wiederkehrendes Thema war die Kombi-

nation von wenigen, hoch sensitiven Modellbestandteilen mit einer Mehrheit weitgehend insen-

sitiver Teile. Unabhängige Beobachtungen erbrachten damit starke Indizien für das Konzept der
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”hochgradig optimierten Toleranz”, das einen hoch–strukturierten Charakter von Sensitivitäten

hervorhebt, die zu einer Co–Existenz von Robustheit und Fragilität in zellulären Netzwerken

führt [28, 29]. Für das bakterielle Stoffwechselnetzwerk wurden diese Ergebnisse durch rein

strukturelle Analysen erhalten. Im Falle der circadianen Oszillatoren konnte eine gewisse

Erhaltung der relativen Parametersensitivitäten unabhängig von der Operationsweise des Sys-

tems festgestellt werden. Robustheits- und Fragilitätseigenschaften von zellulären Netzwerken

können daher im wesentlichen durch die Netzwerkstruktur bestimmt sein. Damit eröffnet sich

die Möglichkeit einer generelleren Identifikation von Struktureigenschaften biologischer Sys-

teme, die Robustheit verleihen.

Gegenwärtige Hypothesen über Mechanismen, die Robustheit in der Biologie verursachen,

umfassen die Redundanz von Komponenten oder Stoffwechsel- und Signalwegen, Regelung,

sowie modulare und hierarchische Strukturierung zellulärer Netzwerke [45]. Strukturanaly-

sen wiesen darauf hin, dass ein Hauptgrund für die Robustheit metabolischer Netzwerke die

Redundanz von Stoffwechselwegen ist; redundante Komponenten wie Isoenzyme stellen Frei-

heitsgrade für die zelluläre Regulation bereit, ohne aber in signifikanter Weise zur Stabilität des

Betriebs im stationären Zustand beizutragen. Ein systematischer Vergleich von Regelungsstruk-

turen in Modellen circadianer Zeitgeber zeigte einen Vorzug komplexerer gegenüber einfacherer

Regulationsstrukturen bezüglich der Robustheit der intendierten physiologischen Funktion der

Oszillatoren. Wie bei hochentwickelten technischen Systemen jedoch, wird eine erhöhte Kom-

plexität der Generatoren für circadiane Rhythmen ihre Anfälligkeit gegenüber unvorhergese-

henen Störungen verstärken.

Eine genauere Analyse der Beziehungen zwischen Netzwerkstruktur, -funktion und

Regelung erhärtete die Hypothese, dass eine hierarchische Strukturierung ein wichtiges Design-

merkmal biologischer Netzwerke ist, das – neben anderen Systemeigenschaften – ihre Robust-

heit beeinflusst [148,203]. Theoretische Modelle für die Kontrolle metabolischer Gene erklären

die verfügbaren experimentellen Daten nur, wenn eine hierarchische Regelung berücksichtigt

wird. Eine Kombination von Ergebnissen aus der strukturellen Analyse des Beispielnetzwerkes

legt nahe, dass eine Hierarchie, die Regulation auf den Ebenen der Gene und der Stoffwech-

selflüsse umfasst, eine Abstimmung zwischen der effizienten Betriebsweise des Netzwerkes

und der Robustheit hinsichtlich der Vielfalt von Stoffwechselwegen erlaubt. In den Modellen

für circadiane Oszillatoren erwiesen sich Parameter, die mit dem generellen Regulationsappa-

rat der Zelle verknüpft sind, als die wichtigsten Punkte für Sensitivität des Verhaltens, wobei

dieser Effekt in der komplexeren der untersuchten Kontrollstrukturen ausgeprägter war. Diese

Beobachtungen deuten auf ein Prinzip des hierarchischen Designs der zellulären Regulation

hin, nämlich, die Fragilitäten eines speziellen Regelkreises in Richtung der globalen, gut kon-

trollierten Regulationssysteme zu ’exportieren’, um gleichzeitig die Robustheit des Gesamt-

systems zu erhöhen und die Integration zellulärer Funktionalitäten zu ermöglichen. Der mit

einer derartigen Strategie verbundene Nachteil ist, dass das gesamte System kollabiert, sobald

die zentralen Komponenten durch Störungen beeinträchtig sind. Eine ähnliche, absichtliche
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Konzentration von Fragilitäten wird in technischen Systemen wie Kampfflugzeugen verwen-

det. Dort werden die empfindlichsten elektronischen Komponenten direkt unter dem Pilotensitz

installiert.

Die Robustheit biologischer Systeme kann ihre quantitative Beschreibung erschweren, ins-

besondere was die kinetischen Parameter betrifft. Um das generelle Identifikationsproblem

zu adressieren, werden zur Zeit zwei gegensätzliche Ansätze favorisiert: die einzelne experi-

mentelle Bestimmung aller oder der meisten kinetischen Parameter in vitro [152] oder großan-

gelegte Perturbationsstudien und Parameterschätzung auf der Basis umfassender genomischer

und proteomischer Daten [119]. Für das komplexe mitotische Regulationssystem der Hefe

deutete die modellbasierte Analyse jedoch auf einen unerwartet hohen Informationsgehalt der

wenigen verfügbaren quantitativen Daten hin. In diesem Zusammenhang erwies sich die Kom-

bination von Daten aus dem ungestörten System mit denen aus dem, z.B. durch Gendele-

tionen gestörten als essentiell. Eine Bewertung möglicher Strategien für die weitergehende

Modellidentifikation – insbesondere was die weniger leicht zugänglichen Parameter betrifft –

favorisierte die Bestimmung von Zeitreihen weniger Schlüsselvariablen in dem systematisch

gestörten System. Zusätzliche detaillierte Messungen kinetischer Parameter können sich als

notwendig erweisen. Im Hinblick auf die experimentelle Machbarkeit und den damit verbun-

denen Aufwand kann diese Strategie eine effiziente Modellentwicklung für komplexe zelluläre

Netzwerke ermöglichen, auch wenn diese robust sind.

Der generelle Ansatz, der in dieser Arbeit verfolgt wurde, bestand in der modellbasierten

Analyse zellulärer Subsysteme bezüglich ihrer Robustheitseigenschaften, zugrundeliegenden

Mechanismen und der Konsequenz von Robustheit für das Verständnis auf der Systemebene.

Drei Systeme wurden als gut untersuchte Repräsentanten verschiedener Klassen biologis-

cher Netzwerke ausgewählt, um generellere Designprinzipien zellulärer Netzwerke ableiten zu

können. Die Aussagekraft von Analysen auf der Basis weniger Beispielsysteme ist notwendi-

gerweise limitiert, aber dies scheint unvermeidbar, da hinreichend detaillierte mathematische

Modelle und Analysen eine Grundvoraussetzung für die Generierung testbarer und realistischer

Prädiktionen darstellen. Modellentwicklung und / oder -auswahl zielten jedoch darauf ab, die

zu behandelnde Komplexität zu minimieren, um (Aspekte von) Robustheit in zellulären Netz-

werken zu untersuchen. Die Anwendung der hier beschriebenen Methoden auf, zum Beispiel,

genomweite metabolische Netzwerkrepräsentationen [205] oder auf realistischere Modelle von

circadianen Oszillatoren [154] wären die nächsten logischen Schritte. Die Analyse auf unter-

schiedlichen Ebenen unter Verwendung einer Kombination von Methoden, wie sie hier ver-

folgt wurde, könnte schließlich zu einem tieferen Verständnis komplexer zellulärer Netzwerke

führen [22]. Vor diesem Hintergrund scheinen die Konvergenz der erzielten Resultate zu De-

signprinzipien für Robustheit in zellulären Systemen, sowie das Potential einer effizienten, iter-

ativen Kombination von Experimenten und Theorie ermutigend.
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[80] K.-U. Fröhlich and F. Madeo. Apoptosis in yeast - a monocellular organism exhibits altruistic

behaviour. FEBS Lett., 473:6–9, 2000.

[81] B. Futcher. Microarrays and cell cycle transcription in yeast. Curr. Opin. Cell Biol., 12:710–15,

2000.

[82] B. Futcher, G. Latter, P. Monardo, C. McLaughlin, and J. Garrels. A sampling of the yeast pro-

teome. Mol. Cell. Biol., 19(11):7357–68, 1999.

[83] J.-M. Galan and M. Peter. Ubiquitin-dependent degradation of multiple F-box proteins by an

autocatalytic mechanism. Proc. Natl. Acad. Sci. U.S.A., 96:9124–29, 1999.

[84] T. Gardner, C. Cantor, and J. Collins. Construction of a genetic toggle switch in Escherichia coli.
Nature, 403:339–42, 2000.



141

[85] M. Geymonat, S. Jensen, and L. Johnston. Mitotic exit: the Cdc14 double cross. Curr. Biol.,
12:R482–84, 2002.

[86] S. Ghaemmaghami, W.-K. Huh, K. Bower, R. Howson, A. Belle, N. Dephoure, E. O’Shea, and

J. Weissman. Global analysis of protein expression in yeast. Nature, 425:737–41, 2003.

[87] E. Gilles. Control - key to better understanding of biological systems. Automatisierungstechnik,

50(1):7–17, 2002.

[88] A. Gilman and A. Arkin. Genetic ”code”: representations and dynamical models of genetic com-

ponents and networks. Annu. Rev. Genomics Hum. Genet., 3:341–69, 2002.

[89] M. Ginkel, A. Kremling, T. Nutsch, R. Rehner, and E. Gilles. Modular modeling of cellular

systems with ProMoT/Diva. Bioinformatics, 19:1169–76, 2003.

[90] M. Girvan and M. Newman. Community structure in social and biological networks. Proc. Natl.
Acad. Sci. U.S.A., 99(12):7821–26, 2002.

[91] P.-Y. Goh, H. Lim, and U. Surana. Cdc20 contains a destruction-box but, unlike Clb2, its proteoly-

sis is not acutely dependent on the activity of the anaphase-promoting complex. Eur. J. Biochem.,
267:434–49, 2000.

[92] A. Goldbeter. A model for circadian oscillations in the Drosophila period protein PER. Proc. R.
Soc. London Ser. B, 261:319–324, 1995.

[93] A. Goldbeter. Biochemical oscillations and circadian rhythms: the molecular basis of periodic
and chaotic behaviour. Cambridge Univ. Press, 1996.

[94] A. Goldbeter. Computational approaches to cellular rhythms. Nature, 420:238–45, 2002.

[95] D. Gonze, J. Halloy, and A. Goldbeter. Robustness of circadian rhythms with respect to molecular

noise. Proc. Natl. Acad. Sci. USA, 99(2):673–678, 2002.

[96] B. Goodwin. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul., 3:425–38,

1965.

[97] N. Grandin, A. de Almeida, and M. Charbonneau. The Cdc14 phosphatase is functionally asso-

ciated with the Dbf2 protein kinase in Saccharomyces cerevisiae. Mol. Gen. Genet., 258:104–16,

1998.
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A. E. COLI: STOICHIOMETRIC MODEL AND
EXPERIMENTAL DATA

Tab. A.1: Network structure for E. coli central metabolism. Oxidized reduction equivalents (NAD,

NADP) and ADP were ommitted for simplicity.

Identifier Stoichiometry / reversibility Gene Enzyme / reaction description

Substrate uptake:
Glc PTS up PEP → G6P + Pyr ptsG PTS system, glucose-specific

IIBC component

Glc ATP up ATP → G6P glk glucokinase

Succ up → Succ Succinate uptake

Glyc up → Glyc Glycerol uptake

O2 up → O2 Oxygen uptake

N up → N Nitrogen (ammonia) uptake

S up 4 ATP + 4 NADPH → S Sulfur (SO4) uptake

Ac up → Ac Acetate uptake

Central carbon metabolism:
G6P::F6P G6P ↔ F6P pgi glucosephosphate isomerase

F16P::F6P F16P → F6P fbp fructose-bisphosphatase

F6P::F16P F6P + ATP → F16P pfkA 6-phosphofructokinase I

F16P::T3P F16P ↔ DHAP + G3P fba fructose-bisphosphate aldolase,

class II

DHAP::G3P DHAP ↔ G3P tpiA triosephosphate isomerase

G3P::DPG G3P ↔ DPG + NADH gapA glyceraldehyde-3-phosphate de-

hydrogenase A

DPG::3PG DPG ↔ 3PG + ATP pgk phosphoglycerate kinase

3PG::2PG 3PG ↔ 2PG gpmA phosphoglyceromutase 1

2PG::PEP 2PG ↔ PEP eno Enolase

PEP::PYR PEP → Pyr + ATP pykAF pyruvate kinase I / II

Pyr::PEP Pyr + 2 ATP → PEP ppsA phosphoenolpyruvate synthase

PYR::AcCoA Pyr → AcCoA + NADH + CO2 aceEF pyruvate dehydrogenase

AcCoA::Cit AcCoA + OxA → Cit gltA citrate synthase

Cit::Icit Cit ↔ ICit acnB aconitate hydrase B

ICit::alKG ICit ↔ alKG + NADPH + CO2 icdA isocitrate dehydrogenase, spe-

cific for NADP+
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Identifier Stoichiometry / reversibility Gene Enzyme / reaction description

alKG::SuccCoA alKG → SuccCoA + NADH +

CO2

sucAB 2-oxoglutarate dehydrogenase

SuccCoA::Succ SuccCoA ↔ Succ + ATP sucCD succinyl-CoA synthetase

Succ::Fum Succ → Fum + QuiH2 sdhC succinate dehydrogenase, cy-

tochrome b556

Fum::Succ Fum + QuiH2 → Succ frdA fumarate reductase, anaerobic

Fum::Mal Fum ↔ Mal fumA fumarase A ; aerobic isozyme

Mal::OxA Mal ↔ OxA + NADH mdh malate dehydrogenase

ICit::Glyox ICit → Succ + Glyox aceA isocitrate lyase

Glyox::Mal AcCoA + Glyox → Mal glcB malate synthase G

G6P::PGlac G6P ↔ PGlac + NADPH zwf glucose-6-phosphate dehydroge-

nase

AcCoA::Adh AcCoA + NADH ↔ Adh adhE CoA-linked acetaldehyde dehy-

drogenase

Adh::Eth Adh + NADH ↔ Eth adhE CoA-linked acetaldehyde dehy-

drogenase

PGluc::Rl5P PGluc → Rl5P + NADPH + CO2 gnd Gluconate-6-phosphate dehydro-

genase, decarboxylating

Rl5P::X5P Rl5P ↔ X5P rpe D-ribulose-5-phosphate 3-epi-

merase

Rl5P::R5P Rl5P ↔ R5P rpiA ribosephosphate isomerase, con-

stitutive

Transket1 R5P + X5P ↔ G3P + S7P tktAB transketolase 1 / 2 isozyme

Transaldo G3P + S7P ↔ F6P + E4P talB transaldolase B

Transket2 E4P + X5P ↔ F6P + G3P tktAB transketolase 1 / 2 isozyme

OxA::PEP OxA + ATP → PEP + CO2 pckA phosphoenolpyruvate carboxyki-

nase

PEP::OxA PEP + CO2 → OxA ppc phosphoenolpyruvate carboxy-

lase

AcCoA::AcP AcCoA ↔ AcP pta Phosphotransacetylase

AcP::Ac AcP ↔ ATP + Ac ackA acetate kinase

Pyr::Form Pyr → AcCoA + Form pflB formate acetyltransferase 1

Pyr::Lac Pyr + NADH ↔ Lac ldhA fermentative D-lactate dehydro-

genase, NAD-dependent

Glyc::Glyc3P ATP + Glyc → Glyc3P glpK glycerol kinase

Mal::Pyr Mal → Pyr + NADH + CO2 sfcA NAD-linked malate dehydroge-

nase (malic enzyme)

Glyc3P::DHAP Glyc3P → DHAP + QuiH2 glpD sn-glycerol-3-phosphate dehy-

drogenase (aerobic)

DHAP::Glyc3P DHAP + NADH → Glyc3P gpsA glycerol-3-phosphate dehydroge-

nase (NAD+)
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Identifier Stoichiometry / reversibility Gene Enzyme / reaction description

Pyr::Ac Pyr → QuiH2 + CO2 + Ac poxB pyruvate oxidase

Ac::AcCoA 2 ATP + Ac → AcCoA acs acetyl-CoA synthetase

Energy and reduction equivalents:
NADHDehydro NADH ↔ QuiH2 + 2 H ex nuo NADH dehydrogenase I

Oxidase QuiH2 + 0.5 O2 → 2 H ex cyd cytochrome d terminal oxidase

TransHydro NADH + H ex ↔ NADPH pntA pyridine nucleotide transhydro-

genase, alpha subunit

ATPSynth 3 H ex ↔ ATP atp membrane-bound ATP synthase

ATPdrain ATP → Surplus ATP production

Monomer and precursor synthesis:
Chor Synth 2 PEP + E4P + ATP + NADPH →

Chor

Chorismate synthesis

PRPP Synth R5P + 2 ATP → PRPP 5-Phosphoribosyl-1-

pyrophosphate synthesis

MTHF Synth ATP + NADPH ↔ MTHF 5-10-Methylen-tetrahydrofolate

synthesis

Ala Synth Pyr + Glu → alKG + Ala Alanine synthesis

Val Synth 2 Pyr + NADPH + Glu → alKG +

CO2 + Val

Valine synthesis

Leu Synth 2 Pyr + AcCoA + NADPH + Glu

→ alKG + NADH + 2 CO2 + Leu

Leucine synthesis

Asn Synth 2 ATP + N + Asp → Asn asnA asparagine synthetase A

Asp synth OxA + Glu → alKG + Asp aspC aspartate aminotransferase

Asp::Fum Asp → Fum + N aspA aspartate ammonia-lyase (aspar-

tase)

Asp::AspSAld ATP + NADPH + Asp → Asp-

SAld

Aspartatesemialdehyde synthesis

AspSAld::HSer NADPH + AspSAld → HSer Homoserine synthesis

Lys Synth di am pim → CO2 + Lys Lysine synthesis

Met Synth SuccCoA + MTHF + HSer + Cys

→ Pyr + Succ + N + Met

Methionine synthesis

Thr Synth ATP + HSer → Thr Threonine synthesis

Ile Synth Pyr + NADPH + Glu + Thr →
alKG + CO2 + N + Ile

Isoleucine synthesis

His Synth ATP + PRPP + Gln → alKG + 2

NADH + His

Histidine synthesis

Glu synth alKG + NADPH + N → Glu gdhA NADP-specific glutamate dehy-

drogenase

Gln Synth ATP + N + Glu → Gln glnA Glutamine synthetase

Pro Synth ATP + 2 NADPH + Glu → Pro Proline synthesis
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Identifier Stoichiometry / reversibility Gene Enzyme / reaction description

Arg Synth AcCoA + 4 ATP + NADPH + CO2

+ N + Asp + 2 Glu → alKG + Fum

+ Ac + Arg

Arginine synthesis

Trp Synth Chor + PRPP + Gln + Ser → G3P

+ Pyr + CO2 + Glu + Trp

Tryptophan synthesis

Tyr Synth Chor + Glu → alKG + NADH +

CO2 + Tyr

Tyrosine synthesis

Phe Synth Chor + Glu → alKG + CO2 + Phe Phenylalanine synthesis

Ser Synth 3PG + Glu → alKG + NADH +

Ser

Serine synthesis

Gly Synth Ser → MTHF + Gly Glycine synthesis

Cys Synth AcCoA + S + Ser → Ac + Cys Cysteine synthesis

rATP Synth 5 ATP + CO2 + PRPP + 2 MTHF

+ 2 Asp + Gly + 2 Gln → 2 Fum

+ NADPH + 2 Glu + rATP

Synthesis of ATP for RNA

rGTP Synth 6 ATP + CO2 + PRPP + 2 MTHF

+ Asp + Gly + 3 Gln → 2 Fum +

NADH + NADPH + 3 Glu + rGTP

Synthesis of GTP for RNA

rCTP Synth ATP + Gln + rUTP → Glu + rCTP Synthesis of CTP for RNA

rUTP Synth 4 ATP + N + PRPP + Asp →
NADH + rUTP

Synthesis of UTP for RNA

dATP Synth NADPH + rATP → dATP Synthesis of ATP for DNA

dGTP Synth NADPH + rGTP → dGTP Synthesis of GTP for DNA

dCTP Synth NADPH + rCTP → dCTP Synthesis of CTP for DNA

dTTP Synth 2 NADPH + MTHF + rUTP →
dTTP

Synthesis of TTP for DNA

mit FS Synth 8.24 AcCoA + 7.24 ATP + 13.91

NADPH → mit FS

Average fatty acid synthesis

UDPGlc Synth G6P + ATP → UDPGlc UDP-glucose synthesis

CDPEth Synth 3PG + 3 ATP + NADPH + N →
NADH + CDPEth

CDP-ethanolamine synthesis

OH myr ac Synth 7 AcCoA + 6 ATP + 11 NADPH

→ OH myr ac

Hydroxy-myristoic-acid synthe-

sis

C14 0 FS Synth 7 AcCoA + 6 ATP + 12 NADPH

→ C14 0 FS

Synthesis of C(14:0) fatty acid

CMP KDO Synth PEP + R5P + 2 ATP →
CMP KDO

CMP-2-keto-3-deoxy octonic

acid synthesis

NDPHep Synth 1.5 G6P + ATP → 4 NADPH +

NDPHep

NDP-heptose synthesis

TDPGlcs Synth F6P + 2 ATP + N → TDPGlcs TDP-glucosamine synthesis
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Identifier Stoichiometry / reversibility Gene Enzyme / reaction description

UDP NAG Synth F6P + AcCoA + ATP + Gln →
Glu + UDP NAG

UDP-N-acetylglucosamine syn-

thesis

UDP NAM Synth PEP + NADPH + UDP NAG →
UDP NAM

UDP-N-acetylmuramine synthe-

sis

di am pim Synth Pyr + SuccCoA + NADPH + Asp-

SAld + Glu → alKG + Succ +

di am pim

Diaminopimelate synthesis

ADPGlc Synth G6P + ATP → ADPGlc Glycogen monomer synthesis

Polymer synthesis (mmol metabolite / g polymer), stoichiometry according to [264]:
Prot Synth 39.9455 ATP + 0.88727 Ala +

0.15818 Cys + 0.41636 Asp +

0.45455 Glu + 0.32 Phe + 1.0582

Gly + 0.16364 His + 0.50182 Ile

+ 0.59273 Lys + 0.77818 Leu

+ 0.26546 Met + 0.41636 Asn

+ 0.38182 Pro + 0.45455 Gln

+ 0.51091 Arg + 0.37273 Ser

+ 0.43818 Thr + 0.73091 Val +

0.09818 Trp + 0.23818 Tyr →
Prot

Protein synthesis

RNA Synth 1.2488 ATP + 0.80488 rATP +

0.99024 rGTP + 0.61436 rCTP +

0.66341 rUTP → RNA

RNA synthesis

DNA Synth 4.4129 ATP + 0.7968 dATP +

0.8194 dGTP + 0.8194 dCTP +

0.7968 dTTP → DNA

DNA synthesis

Lip Synth 1.4176 Glyc3P + 2.8352 ATP +

1.4176 Ser + 2.8352 mit FS →
Lip

Lipid synthesis

LPS Synth 0.46176 UDPGlc + 0.69118 CD-

PEth + 0.69118 OH myr ac +

0.69118 C14 0 FS + 0.69118

CMP KDO + 0.69118 NDPHep +

0.46176 TDPGlcs → LPS

Lipopolysaccharide synthesis

PepGly Synth 5.52 ATP + 2.208 Ala + 1.104

Glu + 1.104 UDP NAG + 1.104

UDP NAM + 1.104 di am pim →
PepGly

Peptidoglycan synthesis

Glyc Synth 6.16 ADPGlc → Glyc Glycogen synthesis
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Identifier Stoichiometry / reversibility Gene Enzyme / reaction description

Biomass production (g polymer / g biomass), stoichiometry for scenario 1, Tab. 3.1:
Mue 0.64 Prot + 0.185 RNA + 0.03

DNA + 0.1 Lip + 0.015 LPS +

0.015 PepGly + 0.015 Glyc →
Biomass

Biomass production

By-product excretion:
CO2 ex CO2 ↔ Carbon dioxide exchange

Lac ex Lac → Lactate excretion

Eth ex Eth → AdhE CoA-linked acetaldehyde dehy-

drogenase

Ac ex Ac → Acetate excretion

Form ex Form → FdhF formate dehydrogenase

Tab. A.2: Abbreviations for metabolites and cellular compounds.

Abbreviation Compound Abbreviation Compound

G6P Glucose-6-phosphate PRPP 5-Phosphoribosyl-1-

pyrophosphate

F6P Fructose-6-phosphate MTHF 5-10-Methylen-tetrahydrofolate

F16P Fructose-1,6-bisphosphate AspSAld Aspartate-4-semialdehyde

DHAP Dihydroxyacetone-phosphate HSer Homoserine

Glyc3P Glycerol-3-phosphate Ala Alanine

G3P Glyceraldehyde-3-phosphate Cys Cysteine

DPG Diphosphoglycerate Asp Aspartate

3PG 3-Phosphoglycerate Glu Glutamate

2PG 2-Phosphoglycerate Phe Phenylalanine

PEP Phosphoenolpyruvate Gly Glycine

Pyr Pyruvate His Histidine

AcCoA AcetylCoA Ile Isoleucine

Cit Citrate Lys Lysine

ICit Iso-Citrate Leu Leucine

alKG alpha-Ketoglutarate Met Methionine

SuccCoA Succinyl-CoA Asn Asparagine

Succ Succinate Pro Proline

Fum Fumarate Gln Glutamine

Mal Malate Arg Arginine

OxA Oxaloacetate Ser Serine

Glyox Glyoxylate Thr Threonine

R5P Ribose-5-phosphate Val Valine

Rl5P Ribulose-5-phosphate Trp Tryptophan

E4P Erythrose-4-phosphate Tyr Tyrosine
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Abbreviation Compound Abbreviation Compound

X5P Xylulose-5-phosphate rATP ATP for RNA synthesis

S7P Sedoheptulose-7-phosphate rGTP GTP for RNA synthesis

Glucn Gluconate rCTP CTP for RNA synthesis

KetoPGluc 2-Keto-3-desoxy-6-

phosphogluconate

rUTP UTP for RNA synthesis

ATP Adenosinetriphosphate dATP ATP for DNA synthesis

NADH NADH dGTP GTP for DNA synthesis

NADPH NADPH dCTP CTP for DNA synthesis

QuiH2 Ubiquinone, reduced dTTP TTP for DNA synthesis

H ex extraplasmic protons mit FS Average fatty acid

O2 Oxygen UDPGlc UDP-glucose

CO2 Carbon dioxide CDPEth CDP-ethanolamine

N Ammonia OH myr ac Hydroxy-myristoic-acid

S Sulfur (SO4) C14 0 FS C(14:0) fatty acid

Glyc Glycerol CMP KDO CMP-2-keto-3-deoxy

octonic acid

AcP Acetyl-phosphate NDPHep NDP-heptose

Ac Acetate TDPGlcs TDP-glucosamine

Form Formate UDP NAG UDP-N-acetylglucosamine

Lac Lactate UDP NAM UDP-N-acetylmuramic acid

Adh Acetaldehyde di am pim Diaminopimelate

Eth Ethanol ADPGlc Glycogen monomer

Chor Chorismate

Tab. A.3: Mutant phenotypes and experimentally determined gene expression ratios. Mutant phe-

notype data was based on a list compiled previously [58]; additional entries were made for

deletions of the following genes: pta [31]. pte [164], pps, scfA and mdh [263]. Experimen-

tally determined transcript ratios for growth on acetate vs. growth on glucose were taken

from published microarray data [186] . For growth on glycerol vs. growth on glucose [187],

an estimate of the average standard deviation for the measurement obtained in a companion

study [185] was used to calculate 95% confidence intervals assuming normal distribution of

the errors.

Gene Mutant phenotype: growth on Transcript ratios

Glc Gly Suc Ac Ac / Glc Gly / Glc

ptsG + 0.21 - 0.44 0.15 - 0.45

glk + 0.74 - 1.6 -

pgi + + + 0.57 - 1.4 0.75 - 1.05

fbp + – – – 2.5 - 4.3 0.75 - 1.05

pfkA – 0.45 - 0.78 0.65 - 0.95

fba – 0.4 - 0.62 0.85 - 1.15
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Gene Mutant phenotype: growth on Transcript ratios

Glc Gly Suc Ac Ac / Glc Gly / Glc

tpiA – – – – 0.65 - 1.4 0.75 - 1.05

gapA – – – – 0.3 - 0.69 1.05 - 1.35

pgk – – – – 0.46 - 0.77 1.05 - 1.35

gpmA 0.84 - 4 0.75 - 1.05

eno – – – – 0.34 - 0.86 0.65 - 0.95

pykAF + 0.59 - 1.06 2.05 - 2.35

ppsA + + + + 8.6 - 21 0.75 - 1.05

aceEF 0.27 - 0.64 0.55 - 0.85

gltA – – 3.5 - 6.8 3.35 - 3.65

acnB – – 3.6 - 13.1 1.75 - 2.05

icdA – – 1.3 - 2.5 1.05 - 1.35

sucAB + – – 1.2 - 3.2 3.55 - 3.85

sucCD 1.8 - 4.7 -

sdhC + – – 1.2 - 2.5 1.25 - 1.55

frdA + + + 0.77 - 2.2 0.85 - 1.15

fumA 2.2 - 5.7 2.45 - 2.75

mdh + + + – 2.4 - 6.2 1.75 - 2.05

aceA + + – 17.4 - 32.8 1.35 - 1.65

glcB + + + – 9.33 - 31.6 -

zwf + + + 0.41 - 0.77 1.05 - 1.35

adhE 0.09 - 0.26 1.35 - 1.65

adhE 0.09 - 0.26 1.35 - 1.65

gnd + 0.43 - 0.84 0.85 - 1.15

rpe + + + + 0.78 - 1.4 0.95 - 1.25

rpiA – – – – 0.71 - 1.8 1.05 - 1.35

tktAB 0.88 - 2 0.95 - 1.25

talB 0.69 - 1.3 0.85 - 1.15

tktAB 0.88 - 2 0.95 - 1.25

pckA 4.9 - 14.4 2.85 - 3.15

ppc o – + 0.17 - 0.45 0.75 - 1.05

pta + + + + 0.45 - 0.96 0.65 - 0.95

ackA + 0.38 - 0.71 0.25 - 0.55

pflB 1.38 - 2.24 1.35 - 1.65

ldhA 0.76 - 1.2 0.95 - 1.25

glpK 1.41 - 3.39 -

sfcA + + o + 1.2 - 2.4 -

glpD 1.32 - 2.34 -

gpsA 0.91 - 1.29 -

poxB 0.98 - 4.27 -

acs + 7.8 - 11.6 -
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Gene Mutant phenotype: growth on Transcript ratios

Glc Gly Suc Ac Ac / Glc Gly / Glc

nuo + + 0.58 - 1.45 -

cyd + 0.78 - 1.60 -

pntA + + + 0.28 - 0.69 1.05 - 1.35

atp + o – 0.89 - 1.5 -

asnA 0.54 - 1.05 3.45 - 3.75

aspC 1 - 2 0.85 - 1.15

aspA 1.66 - 3.98 1.95 - 2.25

gdhA 0.76 - 1.78 -

glnA 0.34 - 0.56 -

AdhE 0.09 - 0.26 1.35 - 1.65

FdhF 0.62 - 1.2 1.05 - 1.35



B. DROSOPHILA: CIRCADIAN CLOCK
MODELS

Tab. B.1: Differential equations for the single-feedback model.

d M
dt

= vs
K n

I

K n
I + Pn

n
− vm

M
Km + M

d P0

dt
= ks M − V1

P0

K1 + P0
+ V2

P1

K2 + P1
d P1

dt
= V1

P0

K1 + P0
− V2

P1

K2 + P1
− V3

P1

K3 + P1
+ V4

P2

K4 + P2

d P2

dt
= V3

P1

K3 + P1
− V4

P2

K4 + P2
− k1 P2 + k2 Pn − vd

P2

Kd + P2

d Pn

dt
= k1 P2 − k2 Pn

Tab. B.2: Reference parameter sets, single-feedback model.
Nr. Name Goldbeter [92] Gonze et al. [95]

1 vs 0.76 µM/h 0.50 nM/h
2 vm 0.65 µM/h 0.30 nM/h
3 ks 0.38 h−1 2.00 h−1

4 vd 0.76 µM/h 1.50 nM/h
5 k1 1.90 h−1 2.00 h−1

6 k2 1.30 h−1 1.00 h−1

7 K I 1.00 µM 2.00 nM
8 Km 0.50 µM 0.20 nM
9 Kd 0.20 µM 0.10 nM

10 K1 2.00 µM 1.50 nM
11 K2 2.00 µM 2.00 nM
12 K3 2.00 µM 1.50 nM
13 K4 2.00 µM 2.00 nM
14 V1 3.20 µM/h 6.00 nM/h
15 V2 1.58 µM/h 3.00 nM/h
16 V3 5.00 µM/h 6.00 nM/h
17 V4 2.50 µM/h 3.00 nM/h
18 n 4 4
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Tab. B.3: Differential equations for the dual-feedback model.

d MP

dt
= vs P

K n
I P

K n
I P + Cn

N
− vm P

MP

Km P + MP
− kd MP

d P0

dt
= ks P MP − V1P

P0

K1P + P0
+ V2P

P1

K2P + P1
− kd P0

d P1

dt
= V1P

P0

K1P + P0
− V2P

P1

K2P + P1
− V3P

P1

K3P + P1
+ V4P

P2

K4P + P2
− kd P1

d P2

dt
= V3P

P1

K3P + P1
− V4P

P2

K4P + P2
− k3 P2T2 + k4C − vd P

P2

Kd P + P2
− kd P2

d MT

dt
= vsT

K n
I T

K n
I T + Cn

N
− vmT

MT

KmT + MT
− kd MT

dT0

dt
= ksT MT − V1T

T0

K1T + T0
+ V2T

T1

K2T + T1
− kd T0

dT1

dt
= V1T

T0

K1T + T0
− V2T

T1

K2T + T1
− V3T

T1

K3T + T1
+ V4T

T2

K4T + T2
− kd T1

dT2

dt
= V3T

T1

K3T + T1
− V4T

T2

K4T + T2
− k3 P2T2 + k4C − vdT

T2

KdT + T2
− kd T2

dC
dt

= k3 P2T2 − k4C − k1C + k2CN − kdCC

dCN

dt
= k1C − k2CN − kd N CN



C. SACCHAROMYCES CEREVISIAE: MITOTIC
CONTROL MODULE

Tab. C.1: Model structure of the mitotic control module (see following pages). The table lists all

elementary reaction steps used in deriving the mathematical model. Submodules that contains

gene expression units for the regulators, and the reactions they catalyze (if applicable) serve

to structure the compilation of biochemical reactions. The order of these submodules does

not have functional implications, but simply reflects the fact that the mitosis control module is

embedded into a larger model for the whole cell cycle.

Each row of the table specifies the meaning of and references for a specific composite bio-

chemical reaction such as complex formation, or an enzyme-catalyzed protein modification.

Model parts, for which no reference to the literature is given either comprise constitutive pro-

cesses, or were introduced as hypothetical mechanisms. Arrows in the reaction schemes indi-

cate elementary reaction steps, their directionality, and the associated kinetic parameters.

The following nomenclature for the components was employed: ’[X ]’ represents a single

component X , ’[X · Y ]’ the complex of two species X and Y . According to conventions for

budding yeast, genes are given in uppercase letters (’X X X ’). A promoter Z of gene X X X is

written as ’X X X Z ’. Lowercase for all but the first letters distinguishes proteins (’X xx’) from

their genes; the corresponding messenger RNAs are designated ’m X X X ’.

. For most of the model parameters, a naming scheme was used that refers to the submodule i , in

which the parameter occurs. Accordingly, ’K i A j ’ and ’Ki Dj ’ are association and dissociation

constants for the j-the reaction in submodule i . Parameters ’E i P j ’ describe the correspond-

ing catalytic efficiencies. Affinities between transcription factors S and promoters of gene T
follow the nomenclature ’K X A/DST ’. Furthermore, all structural parameters that represent, for

example, transcript length start with ’L’, whereas the first letter of relative factors modulating

basal reaction rates is always an ’F’.
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Tab. C.3: Reference parameter values for the module ”control of mitosis”. Apart from the parame-

ters names, a brief description and the reference parameter values, in the last two columns, the

upper and lower bounds on admissible parameter space that were used in parameter estimation

are provided, respectively. Missing entries in both of these columns mean that the parameter

was not estimated. A lower bound of zero leads to an undefined entry for the log10-scaled

boundaries.

Name Description Parameter value Log10 range

K2A5 kass. dephosph. of Net1 by Cdc14 1.13 · 10−2 µM−1s−1 −2.00 +1.00

K2D5 kdiss. dephosph. of Net1 by Cdc14 1.00 · 100 s−1 −4.00 +0.00

FAC DC14N ET 1 Relative dephosph. of Net1 by Cdc14 2.45 · 10−3 −− +1.00

K PC DC14 kcat. Cdc14 6.27 · 10−1 s−1 −2.00 +0.00

K2A6 kass. complex formation Cdc14–Net1 4.01 · 100 µM−1s−1 −2.00 +2.00

K2D6 kdiss. complex formation Cdc14–Net1 2.83 · 10−3 s−1 −4.00 +0.00

FDN ET 1PC DC14 Relative affinity of Cdc14 for Net1P 1.00 · 104 +0.00 +4.00

K2A8 kass. dimerization of Cdc14 9.08 · 10−2 µM−1s−1 −2.00 +2.00

K2D8 kdiss. dimerization of Cdc14 2.79 · 10−1 s−1 −4.00 +0.00

K2A10 kass. dephosph. of Hct1 by Cdc14 4.77 · 101 µM−1s−1 −2.00 +2.00

K2D10 kdiss. dephosph. of Hct1 by Cdc14 8.69 · 10−1 s−1 −4.00 +0.00

E2P10 Efficiency dephosph. of Hct1 by Cdc14 9.95 · 100 −1.00 +1.00

K2A11 kass. dephosph. of Swi5 by Cdc14 5.30 · 100 µM−1s−1 −2.00 +2.00

K2D11 kdiss. dephosph. of Swi5 by Cdc14 3.28 · 10−2 s−1 −4.00 +0.00

E2P11 Efficiency dephosph. of Swi5 by Cdc14 9.43 · 100 −1.00 +1.00

K2A12 kass. dephosph. of Sic1 by Cdc14 4.43 · 101 µM−1s−1 −2.00 +2.00

K2D12 kdiss. dephosph. of Sic1 by Cdc14 8.14 · 10−4 s−1 −4.00 +0.00

E2P12 Efficiency dephosph. of Sic1 by Cdc14 1.06 · 100 −1.00 +1.00

K2A13 kass. dephosph. of MEN by Cdc14 3.48 · 101 µM−1s−1 −2.00 +2.00

K2D13 kdiss. dephosph. of MEN by Cdc14 8.64 · 10−1 s−1 −4.00 +0.00

E2P13 Efficiency dephosph. of MEN by Cdc14 9.72 · 100 −1.00 +1.00

K2A16 kass. dephosph. of Cdc6 by Cdc14 9.97 · 101 µM−1s−1 −2.00 +2.00

K2D16 kdiss. dephosph. of Cdc6 by Cdc14 4.42 · 10−3 s−1 −4.00 +0.00

E2P16 Efficiency dephosph. of Cdc6 by Cdc14 1.00 · 10−1 −1.00 +1.00

K2A17 kass. dephosph. of Fkh12 by Cdc14 1.00 · 102 µM−1s−1 −2.00 +2.00

K2D17 kdiss. dephosph. of Fkh12 by Cdc14 1.42 · 10−1 s−1 −4.00 +0.00

E2P17 Efficiency dephosph. of Fkh12 by Cdc14 1.01 · 10−1 −1.00 +1.00

K2A18 kass. dephosph. of Ndd1 by Cdc14 1.02 · 100 µM−1s−1 −2.00 +2.00

K2D18 kdiss. dephosph. of Ndd1 by Cdc14 8.38 · 10−1 s−1 −4.00 +0.00

E2P18 Efficiency dephosph. of Ndd1 by Cdc14 1.01 · 100 −1.00 +1.00

K3A1 kass. complex formation Clb2–Sic1 9.96 · 101 µM−1s−1 −2.00 +2.00

K3D1 kdiss. complex formation Clb2–Sic1 1.70 · 10−2 s−1 −4.00 +0.00

K3A2 kass. phosphorylation of Sic1 by Clb2 1.42 · 100 µM−1s−1 −2.00 +2.00

K3D2 kdiss. phosphorylation of Sic1 by Clb2 9.50 · 10−1 s−1 −4.00 +0.00

E3P2 Efficiency phosph. of Sic1 by Clb2 8.95 · 100 −1.00 +1.00

FAC L B Relative kcat. Clb - Cdc28 9.97 · 100 −1.00 +1.00

K PC DC28 kcat. Cdc28 8.36 · 101 s−1 −2.00 +2.00

K3A3 kass. phosphorylation of Hct1 by Clb2 4.69 · 101 µM−1s−1 −2.00 +2.00

K3D3 kdiss. phosphorylation of Hct1 by Clb2 1.61 · 10−2 s−1 −4.00 +0.00

E3P3 Efficiency phosph. of Hct1 by Clb2 9.99 · 100 −1.00 +1.00

K X AF K H12 kass. Fkh12–DNA 9.11 · 101 µM−1s−1 −2.00 +2.00

FX F K H12C L B2 Relative affinity Fkh12 for CLB2 promoter 5.97 · 100 −1.00 +1.00

K X DF K H12 kdiss. Fkh12–DNA 9.52 · 10−1 s−1 −4.00 +0.00

K AF K H12N DD1 kass. complex formation Fkh12–Ndd1 2.53 · 100 kass. −2.00 +2.00

K DF K H12N DD1 kdiss. complex formation Fkh12–Ndd1 9.17 · 10−1 s−1 −4.00 +0.00

FAF P N Relative aff. Fkh12 / Fkh12P for Ndd1 1.34 · 100 −2.00 +2.00

FAF N P Relative aff. Ndd1 / Ndd1P for Fkh12 3.80 · 101 −2.00 +2.00
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Name Description Parameter value Log10 range

FAT F N DD1 Relative transcriptional act. Ndd1 / Ndd1P 1.00 · 10−2 −2.00 +0.00

FAP O L N DD1 Relative association Ndd1–RNA pol. 7.29 · 10−1 −2.00 +2.00

K AP O L kass. RNA pol.–transcriptional activators 4.75 · 10−2 µM−1s−1 −2.00 +2.00

K D P O L kdiss. RNA pol.–transcriptional activators 1.00 · 100 s−1 −4.00 +0.00

LT K C L B2 Transcript length mCLB2 6.79 · 10−4 – –

KT K kcat. general transcription 1.86 · 101 s−1 +1.26 +1.56

K ARI B kass. association ribosomes–mRNA 1.00 · 102 µM−1s−1 −2.00 +2.00

K DRI B kdiss. association ribosomes–mRNA 9.98 · 10−1 s−1 −4.00 +0.00

LT LC L B2 Protein length Clb2 2.04 · 10−3 – –

KT L kcat. general translation 1.29 · 101 s−1 +0.70 +1.30

K DMC L B2 mRNA degradation rate CLB2 8.08 · 10−4 s−1 −3.10 −3.01

K X AM B F kass. MBF–DNA 6.05 · 101 µM−1s−1 −3.00 +2.00

FX M B FC L B2 Relative affinity MBF for CLB2 promoter 1.00 · 103 – –

K X DM B F kdiss. MBF–DNA 3.51 · 10−1 s−1 −4.00 +0.00

FAP O L M B F P Relative association MBF–RNA pol. 2.38 · 100 −2.00 +2.00

FB XC L B2 Relative constitutive expression CLB2 1.17 · 10−2 −2.00 +0.00

K3A4 kass. complex formation Clb2–Hct1 4.06 · 100 µM−1s−1 −2.00 +2.00

K3D4 kdiss. complex formation Clb2–Hct1 8.65 · 10−1 s−1 −4.00 +0.00

K3A5 kass. complex formation Clb2–Cdc20 3.34 · 100 µM−1s−1 −2.00 +2.00

K3D5 kdiss. complex formation Clb2–Cdc20 9.93 · 10−1 s−1 −4.00 +0.00

K3A9 kass. phosphorylation of Swi5 by Clb2 3.96 · 100 µM−1s−1 −2.00 +2.00

K3D9 kdiss. phosphorylation of Swi5 by Clb2 9.44 · 10−1 s−1 −4.00 +0.00

E3P9 Efficiency phosph. of Swi5 by Clb2 2.35 · 100 −1.00 +1.00

K3A10 kass. phosphorylation of APC by Clb2 9.99 · 101 µM−1s−1 −2.00 +2.00

K3D10 kdiss. phosphorylation of APC by Clb2 7.59 · 10−1 s−1 −4.00 +0.00

E3P10 Efficiency phosph. of APC by Clb2 1.00 · 101 −1.00 +1.00

K3A13 kass. phosphorylation of MEN by Clb2 3.22 · 100 µM−1s−1 −2.00 +2.00

K3D13 kdiss. phosphorylation of MEN by Clb2 1.22 · 10−1 s−1 −4.00 +0.00

E3P13 Efficiency phosph. of MEN by Clb2 2.36 · 100 −1.00 +1.00

K3P14 kcat. constitutive degradation of Clb2 9.63 · 10−5 s−1 −4.02 −2.24

K3A15 kass. complex formation Clb2–Cdc6 9.98 · 101 µM−1s−1 −2.00 +2.00

K3D15 kdiss. complex formation Clb2–Cdc6 9.36 · 10−1 s−1 −4.00 +0.00

FC PC DC6 Relative association Clb2–Cdc6P / Cdc6 9.90 · 101 −2.00 +2.00

FP FC DC6 Relative phosph. free / complexed Cdc6 9.95 · 101 −2.00 +2.00

K3A16 kass. phosphorylation of Cdc6 by Clb2 5.47 · 101 µM−1s−1 −2.00 +2.00

K3D16 kdiss. phosphorylation of Cdc6 by Clb2 9.83 · 10−1 s−1 −4.00 +0.00

E3P16 Efficiency phosph. of Cdc6 by Clb2 9.37 · 100 −1.00 +1.00

K3A17 kass. phosphorylation of Fkh12 by Clb2 9.93 · 101 µM−1s−1 −2.00 +2.00

K3D17 kdiss. phosphorylation of Fkh12 by Clb2 7.42 · 10−1 s−1 −4.00 +0.00

E3P17 Efficiency phosph. of Fkh12 by Clb2 7.80 · 100 −1.00 +1.00

K3A18 kass. phosphorylation of Ndd1 by Clb2 9.65 · 101 µM−1s−1 −2.00 +2.00

K3D18 kdiss. phosphorylation of Ndd1 by Clb2 8.53 · 10−1 s−1 −4.00 +0.00

E3P18 Efficiency phosph. of Ndd1 by Clb2 8.64 · 100 −1.00 +1.00

K X ASW I 5 kass. Swi5–DNA 7.76 · 100 µM−1s−1 −2.00 +2.00

K X DSW I 5 kdiss. Swi5–DNA 9.23 · 10−1 s−1 −4.00 +0.00

FAP O L SW I 5 Relative association Swi5–RNA pol. 1.20 · 10−1 −2.00 +2.00

LT K SI C1 Transcript length mSIC1 1.17 · 10−3 – –

FB X SI C1 Relative constitutive expression SIC1 1.00 · 10−1 −1.00 +0.00

LT L SI C1 Protein length Sic1 3.52 · 10−3 – –

K DM SI C1 mRNA degradation rate SIC1 6.75 · 10−4 s−1 −3.21 −3.13

K4A1 kass. degradation of Sic1P by SCF 2.11 · 100 µM−1s−1 −2.00 +2.00

K4D1 kdiss. degradation of Sic1P by SCF 9.30 · 10−1 s−1 −4.00 +0.00

FP RSC F SI C1 Relative degradation of Sic1 by SCF 1.00 · 100 – –

K P SC F kcat. SCF 4.21 · 10−1 s−1 −3.00 +0.00
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FDC SI C1 Relative degradation complexed / free Sic1 9.18 · 10−2 −2.00 +2.00

FDSI C1 Relative degradation Sic1 / Sic1P 6.71 · 10−3 −3.00 +0.00

K5A2 kass. complex formation Hct1–APC 9.12 · 101 µM−1s−1 −2.00 +2.00

K5D2 kdiss. complex formation Hct1–APC 8.59 · 10−1 s−1 −4.00 +0.00

FP R APCC L B2 Relative degradation of Clb2 by APC 1.00 · 100 – –

K P APC kcat. APC 5.60 · 10−2 s−1 −3.00 +0.00

FAHCT 1APC Relative affinity Hct1P / Hct1 – APC 1.99 · 10−3 −3.00 −1.00

FP R APC N DD1 Relative degradation of Ndd1 by APC 1.00 · 100 – –

FP R APCY O X1 Relative degradation of Yox1 by APC 1.00 · 100 – –

FP R APCC DC20 Relative degradation of Cdc20 by APC 1.00 · 100 – –

FP R APCC DC6 Relative degradation of Cdc6 by APC 1.00 · 100 – –

K6A1 kass. complex formation Cdc20–SAC 1.48 · 100 µM−1s−1 −2.00 +2.00

K6D1 kdiss. complex formation Cdc20–SAC 1.00 · 10−4 s−1 −4.00 +0.00

FX F K H12C DC20 Relative aff. Fkh12 for CDC20 promoter 2.16 · 10−1 −1.00 +1.00

LT K C DC20 Transcript length mCDC20 5.46 · 10−4 – –

LT LC DC20 Protein length Cdc20 1.64 · 10−3 – –

K DMC DC20 mRNA degradation rate CDC20 7.29 · 10−4 s−1 −3.19 −3.10

FX M B FC DC20 Relative affinity MBF for CDC20 promoter 1.00 · 101 −1.00 +1.00

FB XC DC20 Relative constitutive expression CDC20 5.95 · 10−1 −2.00 +0.00

K X AY O X1 kass. Yox1–DNA 7.32 · 101 µM−1s−1 −2.00 +2.00

FX I C DC20 Relative affinity Yox1 for CDC20 promoter 4.29 · 101 −2.00 +2.00

K X DY O X1 kdiss. Yox1–DNA 3.73 · 10−3 s−1 −4.00 +0.00

FDC DC20APC Relative degradation of Cdc20 via APC 6.46 · 10−1 −− +0.00

K6A3 kass. degradation of Cdc20 by APCP 4.74 · 100 µM−1s−1 −2.00 +2.00

K6D3 kdiss. degradation of Cdc20 by APCP 3.81 · 10−1 s−1 −4.00 +0.00

K6P2 kcat. constitutive degradation of Cdc20 1.00 · 10−3 s−1 −4.02 −2.24

FDC DC20N OC Relative degradation inhibited / free Cdc20 9.21 · 10−1 −3.00 +1.00

K6A2 kass. complex formation Cdc20–APCP 7.27 · 101 µM−1s−1 −2.00 +2.00

K6D2 kdiss. complex formation Cdc20–APCP 5.76 · 10−1 s−1 −4.00 +0.00

FP R APCC L B5 Relative degradation of Clb5 by APC 1.00 · 100 – –

K6A4 kass. complex formation Cdc20–Hct1 3.61 · 100 µM−1s−1 −− +1.00

K6D4 kdiss. complex formation Cdc20–Hct1 6.76 · 10−4 s−1 −4.00 +0.00

FP R APC SW I 5 Relative degradation of Swi5 by APC 1.00 · 100 – –

K7A1 kass. phosphorylation of Net1 by MENP 3.00 · 101 µM−1s−1 −2.00 +2.00

K7D1 kdiss. phosphorylation of Net1 by MENP 7.48 · 10−1 s−1 −4.00 +0.00

FP DB F2P Relative kinase activity MENP / MEN 1.04 · 10−2 −2.00 +0.00

K7P1 kcat. phosphorylation of Net1 by MENP 4.59 · 10−1 s−1 −3.00 +1.00

K8A1 kass. phosphorylation of Net1 by FEAR 2.30 · 100 µM−1s−1 −2.00 +2.00

K8D1 kdiss. phosphorylation of Net1 by FEAR 2.43 · 10−1 s−1 −4.00 +0.00

K8P1 kcat. phosphorylation of Net1 by FEAR 1.46 · 10−2 s−1 −3.00 +1.00

FX M B FC DC6 Relative affinity MBF for CDC6 promoter 9.96 · 100 −1.00 +1.00

LT K C DC6 Transcript length mCDC6 6.50 · 10−4 – –

LT LC DC6 Protein length Cdc6 1.95 · 10−3 – –

K DMC DC6 mRNA degradation rate CDC6 4.92 · 10−4 s−1 −3.34 −3.16

FB XC DC6 Relative constitutive expression CDC6 2.87 · 10−1 −2.00 +0.00

FX I C DC6 Relative affinity Yox1 for CDC6 promoter 8.91 · 101 −2.00 +2.00

K11A1 kass. degradation of Cdc6P by SCF 2.86 · 100 µM−1s−1 −2.00 +2.00

K11D1 kdiss. degradation of Cdc6P by SCF 9.98 · 10−1 s−1 −4.00 +0.00

FP RSC FC DC6 Relative degradation of Cdc6 by SCF 1.00 · 100 – –

FDCC DC6 Relative degradation complexed / free Cdc6 6.01 · 10−3 −3.00 +0.00

FDC DC6 Relative degradation Cdc6 / Cdc6P 9.81 · 10−1 −− +0.00

K11A2 kass. complex formation Cdc6–Hct1 1.68 · 10−2 µM−1s−1 −2.00 +2.00

K11D2 kdiss. complex formation Cdc6–Hct1 7.70 · 10−1 s−1 −4.00 +0.00

K11A3 kass. complex formation Cdc6–Cdc20 2.58 · 101 µM−1s−1 −2.00 +2.00
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K11D3 kdiss. complex formation Cdc6–Cdc20 4.65 · 10−1 s−1 −4.00 +0.00

FX F K H12SW I 5 Relative affinity Fkh12 for SWI5 promoter 3.00 · 100 −1.00 +1.00

LT K SW I 5 Transcript length mSWI5 4.70 · 10−4 – –

LT L SW I 5 Protein length Swi5 1.41 · 10−3 – –

K DM SW I 5 mRNA degradation rate SWI5 7.47 · 10−4 s−1 −3.21 −3.13

FB X SW I 5 Relative constitutive expression SWI5 1.00 · 10−2 −2.00 +0.00

K12P1 kcat. constitutive degradation of Swi5 2.96 · 10−3 s−1 −4.02 −2.24

FDSW I 5 Relative degradation Swi5P / Swi5 1.21 · 10−1 −2.00 +0.00

K12A3 kass. complex formation Swi5–Cdc20 9.98 · 100 µM−1s−1 −2.00 +1.00

K12D3 kdiss. complex formation Swi5–Cdc20 1.57 · 10−1 s−1 −4.00 +0.00

K13A1 kass. complex formation Clb5–Sic1 1.00 · 102 µM−1s−1 −2.00 +2.00

K13D1 kdiss. complex formation Clb5–Sic1 1.00 · 10−4 s−1 −4.00 +0.00

K13A2 kass. phosphorylation of Sic1 by Clb5 2.03 · 101 µM−1s−1 −2.00 +2.00

K13D2 kdiss. phosphorylation of Sic1 by Clb5 1.00 · 100 s−1 −4.00 +0.00

E13P2 Efficiency phosph. of Sic1 by Clb5 1.93 · 100 −1.00 +1.00

K13A3 kass. phosphorylation of Hct1 by Clb5 1.00 · 102 µM−1s−1 −2.00 +2.00

K13D3 kdiss. phosphorylation of Hct1 by Clb5 4.90 · 10−1 s−1 −4.00 +0.00

E13P3 Efficiency phosph. of Hct1 by Clb5 1.49 · 100 −1.00 +1.00

K13A4 kass. complex formation Clb5–Cdc20 4.47 · 100 µM−1s−1 −2.00 +2.00

K13D4 kdiss. complex formation Clb5–Cdc20 9.99 · 10−1 s−1 −4.00 +0.00

FX M B FC L B5 Relative affinity MBF for CLB5 promoter 5.77 · 10−1 −1.00 +1.00

LT K C L B5 Transcript length mCLB5 7.66 · 10−4 – –

LT LC L B5 Protein length Clb5 2.30 · 10−3 – –

K DMC L B5 mRNA degradation rate CLB5 1.16 · 10−3 s−1 −2.94 −2.85

K13A10 kass. phosphorylation of Swi5 by Clb5 0.00 · 100 µM−1s−1 – –

K13D10 kdiss. phosphorylation of Swi5 by Clb5 0.00 · 100 s−1 – –

E13P10 Efficiency phosph. of Swi5 by Clb5 0.00 · 100 – –

K13P11 kcat. constitutive degradation of Clb5 9.63 · 10−5 s−1 −4.02 −2.24

K13A12 kass. complex formation Clb5–Cdc6 2.28 · 101 µM−1s−1 −2.00 +2.00

K13D12 kdiss. complex formation Clb5–Cdc6 1.23 · 10−4 s−1 −4.00 +0.00

K13A13 kass. phosphorylation of Cdc6 by Clb5 8.86 · 101 µM−1s−1 −2.00 +2.00

K13D13 kdiss. phosphorylation of Cdc6 by Clb5 8.80 · 10−2 s−1 −4.00 +0.00

E13P13 Efficiency phosph. of Cdc6 by Clb5 8.11 · 100 −1.00 +1.00

K17P6 kcat. constitutive dephosph. of APC 2.93 · 10−3 s−1 −3.00 +0.00

K17P kcat. constitutive dephosph. of Net1 1.00 · 10−3 s−1 −3.00 +0.00

K17P10 kcat. constitutive dephosph. of Cdc6 4.63 · 10−2 s−1 −3.00 +0.00

K17P11 kcat. constitutive dephosph. of MEN 1.01 · 10−3 s−1 −3.00 +0.00

K17P13 kcat. constitutive degradation of MBFP 5.76 · 10−3 s−1 −4.02 −2.24

K17P14 kcat. constitutive dephosph. of Fkh12 1.00 · 100 s−1 −3.00 +0.00

K17P15 kcat. constitutive dephosph. of Ndd1 9.91 · 10−1 s−1 −3.00 +0.00

FX M B FY O X1 Relative affinity MBF for YOX1 promoter 7.80 · 10−1 −1.00 +1.00

LT K Y O X1 Transcript length mYOX1 8.66 · 10−4 – –

LT LY O X1 Protein length Yox1 2.60 · 10−3 – –

K DMY O X1 mRNA degradation rate YOX1 6.60 · 10−4 s−1 −3.18 −3.00

FX F K H12Y O X1 Relative affinity Fkh12 for YOX1 promoter 9.99 · 100 −1.00 +1.00

FB XY O X1 Relative constitutive expression YOX1 9.71 · 10−1 −2.00 +0.00

K27P1 kcat. constitutive degradation of Yox1 9.65 · 10−5 s−1 −4.02 −2.24

K27A2 kass. complex formation Yox1–Hct1 4.33 · 101 µM−1s−1 −− +2.00

K27D2 kdiss. complex formation Yox1–Hct1 9.48 · 10−1 s−1 −− +0.00

K27A3 kass. complex formation Yox1–Cdc20 1.00 · 102 µM−1s−1 −− +2.00

K27D3 kdiss. complex formation Yox1–Cdc20 4.08 · 10−1 s−1 −4.00 +0.00

FX M B F N DD1 Relative affinity MBF for NDD1 promoter 1.03 · 100 −1.00 +1.00

LT K N DD1 Transcript length mNDD1 6.02 · 10−4 – –

LT L N DD1 Protein length Ndd1 1.81 · 10−3 – –
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K DM N DD1 mRNA degradation rate NDD1 1.07 · 10−3 s−1 −3.15 −2.97

FX F K H12N DD1 Relative affinity Fkh12 for NDD1 promoter 9.99 · 100 −3.00 +1.00

FB X N DD1 Relative constitutive expression NDD1 5.61 · 10−2 −2.00 +0.00

FDN DD1 Relative degradation Ndd1P / Ndd1 9.01 · 10−1 −3.00 +0.00

K28P1 kcat. constitutive degradation of Ndd1 1.55 · 10−3 s−1 −4.02 −2.24

K28A2 kass. complex formation Ndd1–Hct1 2.52 · 10−1 µM−1s−1 −2.00 +2.00

K28D2 kdiss. complex formation Ndd1–Hct1 6.78 · 10−1 s−1 −4.00 +0.00

K28A3 kass. complex formation Ndd1–Cdc20 1.60 · 10−1 µM−1s−1 −2.00 +2.00

K28D3 kdiss. complex formation Ndd1–Cdc20 5.20 · 10−2 s−1 −4.00 +0.00

FOV X SI C1 Relative over-expression SIC1 0.00 · 100 – –

K AT K G AL kass. RNA polymerase–GAL1-10 promoter 1.59 · 101 µM−1s−1 −2.00 +2.00

K DT K G AL kdiss. RNA pol.–GAL1-10 promoter 4.57 · 101 s−1 −2.00 +2.00

FOV XC DC6 Relative over-expression CDC6 0.00 · 100 – –

FOV XC L B5 Relative over-expression CLB5 0.00 · 100 – –

FOV XC L B2 Relative over-expression CLB2 0.00 · 100 – –

FOV XC DC20 Relative over-expression CDC20 0.00 · 100 – –

FOV XY O X1 Relative over-expression YOX1 0.00 · 100 – –

FOV X N DD1 Relative over-expression NDD1 0.00 · 100 – –

FOV X F K H12 Relative over-expression FKH12 0.00 · 100 – –

LT K F K H12 Transcript length mFKH12 4.95 · 10−4 – –

FOV X HCT 1 Relative over-expression HCT1 0.00 · 100 – –

LT K HCT 1 Transcript length mHCT1 5.89 · 10−4 – –

LT L HCT 1 Protein length Hct1 1.77 · 10−3 – –

K DM HCT 1 mRNA degradation rate HCT1 5.47 · 10−4 s−1 – –

K DOV X P kcat. degradation overexpressed protein 1.20 · 10−4 s−1 – –

FOV XC DC14 Relative over-expression CDC14 0.00 · 100 – –

LT K C DC14 Transcript length mCDC14 6.05 · 10−4 – –

LT LC DC14 Protein length Cdc14 1.81 · 10−3 – –

K DMC DC14 mRNA degradation rate CDC14 1.05 · 10−3 s−1 – –

FOV X N ET 1 Relative over-expression NET1 0.00 · 100 – –

LT K N ET 1 Transcript length mNET1 2.80 · 10−4 – –

LT L N ET 1 Protein length Net1 8.41 · 10−4 – –

K DM N ET 1 mRNA degradation rate NET1 7.70 · 10−4 s−1 – –


