
Control of Crystallization Processes

Based on Population Balances

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von Dipl.-Ing. Ulrich Vollmer

geb. am 9. März 1972 in Kirchheim unter Teck

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr.-Ing. habil. Jörg Raisch

Prof. Dr.-Ing. habil. Andreas Seidel-Morgenstern

Prof. Dr. Doraiswami Ramkrishna

Promotionskolloquium am 20. Mai 2005





Shaker  Verlag
Aachen  2005

Forschungsberichte aus dem Max-Planck-Institut
für Dynamik komplexer technischer Systeme

Band 11

Ulrich Vollmer

Control of Crystallization Processes
Based on Population Balances



Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available in
the internet at http://dnb.ddb.de.

Zugl.: Magdeburg, Univ., Diss., 2005

Copyright  Shaker  Verlag  2005
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 3-8322-4317-8
ISSN 1439-4804

Shaker  Verlag  GmbH  •  P.O. BOX 101818  •  D-52018  Aachen
Phone:  0049/2407/9596-0   •   Telefax:  0049/2407/9596-9
Internet: www.shaker.de   •   eMail: info@shaker.de



Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitar-

beiter am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magde-
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Zusammenfassung in deutscher

Sprache

Einführung

Modellbasierter Regelungsentwurf für technische Kristallisationsprozesse ist ein hochin-

teressantes und herausforderndes Thema, auf dem seit vielen Jahren intensiv geforscht

wird. Der Grund hierfür liegt in der hohen Komplexität der mathematischen Modelle, die

sich wiederum direkt aus der physikalischen Struktur der Kristallisationsprozesse selbst

ergibt.

Ein Kristallisationsprozess wird charakterisiert durch die Kristalle, die produziert wer-

den. Diese Partikel unterscheiden sich hinsichtlich einer oder mehrerer Eigenschaften,

z.B. ihrer Größe. Wenn eine große Anzahl von Teilchen betrachtet wird, ist es günstig

nicht die individuellen Partikel zu untersuchen, sondern die gesamte Partikelpopulation.

Diese Population ist gekennzeichnet durch die Verteilung der Teilchen bezüglich ihrer

Eigenschaften, z.B. durch die Kristallgrößenverteilung (KGV). Solche Eigenschaftsver-

teilungen werden auch in der Beschreibung anderer Partikelprozesse genutzt. Beispie-

le hierfür sind Granulation, Polymerisation, Flüssig-flüssig-Extraktion oder biologische

Zellfermentation.

Das dynamische Verhalten solcher Partikelprozesse ist im Wesentlichen bestimmt von

der zeitlichen Änderung der Eigenschaftsverteilung der betrachteten Teilchenpopulati-

on. Diese Verteilungsfunktion ist Teil des Systemzustands. Folglich sind Partikelprozesse

notwendigerweise Systeme mit verteilten Parametern. Im Zentrum des allgemein aner-

kannten Modellierungsparadigmas für Partikelprozesse steht der Begriff der Populations-

bilanz. Auf dem Gebiet der Verfahrenstechnik wurde dieser Begriff in den 1960er Jahren

eingeführt [40, 85]. Seither wurde eine erhebliche Zahl von Arbeiten zur Modellbildung,
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Numerik, Parameteridentifikation und zur Regelung von Populationsbilanzgleichungen

veröffentlicht, siehe z.B. [82, 86].

Das Modell eines Kristallisationsprozesses besteht im Allgemeinen aus einer partiellen

Integrodifferentialgleichung (der Populationsbilanz) und einer oder mehreren gewöhnli-

chen Differentialgleichungen (Stoffmengen- und Energiebilanz der Flüssigphase). In der

vorliegenden Arbeit werden solche Modelle als Basis für den Regelungs- und Steue-

rungsentwurf für Kristallisationsprozesse genutzt. Kristallisationsprozesse können auf

zwei grundsätzlich unterschiedliche Arten betrieben werden: batchweise oder kontinuier-

lich. Daraus ergeben sich grundlegend unterschiedliche Regelungsprobleme. Lösungen

für beide Problemstellungen werden in dieser Arbeit mit Hilfe aktueller Methoden der

Regelungstheorie auf Basis von populationsdynamischen Modellen erarbeitet.

Kontinuierliche Kristallisation

Kontinuierlich betriebene Kristallisationsprozesse arbeiten üblicherweise über lange Zeit

in einem stationären Zustand. Die Qualität des erzeugten Produkts wird folglich von der

stationären KGV bestimmt. Um sie günstig zu beeinflussen ist es üblich, kleine Kristalle

gezielt abzutrennen und aufzulösen (Feinkornauflösung). Neben dem erwünschten Ef-

fekt auf die KGV beeinflusst diese Maßnahme jedoch die Dynamik in unerwünschter

Weise. Dies kann zu Instabilität des stationären Zustands führen. Die Dynamik des Sy-

stems beschränkt also die Einsetzbarkeit der Feinkornauflösung und damit die erreichbare

Produktqualität. Ziel einer Regelung ist die Stabilisierung der Ruhelage bei hohen Fein-

kornauflösungsraten und damit die Verbesserung der erzielbaren Produktqualität.

In der verfahrenstechnischen Forschung steht das Ziel im Vordergrund, populationsdy-

namische Modelle immer genauer und detaillierter zu machen. Ein solches detailliertes

Modell eines kontinuierlichen Kristallisators wird in Kapitel 2 vorgestellt [66]. Es bein-

haltet physikalisch begründete Beschreibungen des Kristallwachstums und des Abriebs

aufgrund von Kristall-Rührer-Kollisionen. Außerdem wird die Ruhezone, die zur Abtren-

nung kleiner Kristalle für die Feinkornauflösung dient, mit einer separaten Populationsbi-

lanz beschrieben.

Um dieses Modell einer regelungstechnischen Nutzung zugänglich zu machen werden in

Kapitel 3 gezielte Vereinfachungen vorgenommen, so dass das vereinfachte Modell stati-

onär lösbar wird. Dann kann für das um diese Ruhelage linearisierte Modell eine Über-

tragungsfunktion von der Stellgröße (Feinkornauflösungsrate) zur Messgröße (Gesamt-
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kristallmasse) aufgestellt werden. Diese Übertragungsfunktion ist transzendent, sie hat al-

so unendlich viele Pole und Nullstellen und spiegelt damit die verteilte Natur des betrach-

teten Systems wider. Die Modellvereinfachungen umfassen: Approximation der nichtli-

nearen Längenabhängigkeit der Wachstumsrate durch eine stückweise lineare Funktion,

Approximation der nichtlinearen Konzentrationsabhängigkeit der Wachstumsrate durch

ein einfaches Potenzgesetz, Ersetzen des Abriebs durch
”
negatives Wachstum“, quasista-

tionäre Betrachtung der Ruhezone und Beschreibung der Feinkornabtrennung durch eine

einfache Klassierfunktion.

In Kapitel 4 werden auf Basis des vereinfachten Modells stabilisierende H∞-Regler ent-

worfen. Die H∞-Theorie ermöglicht den Entwurf von Reglern, die robust gegen Mo-

dellfehler sind. Es werden Reglerentwürfe für multiplikative Modellfehler und für ko-

prim faktorisierte Modellfehler durchgeführt. Für die Berechnung der Regler wird die in

[24] entwickelte Methode zur Lösung des gemischten Sensitivitätsproblems für verteil-

te Systeme genutzt. Daraus ergeben sich transzendente Reglerübertragungsfunktionen,

die schließlich mittels Fourier-Entwicklung und balancierter Reduktion durch rationa-

le Übertragungsfunktionen approximiert werden. Die sich ergebenden Regler werden in

Simulationen mit dem vereinfachten Modell (aus Kapitel 3) und mit dem detaillierten

Modell (aus Kapitel 2) getestet. Dabei zeigt sich, dass nur der für koprim faktorisierte

Modellfehler entworfene Regler robust genug ist, um das detaillierte Modell zufrieden-

stellend zu regeln. Mit diesem Regler wird die Ruhelage des Referenzmodells stabil und

der Grenzzyklus liegt im Einzugsbereich dieser Ruhelage.

Die hier vorgestellte Vorgehensweise zeichnet sich im Vergleich zu anderen Untersu-

chungen dadurch aus, dass die Regler auf Basis eines verteilten Modells entworfen wer-

den. Das Populationsmodell wird vor dem Reglerentwurf nicht diskretisiert. Ein weiteres

Merkmal dieser Arbeit bezieht sich auf einen Mangel, der bereits im Übersichtsartikel

[87] beklagt wird. Dort wird festgestellt, dass die moderne robuste Regelungstheorie bis-

lang keine Anwendung im Bereich der Kristallisation gefunden hat. Ein Schritt zur Behe-

bung dieses Mangels wird in dieser Arbeit gemacht.

Batch-Kristallisation

Der zweite Teil der Arbeit beschäftigt sich mit einem batchweise betriebenen Kristallisa-

tionsprozess. Für Batchprozesse stellen sich ganz andere Regelungs- bzw. Steuerungspro-

bleme. Der Prozess muss über die gesamte Batchdauer so geführt werden, dass am Ende
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ein Produkt mit gewünschten Eigenschaften erreicht wird. Speziell für die hier betrachte-

te Batch-Kühlungskristallisation bedeutet dies, dass der Temperaturverlauf während des

gesamten Prozesses so geführt werden soll, dass am Ende eine bestimmte KGV erreicht

wird.

Dazu wird in Kapitel 5 ein relativ einfaches Standard-Populationsmodell aus der Litera-

tur vorgestellt [65], das die Herleitung eines endlich-dimensionalen Momentenmodells

erlaubt. Eine sehr nützliche Systemeigenschaft für Trajektorienplanung und Regelungs-

entwurf ist die differentielle Flachheit [20]. Es wird gezeigt, dass das Momentenmodell

nicht flach ist, aber durch eine geeignete zustandsabhängige Zeitskalierung flach gemacht

werden kann. Solche Systeme heißen orbital flach [21, 35, 89].

In Kapitel 6 wird gezeigt, dass das gegebene Populationsmodell invertiert werden kann,

d.h. für eine vorgegebene KGV, die am Batchende erreicht werden soll, kann der zugehöri-

ge Temperaturverlauf direkt berechnet werden. Dazu wird einerseits die orbitale Flachheit

des Systems ausgenutzt und zum anderen die Tatsache, dass die Populationsbilanz durch

die eingeführte Zeitskalierung in eine einfache Transportgleichung mit geraden Charakte-

ristiken überführt wird. Damit lässt sich das Steuerungsproblem sehr viel eleganter lösen

als mit der häufig verwendeten dynamischen Optimierung. Wenn man jedoch trotzdem an

einer Optimierung der KGV interessiert ist, kann das resultierende Optimierungsproblem

durch die hier hergeleitete Systeminversion erheblich vereinfacht werden. Aufgrund der

Parametrierung des flachen Systems durch den flachen Ausgang kann das dynamische

Optimierungsproblem so formuliert werden, dass keine numerische Lösung des System-

modells nötig ist. Schließlich sind flache Systeme durch Zustandsrückführung exakt li-

nearisierbar. Diese Eigenschaft wird ausgenutzt, um eine Trajektorienfolgeregelung zu

entwerfen, die den Batch-Kristallisationsprozess auch in Gegenwart von Unsicherheiten

entlang gewünschter Trajektorien der Momente führt.

Das entscheidende Merkmal dieser Systeminversions-Methode ist die Möglichkeit, einen

Temperaturverlauf zu berechnen, der auf eine bestimmte KGV führt anstatt nur eine ska-

lare Kenngröße der KGV zu optimieren. Außerdem wird die Steuerung bei dieser Vorge-

hensweise analytisch berechnet, während sonst üblicherweise numerische Methoden zum

Einsatz kommen.

vii



Chapter 1

Introduction

1.1 Population Balance Modelling

Model based design of control strategies for crystallization processes is a very exciting

and challenging topic and has been an area of active research since many years. This is

mainly due to the fact that meaningful models for crystallization processes are of high

complexity and therefore are difficult to handle mathematically. The model complexity,

in turn, is caused by the physical structure of the process itself.

A crystallization process is characterized by the particles which it produces. These par-

ticles may be distinguished by individual properties, e.g. crystal size. If a large number

of particles is involved it is convenient not to consider the individual particles but an en-

tire population. This population is characterized by the distribution of its particles with

respect to their properties, e.g. by the crystal size distribution. Crystallization shares this

feature with other processes such as granulation, polymerization, liquid-liquid extraction

or cell cultures. They form the class of particulate processes or dispersed phase processes.

Describing the dynamic behaviour of particulate processes essentially involves specifying

the temporal change of the particle property distribution. This distribution function is part

of the system state. Hence, particulate processes inherently are distributed parameter sys-

tems. From a system theoretic point of view these systems are infinite-dimensional. The

modelling paradigm commonly accepted for this class of systems is the framework of pop-

ulation balances. In the field of chemical engineering this methodology was introduced

in 1964 in [40] and [85]. In the four decades since then a vast amount of publications has

appeared covering modelling, numerics, identification and control of population balance
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equations. Some of the milestones on this way are [86], [81] and [82].

In this framework, the state of an individual particle is represented by a particle state vec-

tor containing external coordinates (position of a particle in physical space) and internal

coordinates (properties of the particle, e.g. particle size). A population of particles is

characterized by its particle property distribution, which is described mathematically by

a number density function. This function represents the (average) number of particles per

volume of particle state space. It is understood that this deterministic approach is only

reasonable if large populations are considered. It is further assumed that the number den-

sity function is sufficiently smooth to be differentiated with respect to its arguments. The

actual number of particles in a certain area of the particle state space is determined by the

integral of the number density function over this area.

The temporal change of the number density function is described by the population bal-

ance equation, which is a partial differential equation (PDE). It describes the change due

to continuous “transport” of particles in their state space, e.g. by particle growth, as well

as the effect of “birth” and “death” events such as nucleation, breakage or agglomera-

tion. The two last-mentioned processes represent nonlocal effects: a particle of a certain

size breaking into two parts causes two particles to be formed at distant points in parti-

cle state space. These phenomena distinguish systems described by population balance

equations from spatially distributed systems. Concerning the mathematical formulation,

these effects may lead to integral terms in the partial differential equation. Apart from

those particle-particle interactions the dispersed phase usually also interacts with its en-

vironment, e.g. the continuous liquid phase in crystallization. The state of the continuous

phase may influence rates of growth, birth and death processes and thus affects the par-

ticle population. In the other direction, the dispersed particle phase generally affects the

continuous phase, e.g. by mass transfer from liquid to solid due to growth in crystalliza-

tion or by heat transfer due to the heat of crystallization. Therefore, in general a model

for a particulate system consists of a population balance equation, which describes the

dispersed phase, coupled with a mass (or mole) balance and an energy balance, which

describe the continuous phase.

1.2 Control of Crystallization Processes

In this dissertation, population balance models describing crystallization processes are

used as a basis for the design of control strategies. Crystallization processes are used in
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the chemical and pharmaceutical industry for the production of solid materials. In the

following only crystallization from solution is considered. Crystallization is frequently

used because in many cases chemical reactions take place in liquid phase whereas prod-

ucts often are solid materials. Furthermore, crystallization can be used for purification

and separation.

The basic concept of crystallization is simple and well known. A solution can be supersat-

urated, e.g. by cooling or by evaporation of solvent. In a supersaturated solution, solute

molecules from the solution are built into the crystal lattice. Hence, the crystal is grow-

ing. Furthermore, new crystals can emerge from the solution. Consequently, solute mass

is transfered from liquid solution to solid crystals. Supersaturation is the driving force

for these processes. The most significant property of crystals is their size. Crystal size

distribution (CSD) is the crucial variable in industrial crystallizers. This is, on the one

hand, due to the fact that the dynamics of crystallization plants can only be understood

when regarding the CSD. On the other hand, the CSD is important because it heavily in-

fluences product quality and down-stream processability. It influences properties such as

filterability, the ability to flow or the dissolution rate of crystalline material.

Industrial crystallization plants can be operated in basically two different ways: contin-

uous or batch. These two modes of operation result in two different control problems,

which are both addressed in this dissertation. Therefore, the thesis is composed of two

major parts corresponding to the two fundamentally different control problems arising

in crystallization. It is the aim of this work to demonstrate that sophisticated up-to-date

control synthesis methods can be applied to crystallization processes on the basis of pop-

ulation balance models.

The first part of the thesis comprises Chapters 2 to 4. It deals with continuously oper-

ated crystallization plants, where clear solution is continuously fed to the crystallizer and

product is continously withdrawn. Continuous processes run for very long periods of time

and serve for the production of large amounts of bulk materials. They are desired to be

operated at a steady state. Hence, product quality is determined by the steady state CSD.

This quantity can be influenced by fines dissolution, i.e. the continuous removal and dis-

solution of small particles. Unfortunately, apart from the desired effect on the CSD this

also affects the dynamics of the system in an undesirable way. Extensive fines dissolution

may lead to instability of the steady state. In Chapter 2, a detailed population balance

model introduced in [66] is presented, which describes a continuous crystallizer. This

model considers nucleation, growth and attrition of crystals. It captures the destabilizing

effect of fines dissolution and predicts the resulting sustained oscillations of CSD and so-
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lute concentration. In Chapter 3, this detailed model is simplified to obtain a population

balance model which can be represented in the form of a transcendental transfer function.

In Chapter 4, this transfer function serves as a basis for the design of stabilizing feedback

controllers. The controllers are synthesized using H∞-theory for infinite-dimensional

systems [24]. What distinguishes this approach from most other contributions in the area

of continuous crystallizer control is that controllers are designed on basis of a distributed

parameter model. The population balance model is not discretized prior to controller

design.

The second part of the thesis comprises Chapters 5 and 6. In batch cooling crystalliza-

tion the product quality is determined by the CSD at the end of the batch, which can be

influenced by the cooling profile, i.e. the temperature trajectory during the batch run. In

Chapter 5, a relatively simple standard population balance model [65] is presented. It

allows the derivation of a finite-dimensional model describing the temporal behaviour of

the moments of the CSD. The notion of differential flatness [20] is introduced and it is

shown that the moment model is not flat but can be rendered flat by an appropriate state

dependent time scaling. In Chapter 6, this property of the model is exploited to design

feedforward control strategies for the production of desired CSDs. The flatness property

is further used to simplify the optimization of CSD properties. Finally, nonlinear feedback

tracking controllers are designed, which control the system along desired trajectories of

the moments. The distinctive feature of this part is that the temperature trajectory which

achieves a desired CSD is determined analytically rather than by numerical optimization.

By doing so, this approach also makes it possible to decide whether a specific CSD can

be produced under given conditions or not.

Detailed introductions and literature overviews on industrial crystallization, control of

continuous and control of batch crystallization processes are given in the respective chap-

ters.
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Chapter 2

Population Balance Model for a

Continuous Crystallizer

2.1 Introduction to Continuous Crystallization

Crystallization in continuous mode is widely used as a purification and separation pro-

cess in the chemical industry. It mainly serves for the production of large amounts of

bulk commodity chemicals, e.g. ammonium sulphate, adipic acid [30]. Different types

of crystallizer designs are used in industrial practice. The selection of a crystallizer type,

on the one hand, depends on the physical properties of the combination of solute and

solvent, such as solubility and its temperature dependence. On the other hand the choice

is determined by the product requirements, such as desired mean crystal size. There are

three main types of crystallizers. Fluidized suspension crystallizers, also called Oslo crys-

tallizers, are especially useful for the production of coarse material. Forced circulation

crystallizers are relatively inexpensive and best suited where large amounts of solute have

to be evaporated. Finally, draft tube baffled (DTB) crystallizers are flexible in use and

they are very well-studied. Detailed population balance models, such as the one pre-

sented in this chapter, have been set up. A motivation for this interest is to gain a better

understanding of the cyclic behaviour that is frequently observed in the operation of DTB

crystallizers. The three types of crystallizer designs basically differ with respect to the

way in which the slurry is mixed and the crystals are kept suspended. In addition, there

are several possibilities to generate supersaturation, the driving force of crystallization.

The solution can be supersaturated either by cooling or by evaporation of solvent (or a

combination of both). Further possibilities are drowning-out, i.e. the addition of an anti-
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solvent or reaction crystallization. For further details on questions of design and selection

of crystallizers see one of the reference works [62, 69, 71, 103].

The process considered in the following is an evaporative DTB crystallizer. For a sketch

see Figure 2.1. The crystallizer is operated as follows. Crystal-free solution is fed to the

Annular
Settling Zone

����������������
����������������
����������������
����������������

Product

Fines

Fines reflux

Feed

Baffle

Vapour

Draft Tube

Figure 2.1: Sketch of DTB crystallizer

vessel from the bottom. Solvent is evaporated such that the solution in the crystallizer be-

comes supersaturated. Hence, new crystals form and existing crystals grow. The particles

are prevented from settling by a propeller which, in combination with a draft tube, gener-

ates a loop flow. Inside the draft tube the suspension is forced to rise and outside it comes

down. Suspension containing product crystals and solution is continuously withdrawn

from the process.

In many applications, a coarse product is desired. A possibility to shift the CSD towards

larger crystals is the systematic dissolution of small crystals (fines). This can be achieved

as follows. A baffle separates an annular settling zone from the suspended magma. At the

top of this zone, suspension is pumped off. This causes a vertical upward flow. But only
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small crystals are dragged along, due to gravitation large particles settle at the bottom.

Thus, at the top of the baffled zone, solution containing only small crystals is discharged.

This solution is heated in an external heat exchanger such that the fines are dissolved. The

clear hot solution is then fed back to the crystallizer at the bottom of the settling zone.

One of the major problems arising in the operation of continuous crystallizers are un-

damped oscillations of CSD and supersaturation. Cyclic behaviour of DTB crystallizers is

a phenomenon which has been encountered in industrial practice [83]. It has been studied

intensely by quite a number of researchers. Experimental studies in laboratory scale have

been carried out [83, 100]. Mathematical models of different levels of detail have been

formulated and examined numerically by simulation [6, 16, 49, 68, 80]. Furthermore,

mathematical models have been analytically investigated [2, 7, 18, 45, 50, 53, 86, 99]

to find stability results for crystallization processes. A commonly accepted result is that

fines dissolution and classified product removal significantly promote cycling in contin-

uous crystallizers. Consequently, the improvement of CSD properties obtained by the

application of fines dissolution is being paid for by a deterioration of the dynamic process

behaviour. In many cases, it is impossible to choose the fines dissolution rate as high

as it would be necessary to achieve the desired CSD quality, because the process shows

sustained oscillations and therefore the desired steady state is never attained.

2.2 Population Modelling

In this chapter, a detailed population balance model derived in [66] and [68] for an evap-

orative DTB crystallizer is presented. It comprises physically founded kinetic models

for the two main processes which influence the CSD, crystal growth and attrition due

to crystal stirrer collisions. Similar population models have been developed in [6] and

[30]. A model using similar kinetic models but considering two independent parameter

properties, crystal length and internal lattice strain, has been reported in [29].

What distinguishes these models from others presented in the literature is their predictive-

ness and scalability. There are no empiric relations involved in the kinetic expressions.

All parameters have clear physical meaning and can be directly measured or determined in

separate experiments. They do not have to be fitted to measurement data from the specific

plant to be modelled. Therefore, these models can be used to predict the dynamic be-

haviour of different design variants or the effects of modifications in the operating condi-

tions. This makes the models very useful for planning and design of crystallization plants.
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Figure 2.2: Schematic representation of crystallizer with annular settling zone and fines

dissolution unit
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The crystallizer content consists of two phases, the dispersed solid phase and the sur-

rounding liquid phase, which have to be modelled separately. Furthermore, the content

of the crystallizer itself, the annular settling zone and the fines dissolution unit are treated

individually. Figure 2.2 illustrates the material exchange between the single pieces of

process equipment, i.e. the crystallizer, the annular settling zone and the fines dissolution

unit, and across the liquid-solid phase boundary. Volumetric flows, molar fluxes (across

the phase boundary) and particle number fluxes are denoted by V̇i, ṅi and Ḟi, respectively.

2.2.1 Modelling of the Dispersed Solid Phase in the Crystallizer

Population Balance

The distribution of the crystals with respect to crystal size is described by the number

density function F (L, t) which represents the number of particles per crystal size at time

t. The size of a particle is represented by a characteristic length L, e.g. edge length in

the case of cubic particles. It is assumed that the shape of crystals is sufficiently constant,

such that the volume of an individual particle can be determined by VP = kV L3 with a

constant volume shape factor kV .

In modelling the crystallization process, it is further assumed that the overall volume of

suspension in the crystallizer V is kept constant, that the process is operated isothermally

at temperature T and that there are no crystals in the feed. Finally, secondary nucle-

ation and more specifically attrition due to crystal stirrer collisions is presumed to be the

predominant source of small crystals such that primary nucleation, homogeneous and het-

erogeneous, is negligible. Hence, the model cannot describe the startup of the crystallizer

from a crystal-free solution. However, once a continuous crystallizer is in operation there

is always a large amount of crystals present in the process generating reasonably many

attrition fragments. Furthermore, solute is consumed by growing crystals such that super-

saturation is relatively low and stays within the so-called metastable zone. Under these

conditions, it is very well justified to disregard primary nucleation.

The dynamic behaviour of the CSD F (L, t) is described by the population balance equa-

tion

∂F (L, t)

∂t
= −∂(G(σ(t), L)F (L, t))

∂L
− Ḟdis(L, t) − ḞProduct(L, t)

+ḞAZ,back(L, t) − ḞAZ,in(L, t) + Ḟattr(L, t) (2.1)

9



with initial and boundary conditions

F (L, 0) = F0(L) (2.2)

F (0, t) = 0. (2.3)

Deviating from usual notation, absolute supersaturation is denoted by σ. The common

notation (Δc) is prohibited here because Δ is used later on to denote deviations from

steady state. Relative supersaturation, for which the symbol σ is used oftentimes, does

not occur in this thesis. Further, note that symbols of the form Ḟi do not denote time

derivatives but they represent number density fluxes due to different effects influencing

the number density function F (L, t). The CSD changes in time due to crystal growth with

growth rate G(σ, L), dissolution of small crystals with number density flux Ḟdis, product

removal ḞProduct, exchange with the annular zone ḞAZ,back and ḞAZ,in, and attrition due

to crystal stirrer collisions Ḟattr. An overview on these individual phenomena is given in

the following. Only the principal ideas are presented here. The technical details as well

as parameter values can be found in Appendix A or in [66].

Crystal Growth

The growth rate expression

G(σ, L) = 2kd(L)

⎛
⎝ σ

cS

+
kd(L)

2krcS

−
√(

kd(L)

2krcS

)2

+
kd(L)σ

krc2
S

⎞
⎠ (2.4)

is reported in [63]. It takes into account the effect of diffusion of solute molecules towards

the crystal surface and the integration of these molecules into the crystal lattice. The

driving force for crystallization due to [27] is

σ = cL,A − cL,A,sat = cL,A − cL,A,sat,ideal e
ΓS

RTL , (2.5)

where cL,A is the concentration of solute (component A) in the liquid phase and cL,A,sat

is the concentration at saturation. Saturation concentration is defined to be exactly the

condition under which a particle does not grow and is not dissolved. This concentration

depends on the particle itself. The length dependence described in equation (2.5), which

was proposed in [27], is due to internal lattice strain in crystal fragments. As primary

nucleation is neglected, it is assumed that all crystals have originally been generated by

attrition. The collision causes a strain in the crystal lattice of attrition fragments, which, in

turn, causes them to dissolve more easily. This effect decreases with the crystal becoming
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bigger. Consequently, small crystals have a higher solubility than big ones. The saturation

concentration for an ideal crystal with no internal lattice strain, e.g. generated by primary

nucleation, is denoted by cL,A,sat,ideal.

Because of the length dependence of saturation concentration cL,A,sat in equation (2.5)

the driving force σ is negative for small crystals. This leads to a negative growth rate,

which means that the very small crystals are not growing but are becoming smaller and

will finally disappear. For negative growth, surface integration is, of course, irrelevant.

Therefore, the growth rate for negative driving force σ < 0 is given only by the diffusion

limited part, i.e. the first addend, of equation (2.4).

Dissolution of Small Crystals

Crystals are not stable below a certain length Lcrit. Small crystals with negative growth

rate finally become smaller than Lcrit and, hence, disappear from the population. This is

described by the number flux

Ḟdis(L, t) = (1 − h(L − Lcrit))DdisF (L, t) (2.6)

with dissolution rate Ddis and the Heaviside step function h(•). If particles are assumed

to disappear immediately when reaching the critical size, the dissolution rate has to be

infinite.

Product Removal

Product removal is assumed to be representative, i.e. the product slurry discharged from

the crystallizer has the same composition and in particular the same CSD as the suspen-

sion inside the crystallizer. Therefore, the number flux due to product removal is

ḞProduct(L, t) =
V̇Product

V
F (L, t) (2.7)

where V̇Product is the volumetric flow rate of product removal.

Exchange with the settling zone

The conditions inside the settling zone are treated in detail in Chapter 2.2.3. The number

fluxes due to exchange of crystals between crystallizer and annular zone are described

there.
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Attrition Due to Crystal Stirrer Collisions

A detailed investigation of fragment formation due to collisions of crystals with the stirrer

has been reported in [26] and is briefly summarized in this paragraph. Attrition effects

can be described by a sum of three number fluxes

Ḟattr(L, t) = −Ḟ−
attr(L, t) + Ḟ+

attr,1(L, t) + Ḟ+
attr,2(L, t). (2.8)

This accounts for the three effects of a collision event. First, a crystal of a certain size

disappears because of being abraded. Second, a crystal slightly smaller than the original

one is generated instead and, third, a couple of small attrition fragments are produced.

See Figure 2.3 for an illustration. The sink term is expressed as

Ḟ−
attr(L, t) =

Rst∫
0

β̄(L, r)F (L, t) dr = β(L)F (L, t). (2.9)

The attrition rate β(L) is defined as an integral over the stirrer radius based attrition rate

β̄(L, r), where r represents the radial position where a crystal hits the stirrer and Rst is

the stirrer radius. The attrition rate depends on the geometry and speed of the stirrer and

physical properties of the liquid phase, see Appendix A.1 or the original work [26].

The source term accounting for the formation of abraded crystals is

Ḟ+
attr,1(L, t) =

Rst∫
0

(
β̄
(
L′

edge(L, r), r
)
F (L′

edge(L, r), t)+

β̄ (L′
blade(L, r), r) F (L′

blade(L, r), t)
)

dr (2.10)

where L′
edge/blade(L, r) is the length of an original crystal that produces an abraded crystal

of length L when colliding with the edge/blade of the stirrer at radial position r. Due to

the conservation of volume during an attrition event, the length L′
edge/blade(L, r) can be

obtained from

kV L′3
edge/blade − kV L3 − Vattr,edge/blade(L

′
edge/blade, r) = 0 (2.11)

where the volume abraded from a crystal of length L′ colliding with the stirrer edge/blade

at radial position r is Vattr,edge/blade(L
′, r). This volume depends on the geometry and

speed of the stirrer and physical properties of the crystalline material.
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Figure 2.3: Attrition of crystal colliding with the stirrer

Finally, the source term describing the generation of small attrition fragments is given by

Ḟ+
attr,2(L, t) =

Rst∫
0

∞∫
L

(
Nfrag,edge(L

′, r)ffrag,edge(L
′, L, r)β̄(L′, r)F (L′, t)+

Nfrag,blade(L
′, r)ffrag,blade(L

′, L, r)β̄(L′, r)F (L′, t)
)

dL′ dr, (2.12)

where ffrag,edge/blade(L
′, L, r) represents the size distribution of fragments with respect

to length L generated from a crystal of length L′ colliding with the stirrer edge/blade

at r. The integral over crystal size L′ reflects the fact that attrition fragments of length

L can be produced from attrition events at any size L′ > L. The number of fragments

Nfrag,edge/blade(L
′, r) generated from a crystal of length L′ colliding with the stirrer at

position r has to satisfy the volume condition

Vattr,edge/blade(L
′, r) = Nfrag,edge/blade(L

′, r)kV

Lfrag,max,edge/blade(L
′)∫

Lfrag,min

L3ffrag,edge/blade(L
′, L, r) dL. (2.13)

This CSD, again, depends on the geometry and speed of the stirrer and on physical prop-

erties of the crystalline material. For explicit expressions for all quantities used in this

paragraph see Appendix A.1. For further details on the physical background the reader is

referred to [26].
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2.2.2 Modelling of Liquid Phase in the Crystallizer

The liquid phase in the crystallizer can be described by two differential equations, one for

the amount of moles of solution nL and one for the amount of moles of solute nL,A

dnL(t)

dt
= cFeed,LV̇Feed − cL(t)V̇Product,L(t) + cFD,L(t)V̇FD,out(t)

−cL(t)V̇AZ,L,in(t) − cBV̇vap − (ṅg(t) − ṅdis(t)) (2.14)
dnL,A(t)

dt
= xFeed,L,AcFeed,LV̇Feed − xL,A(t)cL(t)V̇Product,L(t)

+xFD,L,A(t)cFD,L(t)V̇FD,out(t) − xL,A(t)cL(t)V̇AZ,L,in(t)

−(ṅg(t) − ṅdis(t)) (2.15)

with appropriate initial conditions

nL(0) = nL,0, and nL,A(0) = nL,A,0, (2.16)

where xL,A, xFeed,L,A and xFD,L,A are the mole fractions (moles of solute per moles of

solution) in the crystallizer, in the feed and the fines dissolution reflux. The volumetric

flow rates and molar concentrations (moles of solution per m3 of solution) of feed, fines

dissolution reflux and vapour stream are denoted by V̇i and ci, respectively, with the cor-

responding indices. The mole fluxes between solid and liquid phase due to crystal growth

and dissolution of small crystals are denoted by ṅg and ṅdis, respectively. The expressions

for these mole fluxes can be easily derived

ṅg(t) =
3kV ρA

MS

∞∫
0

L2G(σ(t), L)F (L, t) dL (2.17)

ṅdis(t) =
kV ρA

MS

Lcrit∫
0

L3Ddis(L)F (L, t) dL. (2.18)

Due to the volume constraint V = const. the two differential equations (2.14) and (2.15)

can be replaced by a single equation for the mole fraction xL,A describing the composition

of the liquid phase

nL(t)
dxL,A(t)

dt
= cFeed,LV̇Feed(xFeed,L,A − xL,A(t))

+cFD,L(t)V̇FD,out(t)(xFD,L,A(t) − xL,A(t))

+xL,A(t)cBV̇vap − (1 − xL,A(t))(ṅg(t) − ṅdis(t)) (2.19)
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with initial condition

xL,A(0) = xL,A,0. (2.20)

Assuming an ideal mixture, the number of moles of solution nL can then be calculated

from the volume of the liquid phase

nL(t) =
VL(t)ρAρB

xL,A(t)MAρB + (1 − xL,A(t))MBρA

. (2.21)

The liquid phase volume is given by

VL(t) = V − VS(t) = V − kV

∞∫
0

L3F (L, t) dL. (2.22)

The feed rate V̇Feed is adjusted such that the volume condition (2.22) is satisfied, i.e. the

liquid volume is varied in order to keep the overall volume of slurry constant. Besides the

mole fraction xL,A, an alternative way to describe the composition of the liquid phase is

the molar concentration

cL,A =
nL

VL

xL,A, (2.23)

which is used in the definition of supersaturation σ in equation (2.5).

2.2.3 Modelling of the Dispersed Solid Phase in the Settling Zone

It is assumed that the volume of slurry in the annular settling zone is constant and that

crystal growth, dissolution and attrition can be neglected [66]. Then, the CSD in the

annular zone FAZ(L, t) only changes due to in- and outflow terms. Therefore, its temporal

behaviour can be described by the simple population balance equation

∂FAZ(L, t)

∂t
= ḞAZ,in(L, t) − ḞAZ,out(L, t) − ḞAZ,back(L, t) (2.24)

with initial and boundary conditions

FAZ(L, 0) = FAZ,0(L) (2.25)

FAZ(0, t) = 0. (2.26)

The particle number flux from the crystallizer to the settling zone is

ḞAZ,in(L, t) =
V̇AZ,in

V
F (L, t) (2.27)
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where V̇AZ,in is the volumetric flow rate entering the annular zone. Due to the discharge

of slurry at the top of the settling zone, a vertical flow from bottom to top is generated

with velocity V̇AZ,out/AAZ where AAZ is the cross sectional area of the settling zone.

However, due to gravitation the particles are forced in the opposite direction with a set-

tling velocity vs(L, εAZ,S) depending on particle size and the solids content of the slurry

εAZ,S = VAZ,S/VAZ inside the baffle zone. Superposing the upwards and downwards

motion yields the effective particle velocity in the annular settling zone [66]

vAZ(L, εAZ,S(t)) =
V̇AZ,out(t)

AAZ

− vs(L, εAZ,S(t)). (2.28)

Small particles are dragged along with the upward flow, leave the annular zone and enter

the fines dissolution unit. This results in the particle number flux

ḞAZ,out(L, t) =
max(0, vAZ)

hAZ

FAZ(L, t), (2.29)

with height of the annular zone hAZ . For large particles the resulting velocity

vAZ(L, εAZ,S) is negative. Therefore, these particles settle and finally return to the crys-

tallizer with the particle number flux

ḞAZ,back(L, t) = −min(0, vAZ)

hAZ

FAZ(L, t). (2.30)

2.2.4 Modelling of the Liquid Phase in the Settling Zone

From a mole balance for the liquid phase in the settling zone the differential equation

nAZ,L(t)
dxAZ,L,A(t)

dt
= cL(t)V̇AZ,L,in(t)xL,A(t) − cAZ,L(t)V̇AZ,L,out(t)xAZ,L,A(t) (2.31)

with initial condition

xAZ,L,A(0) = xAZ,L,A,0 (2.32)

for the mole fraction in the annular zone xAZ,L,A can be derived. It accounts for inflow

from the crystallizer and outflow to the fines dissolution unit. The overall volumetric flow

rate leaving the annular zone

V̇AZ,out(t) = V̇AZ,L,out(t)+V̇AZ,S,out(t) = V̇AZ,L,out(t)+kV

∞∫
0

L3ḞAZ,out(L, t) dL (2.33)

to the fines dissolution unit is equivalent to the fines dissolution flow rate that can be

chosen by the operator of the crystallizer. The flow rate to the settling zone V̇AZ,in is

adjusted such that the overall volume of slurry in the annular zone is kept constant

VAZ = VAZ,L(t) + VAZ,S(t) = const. (2.34)
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2.2.5 Modelling of the Fines Dissolution Unit

It is assumed that crystals entering the fines dissolution unit are completely dissolved and

clear solution with an increased solute content is returned to the crystallizer after a delay

time τFD. The mole fraction entering the crystallizer from the fines dissolution loop,

therefore, is

xFD,L,A(t) =
xAZ,L,A(t − τFD)cAZ,L(t − τFD)V̇AZ,L,out(t − τFD) + ṅFD(t)

cAZ,L(t − τFD)V̇AZ,L,out(t − τFD) + ṅFD(t)
. (2.35)

with the mole flux from solid to liquid phase due to fines dissolution

ṅFD(t) = cSkV

∞∫
0

L3ḞAZ,out(t − τFD) dL. (2.36)

2.3 Comparison to Real Plant

The Laboratory for Process Equipment at Delft University of Technology operates a

1000 litre evaporative DTB crystallizer. A detailed description, operating conditions and

parameter values of this plant can be found in [43, 61, 75]. All necessary parameter values

are collected in Appendix A.2. In experiments, it was found that this crystallizer exhibits

sustained oscillations when operated at high fines dissolution rates, see [6, 14].

It was shown in [66, 68] that the model presented in Chapter 2.2 does not predict the

oscillatory behaviour which was observed in the real plant. In [6] a model with the same

growth and attrition kinetics was presented, which, in addition, accounts for spacial non-

homogeneity of the system states by decomposing the crystallizer into several spacial

compartments. Although it correctly predicts some aspects of the crystallizer behaviour,

this model also fails to predict the sustained oscillations correctly.

Therefore, in [66, 68] an additional effect was incorporated into the fines dissolution

model. As depicted in Figure 2.1 and described in Chapter 2.1 the hot reflux stream from

the fines dissolution unit reenters the crystallizer at the lower part of the settling zone,

the region where mainly large crystals accumulate before they return to the well mixed

part of the crystallizer vessel. It is argued that the hot, undersaturated solution entering

from the fines dissolution unit generates a local undersaturation in an area where mainly

large crystals are present. This leads to the dissolution of large crystals. This effect

is incorporated into the model by formally modifying the rise/sink velocity of particles
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vAZ in the settling zone as if large particles were also dragged into the fines dissolution

unit. In the range of 0.8 mm ≤ L ≤ 1.3 mm a linear slope is added, starting from 0 for

L = 0.8 mm rising up to 50% of the maximum velocity of small particles at L = 1.3 mm.

For a graphical illustration, see Figure 2.4.
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Figure 2.4: Rise/sink velocity vAZ of particles, at εAZ,S = 5.17%.

With this extension the model produces sustained oscillations for values of the fines dis-

solution rate where oscillations actually occur in the real plant. In [6], measurements of

the mass median crystal size L50 are reported. The mass median crystal length L50 is

defined such that half of the overall crystal mass mS(t) is contributed by crystals smaller

than L50, i.e.

kV ρA

L50(t)∫
0

L3F (L, t) dL =

kV ρA

∞∫
0

L3F (L, t) dL

2
=

mS(t)

2
. (2.37)

In [68] it is shown that the period of oscillations in the simulation matches almost perfectly

with experimental data. The amplitude of the oscillations of the mass median crystal size

L50 are also matched fairly well.

2.4 Discussion

A detailed population balance model has been presented, which takes into account crystal

growth, attrition due to crystal stirrer collisions and dissolution of the very small imperfect
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attrition fragments. Furthermore, the model comprises a separate population balance for

the annular settling zone describing the classifying effect of the settling zone which is

exploited for fines dissolution.

The intention when developing this model clearly was to gain a more thorough under-

standing of the crystallization process under consideration and to obtain a model which

is scalable and predictive. To achieve this, the physical and chemical phenomena taking

place on a microscopic level were modelled in detail and incorporated in the overall pro-

cess model. Great effort has been taken to make the model as physically meaningful as

possible. All parameters in the model are either measurable directly or can be obtained

from separate experiments. But the determination of parameters does not require any

experiments on the actual plant to be modelled. The only point that deviates from this

modelling principle is the last part. The dissolution of large particles due to the under-

saturated fines reflux is only considered qualitatively but has not yet been modelled in its

physical details.

Nevertheless, with respect to the objectives of scalability, predictiveness and physical

meaning this model is excellent. These features make the model well suited for process

design purposes. The effects of different crystallizer design variants and operating con-

ditions can be tested in simulation studies before the actual plant is set up. However,

accuracy and predictiveness do not come for free. The price to be paid is model com-

plexity. For further analytic investigations such as computation of steady states and the

testing of their stability or as a basis for controller design, the model presented in this

chapter is too complex. For the latter purpose, in the following a simplified population

balance model is derived from the detailed one presented so far.
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Chapter 3

Model Simplification

3.1 Introduction

As already Aristotle asserted, precision is not a value-in-itself but the adequate degree of

precision depends on the subject to be studied ”for it is the mark of an educated man to

look for precision in each class of things just so far as the nature of the subject admits”[3].

If the purpose of a process model is to assist the design of a new crystallization plant, then

the model necessarily needs to be predictive as discussed in Section 2.2. High model ac-

curacy, for this application, is indispensable. The model described in the previous chapter

would very well serve that purpose. However, as a basis for controller synthesis it is suffi-

cient to use a model which is capable of describing the behaviour of a particular existing

plant - the plant to be controlled. For control purposes other aspects are of importance.

On the one hand, the purpose of incorporating a feedback controller into a system is to

make the process more robust with respect to uncertainties. Hence, the underlying model

does not have to capture the real process in complete detail. But, on the other hand, based

on a more accurate process model it is, in many cases, possible to design controllers

with superior performance. Furthermore, any model based controller synthesis method

is only able to handle a specific class of models, such as e.g. continuous-time, linear,

finite-dimensional, time-invariant single-input-single output models, for which controller

synthesis has been studied most extensively. Consequently, there is an interplay between

the control objective which can be reached, the structure (and a potential reduction or sim-

plification) of the process model and the choice of a controller synthesis method. Based

on these considerations, in this chapter a simpler model is derived.
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The original model is distributed with respect to a property coordinate and, hence, from

a system theoretic point of view it is infinite-dimensional. This is an essential character-

istic of the system which, therefore, is to be conserved during the model simplification

procedure.

Because the objective of the subsequent controller design is the stabilization of an un-

stable steady state, it can be argued that the process will be kept close to a steady state

and, therefore, a linearized process model is adequate to describe the system’s behaviour

within the operating region. Hence, linearization of the system will be part of the model

simplification. A representation of linear systems which is particularly useful for con-

troller design purposes is a transfer function. Since the system is infinite-dimensional the

transfer function derived in this chapter is transcendental. Further simplification could be

achieved by lumping the distributed system. However, as described in Chapter 4 there ex-

ist appropriate controller synthesis methods for plants described by transcendental transfer

functions. Hence, lumping of the system can be avoided.

To enable the derivation of a transfer function the Laplace transformed linearized partial

differential equations involved in the model have to be solvable analytically. To achieve

this, the particle number fluxes due to attrition, nucleation and dissolution of particles, the

crystal growth rate expression and the description of annular settling zone and fines dis-

solution unit are reformulated based on physical considerations. In this step, parameters

are introduced which have to be determined by fitting steady state values of the sim-

plified model to results obtained from simulation of the original model or, alternatively,

to measurement data acquired from experiments with the plant to be modelled. Hence,

predictiveness of the model is sacrificed in this step for the sake of model simplicity.

More precisely, parameter values are obtained in three different ways. Some of them, e.g.

overall volume of the crystallizer content, can be taken directly from the description of

the physical system, i.e. they can be copied from the detailed model. Some parameters

are determined by curve fitting to approximate the kinetics used in the detailed model

with simpler expressions. The third way parameters are chosen is to match certain steady

state simulation results of the detailed model. Since the detailed model exhibits sustained

oscillations the steady state is not reached in simulations. Analytic determination of the

steady state is also not possible, as already mentioned before. Hence, steady state values

are taken from simulations of the detailed model disregarding the dissolution of large

particles due to the reflux of undersaturated solution from the fines dissolution unit, which

was discussed in Chapter 2.3. This model is stable and so a steady state is achieved in

simulations. Parameters of the simplified model are chosen such that the overall crystal
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mass, the supersaturation and the maximum crystal length of the simple model derived in

this chapter are in agreement with the detailed model, where in both cases the dissolution

of large particles is disregarded. Then, adding the dissolution of large crystals makes both

models oscillate. Note that for the simplified model the steady state can be determined

analytically, such that this procedure does not involve simulation of the simplified model.

All parameter values for the simplified model are listed in Appendix A.3.

In the following, the original complex model presented in the previous chapter is referred

to as the reference model. The simplified model to be derived in this chapter is called

design model as it will, later on, serve as a basis for controller design.

The remainder of the chapter is organized as follows. First, the particle number fluxes

are reformulated to obtain a simpler population balance model. Second, this model is

linearized around a desired operating point. Then, the system is in a form such that an

irrational transfer function can be obtained by Laplace transformation.

3.2 Simplified Population Balance Model

3.2.1 Dispersed Solid Phase in the Crystallizer

To start with, the same population balance equation (2.1) as in the reference model is

used. However, the number fluxes occurring in this equation are simplified.

Crystal Growth

The growth rate G(σ, L) in the reference model, (2.4), is a complex nonlinear function of

crystal length L and the driving force for crystal growth σ. This function is approximated

by an expression where a piecewise linear dependence on L is multiplied by a simple

power law of σ

G(σ, L) = kgσ
g ·

(
L(1 − h(L − Lgrowth))

Lgrowth

+ h(L − Lgrowth)

)
,

=

{
kgσ

g L
Lgrowth

, L < Lgrowth

kgσ
g, L ≥ Lgrowth

(3.1)
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where h(L) is the Heaviside step function. The driving force for crystallization (2.5) is

redefined using the ideal saturation concentration cL,A,sat,ideal

σ = cL,A − cL,A,sat,ideal

neglecting effects of non-ideal crystal structure. Values for the length Lgrowth and the

exponent g are obtained by curve fitting, see Figure 3.1. The parameter kg is chosen such

that the third moment of the CSD at steady state determined with the simplified model

matches the corresponding value obtained with the reference model.
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Figure 3.1: Original and approximated growth rates versus crystal length L at values of

cL,A from 4, 282mol
m3 to 4, 287mol

m3 (left) and versus concentration cL,A at values of L from

0.1 mm to 1.1 mm (right).

Dissolution of Small Crystals

Since the correction of the ideal saturation concentration accounting for crystal imperfec-

tion is neglected, dissolution of small fragments, (2.6), is also disregarded

Ḟ−
dis = 0. (3.2)

Attrition due to crystal-stirrer collisions

In the reference model, attrition is described by three terms: a sink term Ḟ−
attr due to large

crystals that collide with the stirrer, (2.9), a source term Ḟ+
attr,1 due to the generation of

abraded large crystals with a characteristic length somewhat smaller than the length of the

23



original crystal, (2.10), and finally a source term Ḟ+
attr,2 for the production of Nfrag small

fragments with the size distribution ffrag, see equation (2.12).

For the design model, the combination of the sink term Ḟ−
attr and the source term Ḟ+

attr,1

accounting for the generation of slightly smaller crystals is replaced by a negative growth

expression with the rate

Gattr(L) = kg,attr (L + 3(L − Lg,attr)h(L − Lg,attr))

=

{
kg,attrL, L < Lg,attr

kg,attr(4L − 3Lg,attr), L ≥ Lg,attr

. (3.3)

This qualitatively captures the fact that crystals become smaller due to attrition. The

piecewise linear shape of Gattr(L) (see Figure 3.2) reflects the fact that large particles are

abraded at a higher rate than small ones. This determines the reformulation of the first

two number fluxes due to attrition

Ḟ+
attr,1(L, t) − Ḟ−

attr(L, t) = −∂[Gattr(L)F (L, t)]

∂L
. (3.4)

The length Lg,attr where the corner occurs in the shape of Gattr(L) is chosen in the mid-

dle of the possible size range. The growth coefficient kg,attr is determined such that the

effective growth rate at steady state conditions is zero for the maximum crystal length

Lend

Geff (Lend, σss) = 0,

where Geff is the sum of the physical growth rate G and the negative growth rate due to

attrition Gattr

Geff (L, σ) = G(σ, L) + Gattr(L).

This means that for a crystal which is larger than Lend the decrease in size due to attrition

is faster than the size increase due to growth. In effect, the crystal becomes smaller.

Hence, at steady state no crystals larger than Lend exist according to the simplified model.

The maximum steady state crystal length Lend and the steady state concentration cL,A,ss

are obtained from simulation of the reference model.

The remaining source term Ḟ+
attr,2 describing the production of small crystal fragments in

the reference model is defined in equation (2.12). For the simplified model it is assumed

that all attrition fragments are produced with the same length L0 where Lfrag,min < L0 <

Lfrag,max. This means, that the size of attrition fragments is assumed to be independent

of the size of the original large crystal L′ and independent of the radial position r at which

the crystal hits the stirrer. Hence, the distribution of the fragments ffrag(L
′, L, r) in (2.12)
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Figure 3.2: Negative growth rate due to attrition.

is replaced by a Dirac impulse δ(L − L0). Since this function is independent of L′ and r,

the corresponding source term can be rewritten as

Ḟ+
attr,2(L, t) = δ(L − L0)

∞∫
L

⎛
⎝ Rst∫

0

Nfrag(L
′, r)β̄(L′, r) dr

⎞
⎠

︸ ︷︷ ︸
βfrag(L′)

F (L′, t) dL′ . (3.5)

where βfrag(L
′) is the rate of fragment formation due to attrition. Since attrition is as-

sumed to be the only source of nuclei and dissolution of small fragments is neglected, L0

is the smallest length where crystals occur. Inserting the modified attrition expressions

(3.4) and (3.5) into the population balance equation (2.1) and integrating it over the size

domain from L = 0 to L = L0+ (where L0+ is an abbreviation for the right hand side

limit lim
L→L0

L, L > L0) yields

L0+∫
0

∂F (L, t)

∂t
dL =

L0+∫
0

(
− ∂(Geff (σ, L)F (L, t))

∂L
− ḞProduct

+δ(L − L0)

∞∫
L

βfrag(L
′)F (L′, t) dL′ + ḞAZ,back − ḞAZ,in

)
dL. (3.6)

Since there are no crystals smaller than L0, i.e. F (L, t) = 0, L < L0, this equation can

be simplified as follows

0 = −Geff (σ, L0)F (L0, t) +

∞∫
L0

βfrag(L
′)F (L′, t) dL′. (3.7)
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If the size range on which the population balance equation (2.1) is defined is confined to

L > L0, then the left boundary condition is defined by the formation of attrition

F (L0, t) =

∞∫
L0

βfrag(L)F (L, t) dL

Geff (σ, L0)
. (3.8)

In the reference model, the production rate of fragments βfrag(L) is a complex nonlinear

function depending on the geometry and speed of the stirrer and physical properties of

the crystalline material and the liquid phase [26]. For the use in the simplified model,

this function is approximated by a power law of the form kbL
b. Finally, the boundary

condition for the simplified model is defined as

F (L0, t) =
B(t)

Geff (σ, L0)
, (3.9)

where

B(t) = kb

∞∫
L0

LbF (L, t) dL (3.10)

is the rate of particle formation due to attrition. The minimum crystal length L0 is chosen

such that

cL,A,sat,ideale
ΓS

RTL0 = cL,A,ss, (3.11)

i.e. the driving force for crystallization at steady state conditions according to (2.5) is

zero for crystals of size L0. This means, L0 is the size at which the steady state growth

rate is 0. Crystals smaller than L0 observe a negative growth rate and, therefore, vanish

eventually. The nucleation coefficient kb in (3.9) is chosen such that the steady state

solute concentrations cL,A,ss obtained with the simplified model and the reference model

are equal. For a graphical illustration of the simplified attrition model see Figure 3.3,

which is to be compared to the original version in Figure 2.3.

3.2.2 Reformulation of Solute Mole Balance for the Crystallizer

The process under consideration is an evaporative crystallizer where solvent is evaporated

at a constant vapour flow rate V̇vap. Instead of including the evaporation explicitly in the

model it can be captured equivalently by decreasing the value of the inlet flow rate V̇Feed

by the amount of the vapour outflow V̇vap and increasing the feed concentration cFeed,L,A

accordingly, such that the inlet mole flux of solute V̇Feed · cFeed,L,A is maintained.
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Figure 3.3: Attrition of crystal colliding with the stirrer, simplified version. (Compare to

Figure 2.3)

Assuming that the mixture of solute and solvent is ideal and the volume change due

to crystallization is negligible, the requirement of constant total volume V = const.

implies that the volumetric in- and outflow rates are equal V̇Feed = V̇Product. Under these

assumptions, the solute mole balance describing the liquid phase (2.15) can be expressed

in terms of the solute concentration cL,A by the following ODE

dnL,A

dt
= V

d(εLcL,A)

dt
= (cFeed,L,A − cL,AεL) V̇Feed + ṅFD,out

−cL,AεLV̇AZ,in − 3ρAkV

MA

L∞∫
L0

L2G(σ, L)F (L, t)dL, (3.12)

with liquid volume fraction εL

εL =
VL

V
= 1 − kV

V

L∞∫
L0

L3F (L, t)dL. (3.13)

The molar flux entering the crystallizer from the fines dissolution unit ṅFD,out is defined

in the following chapter where fines dissolution is treated in more detail.

3.2.3 Settling Zone and Fines Dissolution Loop

In the reference model it is assumed that no nucleation, growth or attrition occurs in the

annular settling zone. Consequently, the dynamics are only determined by the in- and

outflow terms from the crystallizer to the settling zone, from there to the fines dissolution
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unit and from the annular zone back to the crystallizer due to backmixing, see equation

(2.24).

The settling zone exerts two effects on the crystallizer. First, it is responsible for the

separation of fines. Second, the annular zone represents an additional volume for the

crystallizer. In order to simplify the crystallizer model, in the following these two effects

are treated completely separately and independent of each other.

First, to incorporate the volume of the annular zone into the crystallizer model it is as-

sumed that the suspension inside this zone is ideally mixed. Hence, the settling zone can

be regarded as a dead volume which is connected to the crystallizer. In a first step, the

V VAZ

crystallizer annular zone

cL ,A,AZ(t)
FAZ(L , t)

cL ,A(t)
F(L , t)

Ḟ−
F D(L , t)

ṅF D,out(t)

fines dissolution

ḞAZ ,in(L , t)
V̇AZ ,in

ḞAZ ,back(L , t)

V̇AZ ,out = V̇AZ ,in

Figure 3.4: Illustration of simplified model.

separation effect is not considered. Consequently, at this point the flux of small crystals

from the annular zone to the fines dissolution unit is neglected

ḞAZ,out = 0. (3.14)

Furthermore, it is assumed that the solids content in the flow going back to the crystallizer

is representative

ḞAZ,back(L, t) =
V̇AZ,out(t)

VAZ

FAZ(L, t). (3.15)

Under these assumptions it follows from the requirement of constant volume of slurry in

the annular zone (2.34) that the volumetric in- and outflow rates are equal

V̇AZ,out(t) = V̇AZ,in(t). (3.16)

Consequently, the incoming particle flux from the crystallizer to the settling zone (2.27)

is

ḞAZ,in(L, t) =
V̇AZ,out(t)

V
F (L, t). (3.17)
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The purpose of this model is to study a crystallizer under operating conditions which

lead to sustained oscillations. These operating conditions are primarily characterized by

extensive fines dissolution. This means, the volumetric flow rate to the fines dissolution

unit V̇AZ,out is large. Under this condition it is justified to assume that the residence time

in the annular zone is small compared to the time constants of crystal growth and attrition.

Consequently, the settling zone can be regarded quasi-stationary, i.e. the time derivative

in (2.24) is set to zero. This leads to

ḞAZ,in(L, t) − ḞAZ,out(L, t) − ḞAZ,back(L, t) = 0 (3.18)

and with the simplified expressions for the number fluxes entering and leaving the annular

zone (3.14), (3.15) and (3.17) it follows that

FAZ(L, t)

VAZ

=
F (L, t)

V
. (3.19)

This means that the volume based CSDs (number of crystals per crystal length and vol-

ume of slurry) in the crystallizer and the settling zone are equal. To check if the model

simplification derived for the settling zone, cumulating in equation (3.19), is justified, in

Figure 3.5 the volume based mass density functions in the crystallizer, kV ρAL3F (L,t)
V

, and

the annular zone, kV ρAL3FAZ(L,t)
VAZ

, obtained from a simulation of the reference model are

plotted. The mass density representation of the CSD (mass of crystals per crystal length)

is shown rather than the number density function because it illustrates the shape of the

CSD more intuitively. The CSDs are plotted at four time instances during one period of

oscillation. It can be seen that both curves are very similar except for a sharp peak around

L = 0.1 mm in the CSD in the annular zone. This peak is due to the fact that small parti-

cles are dragged along with the flow in the upward direction to the fines dissolution unit

and large particles have a downward velocity due to gravitational settling. For particles

around 0.1 mm both effects cancel out such that these particles accumulate in the settling

zone. This effect is not captured in the simplified model. However, for physical reasons

the existence of this accumulation effect is questionable anyway - particles with zero (or

downward) velocity probably do not enter the settling zone in the first place.

The dynamics of the liquid phase composition in the annular zone is also completely

determined by the in- and outgoing flows. Hence, with the same argument as above, the

mole balance can be treated as quasi-stationary. From (2.31) it follows with (3.16) that

0 = cL(t)xL,A(t) − cAZ,L(t)xAZ,L,A(t) (3.20)

which is equivalent to

cL,A(t) = cAZ,L,A(t). (3.21)
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Figure 3.5: Comparison of kV ρAL3F (L,t)
V

and kV ρAL3FAZ(L,t)
VAZ

.

i.e. the solute concentrations in the settling zone and the crystallizer are equal. Again,

to verify whether this simplification is justified, in Figure 3.6 the concentrations in the

crystallizer cL,A(t) and in the annular zone cL,A,AZ(t) are plotted for the time of one

period of oscillation. These are results obtained with the reference model. Obviously,

both concentrations are very similar during the entire time. Hence, the quasi-stationary

treatment of the annular zone appears to be reasonable.
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4282

4284
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c L,
A
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3 ]

crystallizer 
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Figure 3.6: Comparison of solute concentration in the crystallizer and in the settling zone.

Up to this point only the additional volume provided by the settling zone was consid-

ered, the separation of small crystals has been disregarded. To capture the effect of fines
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dissolution, an additional term ḞFD is introduced in the population balance (2.1). Fines

separation is modelled by a simple piecewise constant classification function hFD(L), see

Figure 3.7. This function approximates the separation effect of the annular zone. In addi-

tion, it captures the fact that large particles are dissolved due to the local undersaturation

produced by the hot reflux stream from the fines dissolution unit. The residence time in

0

1

L [μ m]

h F
D

(L
)

L
FD,large

 L
FD

 

FD,largek

Figure 3.7: Piecewise constant classification function hFD(L).

the fines dissolution loop τFD is neglected. Hence, the particle number flux due to fines

dissolution is

ḞFD(L, t) =
V̇AZ,out

V
hFD(L)F (L, t) (3.22)

and the mole flux from the fines dissolution unit to the crystallizer is

ṅFD,out(t) = cL,AεLV̇AZ,out +
ρAkV

MS

L∞∫
L0

L3ḞFD(L, t)dL. (3.23)

To justify the use of the simple classification function hFD(L), in Figure 3.8 the effective

classification function in the reference model ḞAZ,out

F (L,t)
is plotted for four different times

during a cycle period along with the classification function ḞFD

F (L,t)
=

V̇AZ,out

V
hFD(L) used

in the design model. The very large values occurring in the reference model around

L = 0.1mm in the top right and the lower left plot of Figure 3.8 are a result of the

sharp peaks seen in Figure 3.5, which have been discussed before. Apart from this rather

questionable effect, the simple classification function hFD(L) matches the results of the

reference models fairly well.

3.2.4 Summary of Simplified Model

Adding the population balances for the crystallizer (2.1) and the annular zone (2.24), tak-

ing into account (3.19) and (3.4), the final population balance equation for the crystallizer
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is obtained

V + VAZ

V

∂F (L, t)

∂t
= −∂(G(σ, L) + Gattr(L))F (L, t)

∂L

−ḞProduct(L, t) − ḞFD(L, t) (3.24)

where the number flux due to product removal is the same as in the reference model

(2.7) and the fines dissolution flux Ḟ−
FD is given in (3.22). The corresponding boundary

condition is

F (L0, t) =
kb

Geff (σ, L0)

∫ ∞

L0

LbF (L, t)dL. (3.25)

The growth rates G and Gattr (see (3.1) and (3.3)) are given by

G(σ, L) = kgσ
g ·

(
L(1 − h(L − Lgrowth))

Lgrowth

+ h(L − Lgrowth)

)
Gattr(L) = kg,attr (L + 3(L − Lg,attr)h(L − Lg,attr)) .
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Srat: reference model (solid line) and simplified design model (dashed).

Similarly, the final solute mole balance is obtained from (3.12) with (3.21) and (3.23)

(V + VAZ)
d(εLcL,A)

dt
= V̇Product (cFeed,L,A − εLcL,A)

+
ρAkV

MS

L∞∫
L0

L3 V̇AZ,out

V
hFD(L)F (L, t)dL

−3ρAkV

MS

L∞∫
L0

L2G(σ, L)F (L, t)dL. (3.26)

The parameters used in the design model are listed in Appendix A.3.

In order to check the validity of the model simplifications presented in this chapter, sim-

ulation results of the reference model and the design model are compared. Figure 3.9

shows the mass median crystal size L50, the overall mass of crystals and the relative su-

persaturation

Srat(t) =
cL,A(t)

cL,A,sat

, (3.27)

the driving force for crystallization, while the system is on its limit cycle. Obviously, the

period of the limit cycle is matched almost perfectly although relatively simple kinetic

expressions were chosen in the design model. Also, the shape of the signals and their

phase is matched quite well. However, there is a notable difference in the amplitude
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Figure 3.10: Comparison of mass density function during one oscillation period: refer-

ence model (solid line) and simplified design model (dashed).

of the oscillations for all three variables. In Figure 3.10, additionally, the mass density

function is presented at six equally spaced instances of time during one oscillation period.

In principle, the shapes of the mass density function match quite well. With both models

it can be observed how a peak grows through the size range and that a new peak of small

crystals is only formed when there is a significant amount of large crystals present. This

is the basic mechanism causing the oscillatory behaviour. However, also for the mass

density function there is a quantitative difference between the results obtained from the

reference and the design model.

Recapitulating, it can be stated that the simplified model reproduces the basic dynamic

behaviour of the process fairly well, which is important for controller design, but it is not

expected to predict the behaviour if, e.g., operating conditions were changed significantly.

3.2.5 Derivation of Transfer Function

In contrast to the reference model, for the simplified design model a steady state solution

can be derived analytically. The steady state size distribution

Fss(L) = C · exp

⎛
⎝−

L∫
L0

V̇Product+hFD(ξ)V̇AZ,out

V
+

∂Geff (ξ,σss)

∂ξ

Geff (ξ, σss)

⎞
⎠ dξ (3.28)
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is the solution of the ordinary differential equation (ODE) obtained from (3.24) by setting

the time derivative equal to 0. The constant C represents the steady state value of the

number density function at the lower boundary, i.e. Fss(L0) = C. Usually, it would

be expected that this constant could be determined by inserting the steady state solution

(3.28) into the boundary condition (3.9). However, since the boundary condition involves

an integral over the size distribution F (L, t) the constant C cancels. Instead, the resulting

nonlinear equation

Geff (σss, L0) =

kb

∞∫
L0

Lb exp

⎛
⎝−

L∫
L0

V̇Product+hFD(ξ)V̇AZ,out

V
+

∂Geff (ξ,σss)

∂ξ

Geff (ξ, σss)
dξ

⎞
⎠ dL (3.29)

determines the steady state driving force σss and thus the solute concentration cL,A,ss. The

constant C is obtained from the steady state version of the mole balance for the liquid

phase (3.26). Consequently, the steady state solute concentration cL,A,ss is independent of

the steady state solute concentration in the feed cFeed,L,A. If the inlet concentration is set

to a higher value, the steady state concentration does not change, but the constant C and

therefore the overall amount of crystals increases.

This unexpected qualitative behaviour which can be deduced easily from the simplified

model cannot be recognized so easily from the reference model. However, if the model

simplifications carried out in this chapter are reasonable, similar behaviour should be

found in the reference model. As the steady state cannot be calculated analytically the

effect can only be verified by simulations. In Figure 3.11 simulation results of the ref-

erence model are shown resulting from two different feed concentrations. First, the feed

solution is chosen to be saturated cFeed,LA = cL,A,sat. In a second simulation run the feed

solution is undersaturated by 1%, i.e. cFeed,LA = 0.99cL,A,sat. For this investigation the

steady state is to be inspected. Hence, the dissolution of large crystals due to the hot re-

flux stream from the fines dissolution unit is neglected such that the model is stable and

a steady state is reached. From Figure 3.11 it is obvious that the change in feed con-

centration has virtually no effect on steady state concentration. But, as expected from the

analytic results for the simplified model, the overall number of crystals (zeroth moment of

the CSD) settles at a lower value. This underlines the usefulness of the simplified model

for analyzing the qualitative system behaviour.

Besides the steady state (3.28), the simplified model also possesses a trivial steady state

F (L, t) ≡ 0, cL,A = cFeed,L,A, corresponding to C = 0. This would mean that no crystals

are formed at all if the process is started with a crystal-free solution – regardless of the
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Figure 3.11: Number of crystals and solute concentration cL,A for different values of feed

concentration.

level of supersaturation in the crystallizer. This, of course, is not a characteristic of the

real process but a result of neglecting primary nucleation. As mentioned in section 2.2.1

the model is not meant to describe the process under conditions where only very few or

very small crystals are present because in this case attrition is not the dominating source

of nuclei.

For controlling the process a manipulated variable is needed. In this thesis the volumetric

flow rate to the fines dissolution unit V̇AZ,out(t) is used to act on the process. The third

moment of the size distribution

m3(t) =

L∞∫
L0

L3F (L, t) dL (3.30)

is assumed to be measured. The third moment can be calculated from an online measure-

ment of the particle size distribution, e.g. by Focused Beam Reflectance Measurement

[44, 97].

The model equations (3.24), (3.26) and (3.9) with V̇AZ,out(t) as the system input are lin-

earized with respect to the desired steady state (3.28). Via Laplace-transformation an

ODE with independent variable L is obtained from the linearized population balance

equation. The particle number fluxes in (3.24) are such that this ODE can be solved ana-

lytically. From this solution F (L, s) together with the linearized and Laplace-transformed
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mole balance (3.26), a transfer function P (s) from manipulated variable V̇AZ,out to mea-

sured variable m3 can be obtained

Δm3(s) = P (s)ΔV̇AZ,out(s) =
QP1(s)

QP2(s)
ΔV̇AZ,out(s), (3.31)

where the Δ-expressions denote deviations from the steady state. For the technical details

on linearization and Laplace-transformation of the model and derivation of the transfer

function P (s) see Appendix C.

Both numerator QP1(s) and denominator QP2(s) of the plant transfer function P (s) are

quasi-polynomials of the form

QPi(s) =
∑

k

Pk(s)e
−τks, i = 1, 2 (3.32)

with polynomials Pk(s). Quasi-polynomials are transcendental functions and therefore

they have an infinite number of zeros [4]. Consequently, the plant transfer function P (s)

has infinitely many poles and zeros. This reflects the infinite-dimensional nature of the

system. The transfer function P (s) involves rather lengthy expressions, which were com-

puted using a computer algebra system. Although the expression for P (s) is not really

handy it can, of course, be evaluated numerically. Instead of stating the transfer function

explicitly it is more instructive to represent it graphically. Standard graphic representa-

tions of transfer functions are Bode and Nyquist plots of the corresponding frequency

responses. The Bode amplitude and phase plots of P (jω) are shown in Figure 3.12. The

Nyquist plot in the complex plane is given in Figure 3.13.

Furthermore, poles and zeros of P (s) can be computed numerically. The poles and zeros

lying in a section of the complex plane are shown in Figure 3.14. It can be seen that

there is one pair of unstable poles and two pairs of right half plane zeros. This implies

that the steady state considered here is unstable - as expected. Furthermore the system is

non-minimum phase. Based on this model, a stabilizing controller for the crystallization

process is synthesized in the following chapter.

3.3 Discussion

In this chapter, the detailed population balance model presented in the previous chapter

has been simplified based on physical considerations. The objective of this model sim-

plification was to obtain a model which is in a more suitable form for controller design.
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Figure 3.12: Bode plot of frequency response P (jω).
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Specifically, the model was reformulated such that a transfer function could be derived

describing the relation of fines flow rate and third moment of the CSD, which will serve

as manipulated and measured variable, respectively.

The simplifications involved

• replacing the kinetic expressions for crystal growth and attrition by simpler ones

• neglecting effects of crystal imperfection on saturation concentration

• quasi stationary treatment of the annular zone
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Figure 3.14: Poles × and zeros ◦ of the plant transfer function P (s).

• description of fines separation by a simple classification function.

In these simplifications, predictiveness of the model was sacrificed for model simplic-

ity. However, the resulting simplified model was shown in simulations to qualitatively

reproduce the dynamic behaviour of the reference model. In a second step, the nonlinear

model equations were linearized and Laplace-transformed. The simplified kinetic ex-

pressions introduced in the first simplification step had been chosen such that the ODE

resulting from the linearized, Laplace-transformed population balance equation could be

solved analytically. With this condition, it is possible to derive a transfer function for the

crystallization process. This transfer function is irrational and, therefore, has infinitely

many poles, which reflects the infinite-dimensional nature of the process. Based on this

irrational transfer function, feedback controllers are developed in the following chapter.
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Chapter 4

Controller synthesis

4.1 Introduction to Continuous Crystallizer Control

Research activities on feedback control of continuous crystallization are very much fo-

cused on processes exhibiting sustained oscillations. In this context, the purpose of feed-

back control is to stabilize an open-loop unstable steady state surrounded by a stable limit

cycle. This is an area of active research, see [87] for a profound review. There are several

open problems which have to be resolved for effective crystallizer control [39].

Any feedback controller needs on-line measurement information. Measuring the most im-

portant variables involved in crystallization, supersaturation and CSD, is not trivial. For

on-line measurement of supersaturation Fourier transform infra red spectroscopy (FTIR)

has been reported to be useful especially in combination with attenuated total reflec-

tion (ATR) probes, see e.g. [13, 54]. For an overview on supersaturation measurement

techniques see [55]. For on-line CSD measurement, several approaches are under inves-

tigation including techniques based on ultrasonic wave extinction, laser light diffraction

and focused beam reflectance (FBRM), [76, 97]. Several measurement devices are avail-

able commercially. The main drawback of these techniques is that the CSD is not directly

measured but has to be calculated from the measurement signals. These calculations are

often ill-conditioned and, therefore, difficult to do. They implicitly assume a certain fixed

shape of crystals, which in some cases may lead to corrupted results. Furthermore, im-

age analysis can be applied for the determination of CSDs. Imaging has the advantage

that also the shape of crystals can be determined. However, image analysis needs a lot

of computation time which makes it difficult to use as an on-line measurement. For all
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the techniques which can not be applied directly in the process (“in-line”) the problem

of drawing samples has to be solved. Comparability of CSDs obtained with different

measurement principles is an open problem as well. The influence of the choice of mea-

surement devices on controllability of the process is addressed in [15].

Apart from the need of on-line measurements, a further prerequisite for model based

control is a process model. As has been seen in the previous chapters, models for crys-

tallization processes are rather complex. Population balance models are of distributed

nature and they are usually nonlinear, which makes model based controller synthesis for

crystallization processes a challenging task. This is the problem addressed in this chapter.

In the literature, several different ways to deal with the model complexity problem have

been reported.

First, simple PID-type controllers can be used, where the tuning of the controller param-

eters does not require an explicit plant model, see e.g. [5, 52, 84, 88, 101]. In [87],

the major shortcoming of these simple controller designs is identified to be their lack of

explicit consideration of the issue of robustness with respect to uncertainty.

A second way to deal with the problem of model complexity is to use a relatively sim-

ple population balance model for which a closed set of moment equations can be de-

rived. Hence, the moment equations together with mass and energy balances form a

finite-dimensional model, which exactly reproduces the trajectories of the moments, the

solute concentration and the crystallizer temperature. Based on a moment model, in [72]

a multivariable controller is designed optimizing a quadratic cost functional. In [37], con-

trollability and observability of crystallization processes is investigated on the basis of

moment models. The main drawback of this approach is that it is not applicable to pro-

cesses with fines dissolution because in this case a term in the population balance equa-

tion is needed which cannot be expressed as a function of moments. Furthermore, for the

method of moments to be applicable all variables of interest – in particular the measured

and controlled variables – have to be functions of the state variables of the moment model,

i.e. the moments, solute concentration and crystallizer temperature.

Third, it is possible to base controller design on a finite-dimensional model obtained by

system identification methods or by training of an artificial neural network, see [14, 90].

Following this approach, no first principles model is needed. However, an identified

model does not provide as much insight into the system and does not promote the under-

standing of the process as a model derived from first principles does. Yet, understanding

the process to be controlled is of importance for an appropriate controller design.
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Fourth, it is possible to start with an infinite-dimensional population balance model,

approximate it by a finite-dimensional system, and design a controller using finite-

dimensional theory. In [17, 104], a population balance model is linearized and lumped

using the method of lines. Using the LQG approach, a linear, finite-dimensional SISO

controller is designed in [17]. In [9], a general method for the approximation of nonlin-

ear infinite-dimensional systems by finite-dimensional ones is presented. This approach

makes use of the method of weighted residuals in combination with the concept of ap-

proximate inertial manifold. Subsequently, an input-output-linearizing controller can be

designed based on the nonlinear, finite-dimensional approximated model. Unfortunately,

in the continuous crystallizer example presented in [9] this approximation method is not

applied but a simple population balance is used from which a moment model is derived.

In [10, 11] these ideas are extended by considering model uncertainty issues. In [102], a

multiple input - multiple output predictive control is developed employing a discretized

population model. More specifically, a nonlinear quadratic dynamic matrix control is

implemented using state estimation by an extended Kalman filter.

Results on the application of infinite-dimensional control theory to population balance

systems are rare. Approximate controllability of a population balance model for a contin-

uous crystallization process was proven in [98]. Recently, controller design for an oscil-

latory crystallizer using H∞-theory for infinite-dimensional systems [24] was reported in

[108] for a relatively simple population balance model. In [110], this approach has been

applied to the population balance model developed in Chapter 3. Both [108] and [110]

have been co-authored by the author of this thesis. This controller design procedure is

described in the remainder of this chapter.

4.2 Choice of Controller Synthesis Method

In the two previous chapters, a model of a crystallization plant has been derived which,

on one hand, captures the essential dynamic behaviour and represents the infinite-

dimensional nature of the plant. On the other hand it is in a form which is useful for

controller design. Namely, a transfer function from manipulated input to measured out-

put has been derived. Hence, Bode and Nyquist plots can be produced and the loca-

tion of poles and zeros of the system can be computed. This is standard information

on which classical linear controller design is based. Thus, control engineers’ intuition

can be applied, although dealing with an infinite-dimensional model. In particular, us-
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ing the Nyquist stability criterion a PID-type controller could be designed. However, the

transfer function P (s) represents the linearized version of an already simplified model.

If the controller is desired to work also with the original reference model the controller

has to be robust with respect to model uncertainties. H∞-theory provides a framework

for the systematic synthesis of controllers which guarantee stability and a certain level

of performance not only for the nominal model underlying the controller design process

but for a whole set of models containing the nominal design model. Thus, H∞-theory is

well suited for the design of robust controllers. H∞-theory is well established for linear,

time-invariant, finite-dimensional systems, see e.g. [116] for an excellent textbook. But

it has long been known that the basic considerations on robustness and performance carry

over to the infinite-dimensional case [25]. However, the computational methods used for

finite-dimensional systems are not applicable any more. The state space methods usually

employed for solving the H∞ minimization problem, i.e. the actual computation of a

controller, cannot be used in infinite dimensions since the system state is not a vector in

IRn. State space methods for infinite-dimensional systems were developed in [106]. This

approach involves the solution of operator Riccati equations and is therefore not applica-

ble easily. An alternative frequency domain approach was taken in [24, 78]. This method

is more easily implementable and is therefore employed here to synthesize controllers for

the crystallization process. It allows the solution of the mixed sensitivity problem, which

will be defined later on, for infinite-dimensional single-input-single-output (SISO) plants

with finite-dimensional weighting functions. In this approach, the idea of late lumping

is pursued. Controller design is based on the linearized distributed parameter model.

This results in a controller which is itself infinite-dimensional. For implementation, the

controller is approximated by a finite-dimensional transfer function. Thus, the system’s

distributed nature is preserved as long as possible in the controller design process.

Alternatively, an early lumping approach could be taken. This would involve the ap-

proximation of the plant transfer function by a rational, i.e. finite-dimensional, transfer

function. Then, finite-dimensional controller design techniques, e.g. standard H∞ theory,

could be applied. The advantage of this approach is that finite-dimensional H∞ controller

design is computationally simpler and more flexible than the infinite-dimensional design.

However, the infinite-dimensional problem can also be solved using a computing envi-

ronment such as Matlab. Furthermore, the early lumping approach is also not free of

problems. Care has to be taken in the approximation of the unstable infinite-dimensional

plant transfer function. The unstable poles of the plant transfer function P (s) are very

close to the imaginary axis, see Figure 3.14. If the exponential terms in P (s) are simply
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approximated by Padé-terms these poles could easily be shifted into the left half plane. An

uncertain number of poles, however, can potentially cause problems in a robust controller

design.

The main advantage of the late lumping approach is related to the achievable controller

quality. Since H∞ controller design is based on the minimization of a certain cost function

a clear measure for the quality of a controller is defined – the value of the cost function. In

an early lumping approach, the cost function would be minimized with respect to the ap-

proximated finite-dimensional model. Hence, the controller would, of course, be optimal

for controlling the finite-dimensional model. For the infinite-dimensional plant, however,

it would be sub-optimal and it is not obvious how far it would be from the optimum. In

contrast, with the late lumping approach, first, the optimal controller is synthesized. The

optimal controller is irrational and, therefore, not readily implementable. In the subse-

quent approximation of the controller, quality is certainly sacrificed. But, as the optimum

is known, also the quality loss associated with the approximation is known. Hence, an

explicit trade off between quality and simplicity of the controller is possible.

4.3 H∞-Control for Infinite-Dimensional Systems

The primary reason for controlling the process is to stabilize the unstable steady state

(3.28). Furthermore, the controller can be designed to attenuate the effects of unknown

disturbances acting on the process such as changes in feed concentration or temperature.

The controller design will be based on the simplified linear model derived in Chapter 3.

Hence, the controller needs to be robust with respect to mismatch between the design

model and the reference model. H∞-theory provides a framework for the rigorous for-

mulation of such robustness issues by making use of the H∞ norm for transfer function

matrices. For a stable G(s) the H∞ norm is defined as

‖G(s)‖∞ := sup
ω

σ̄[G(jω)] , (4.1)

where σ̄ denotes the maximum singular value. In this context, a transfer function is said

to be stable if it has no poles in the closed right half of the complex plane. The H∞ norm

can be interpreted as the maximum gain of the transfer function matrix G(s). H∞ con-

troller design is based on the minimization of the H∞ norm of certain closed loop transfer

functions under the constraint of closed loop stability. In this framework, a controller

C(s) can be explicitly designed to guarantee closed loop stability and a certain level of
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disturbance attenuation not only for the nominal design model P (s) but for a set of trans-

fer functions containing P (s). This set of transfer functions is defined by the type of

model uncertainty which is considered. The controller is then called robust with respect

to this model uncertainty. There are many different ways to formulate model uncertainty.

Two standard formulations are presented in the following. As we are dealing with a SISO

plant this exposition is not given for the general case but in a formulation specific for

SISO systems.

4.3.1 Multiplicative Model Uncertainty

One way to describe plant model mismatch is multiplicative model uncertainty. This

concept is illustrated in Figure 4.1. The controller C(s) is required to stabilize not only

the nominal model P (s) but all transfer functions in the set

Pm = {(1 + Δm(s))P (s) : |Δm(jω)| < |Wm(jω)|,
P (s) and (1 + Δm(s))P (s) have the same (4.2)

number of right half plane poles}.

The weighting function Wm(s) is a degree of freedom which has to be specified during

the design process. Wm(s) is an asymptotically stable transfer function which, without

loss of generality, can be restricted to be minimum phase. It can be shown that a controller

C(s) stabilizes all elements of the set Pm(s) if and only if it stabilizes the nominal plant

model P (s) and ∣∣∣∣
∣∣∣∣Wm(s)

P (s)C(s)

1 + P (s)C(s)

∣∣∣∣
∣∣∣∣
∞

< 1. (4.3)

The influence of disturbances v on the measured output y is given by the sensitivity trans-

fer function

SΔ(s) =
1

1 + PΔ(s)C(s)
, (4.4)
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where PΔ(s) = (1 + Δm(s))P (s). Of course, it is desired to make the effect of distur-

bances small. Hence, the requirement of disturbance attenuation can be formulated using

the sensitivity function

|SΔ(jω)| <

∣∣∣∣ 1

Wd(jω)

∣∣∣∣ , ∀ω (4.5)

or equivalently

||Wd(s)SΔ(s)||∞ < 1 (4.6)

where Wd(s) is a stable frequency dependent weighting function which, again, can be re-

stricted to be minimum phase. It determines how good disturbance attenuation is required

to be at which frequency. It is the other degree of freedom besides Wm(s) which has to

be chosen in the design process.

It can be shown [116] that a controller C(s) guarantees disturbance attenuation (4.6) and

closed loop stability (4.3) for all PΔ(s) ∈ Pm if it stabilizes the nominal model P (s) and

γm(C) =

∥∥∥∥∥
[

Wd(s)
1

1+P (s)C(s)

Wm(s) P (s)C(s)
1+P (s)C(s)

]∥∥∥∥∥
∞

<
1√
2

. (4.7)

A controller Copt(s) with the highest possible degree of disturbance attenuation and ro-

bustness with respect to multiplicative uncertainty is obtained by minimizing the perfor-

mance index γm over all controllers stabilizing the nominal model P (s)

min
C stabilizes P

∥∥∥∥∥
[

Wd(s)
1

1+P (s)C(s)

Wm(s) P (s)C(s)
1+P (s)C(s)

]∥∥∥∥∥
∞

. (4.8)

This is called the mixed sensitivity problem. As mentioned above, this minimization prob-

lem has been solved in [24, 78] for infinite-dimensional SISO plants P (s) with finite-

dimensional weighting functions Wd(s), Wm(s).

4.3.2 Coprime Factor Uncertainty

An alternative formulation of plant model mismatch is coprime factor uncertainty [32].

In this context the perturbed plant is defined as

PΔ(s) = (M(s) + ΔM(s))−1(N(s) + ΔN(s)), (4.9)

where (M(s), N(s)) is a coprime factorization of P (s), i.e.

P (s) = M−1(s)N(s) (4.10)
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with stable transfer functions M(s) and N(s) having no common right half plane zeros.

Since both M(s) and N(s), have to be stable the unstable poles of the plant transfer

function P (s) have to be right half plane zeros of the factor M(s).

The concept of coprime factor uncertainty is illustrated in Figure 4.2. More formally, the

set of all transfer functions which are required to be stabilized is expressed as follows

Pcf = {(M(s) + ΔM(s))−1(N(s) + ΔN(s)) : ||[ΔN ΔM ]||∞ < ε,

ΔN , ΔM stable}. (4.11)

This formulation of model uncertainty is, in some sense, more powerful than the multi-

P
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−
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−

Figure 4.2: System with coprime factor uncertainty.

plicative uncertainty description (4.2) because it does not require that the nominal and the

perturbed plant have the same number of unstable poles.

It can be shown that a controller C(s) stabilizes all PΔ ∈ Pcf if and only if it stabilizes

the nominal model P (s) and

γcf (C) =

∥∥∥∥∥
[

C(s)

I

]
1

1 + P (s)C(s)
M−1

∥∥∥∥∥
∞

≤ 1

ε
(4.12)

see e.g. [116]. Hence, by minimizing γcf over all stabilizing C(s) a controller is obtained

which achieves the maximum possible degree of robustness with respect to coprime factor

uncertainty

min
C stabilizes P

∥∥∥∥∥
[

C(s)

I

]
1

1 + P (s)C(s)
M−1

∥∥∥∥∥
∞

. (4.13)

As will be seen in the following, unfortunately the H∞ controller synthesis method for

infinite-dimensional plants given in [24, 78] only solves the mixed sensitivity problem

(4.8) but not the optimization problem resulting from coprime factor uncertainty (4.13).

However, (4.13) can be reformulated to obtain a problem of the form (4.8) with a specific
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choice of weighting functions Wd and Wm. To achieve this, the plant transfer function

P (s) is factorized according to (4.10) with the specific choice

M(s) =

m∏
k=1

(s − sk)

m∏
k=1

(s + sk)
, (4.14)

where sk, k = 1, . . . , m are the unstable poles of the plant P (s). With this choice, the

factor M(s) is all-pass, i.e.

|M(jω)| = 1

and hence |P (jω)| = |N(jω)| . (4.15)

Consequently, (4.13) simplifies to

min
C stabilizes P

∥∥∥∥∥
[

C(s)

I

]
1

1 + P (s)C(s)

∥∥∥∥∥
∞

. (4.16)

This is equivalent to (4.8) with the weighting functions chosen as follows

Wd(s) = 1

Wm(s) = N−1
m (s) , (4.17)

where Nm(s) is the minimum-phase part of N(s), i.e. N(s) = Nm(s)Na(s), and Na(s)

is all-pass. The frequency response Nm(jω) has the same amplitude plot as N(jω), i.e.

|Nm(jω)| = |N(jω)|, ∀ω.

4.3.3 Computation of Optimal Controller

Once the weighting functions are chosen, a controller has to be computed, i.e. the min-

imization problem (4.8) has to be solved. A method for the solution of the mixed sensi-

tivity problem for infinite-dimensional SISO plants was developed by C. Foias, H. Özbay

and A. Tannenbaum using operator theoretic methods in the frequency domain, for de-

tails see [24, 78] and the references therein. It has been shown that this problem can be

reduced to an eigenvalue-eigenvector problem for a Hankel+Toeplitz type operator. If

certain assumptions hold, the solution to the problem can be computed from a finite num-

ber of linear equations exploiting a special inner-outer factorization of the plant transfer

function. Results from the above references which are necessary for the actual design

procedure are briefly summarized in the following, as also presented in [108].

The synthesis method is applicable if the following assumptions are met:
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1. The plant transfer function can be decomposed as

P (s) =
Mn(s)N1(s)N2(s)

Md(s)
, (4.18)

where

• Md ∈ H∞ is rational inner

• Mn ∈ H∞ is arbitrary inner

• N1 ∈ H∞ is outer and N−1
1 ∈ H∞

• N2 ∈ H∞ is rational outer.

A transfer function is in H∞ if and only if it is stable and proper. An H∞-function

M is called inner if |M(jω)| = 1. All pass transfer functions and pure delays are

inner. An H∞-function N is called outer if it has no zeros in the open right half

plane. Minimum phase transfer functions are outer.

In particular, this has two consequences.

• Since all the plant factors are in H∞, i.e. they are stable, the unstable poles of

P (s) represent the (right-half-plane) zeros of Md(s). The plant factor Md(s)

is required to be finite-dimensional, which means that the plant P (s) is only

allowed to have finitely many unstable poles.

• Mn(s) and Md(s) are inner, i.e. they are proper but not strictly proper. N1(s)

is also proper, because N1(s) ∈ H∞, but not strictly proper, because N−1
1 (s) ∈

H∞. Hence, for ω → ∞ any roll of in the Bode magnitude plot of P (s) is

produced by the rational factor N2(s). For ω → ∞ the Bode magnitude plot of

P (s) “looks like” that of a finite-dimensional transfer function. In particular,

it has a constant roll off rate, which is an integer multiple of -20 dB per decade

d log10 |P (jω)|
d log10 ω

= −20k, k ∈ IN0

2. The weighting functions Wm(s), Wd(s), W−1
d (s) ∈ H∞ are rational. Furthermore,

(Wm(s)N2(s))
−1 ∈ H∞. This implies that if P (s) is strictly proper, Wm(s) has to

be improper.

If the above assumptions are met an optimal controller solving the minimization prob-

lem (4.8) can be computed from the inner and outer factors of the plant transfer function
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(4.18), two finite-dimensional transfer functions Eγ(s), Fγ(s) obtained from the weight-

ing functions Wd(s), Wm(s) and another rational transfer function L(s) satisfying a set

of interpolation equations. An optimal controller is given by

Copt(s) =
Eγopt(s)Md(s)Fγopt(s)L(s)

N1(s)N2(s)(1 + Mn(s)Fγopt(s)L(s))
, (4.19)

with Eγ(s) =
Wd(−s)Wd(s)

γ2
− 1,

Fγ(s) = Hγ(s)

n1∏
i=1

s + ηi

s − ηi

,

where η1 · · · ηn1 are the poles of Wd(s), and Hγ(s) is the stable, minimum-phase transfer

function determined by the spectral decomposition

Hγ(s)Hγ(−s) =

(
1 −

(
Wd(s)Wd(−s)

γ2
− 1

)(
Wm(s)Wm(−s)

γ2
− 1

))−1

.

L(s) = L2(s)
L1(s)

is a rational transfer function satisfying the following interpolation condi-

tions:

0 = L1(βk) + Mn(βk)Fγ(βk)L2(βk) (4.20-a)

0 = L1(sk) + Mn(sk)Fγ(sk)L2(sk) (4.20-b)

0 = L2(−βk) + Mn(βk)Fγ(βk)L1(−βk) (4.20-c)

0 = L2(−sk) + Mn(sk)Fγ(sk)L1(−sk) (4.20-d)

where β1, · · · , βn1 are the right half plane zeros of Eγ(s) and s0, · · · , sk−1 are the unstable

poles of the plant P (s). The transfer function L(s) is of (n1+k−1)th order where k is the

number of right half plane poles of P (s) and n1 is the number of right half plane zeros of

Eγ(s), i.e. the order of the weighting function Wd(s). The conditions (4.20-a) - (4.20-d)

make sure that the right half plane zeros of the Md(s) term in the numerator of Copt are

cancelled by the (1 + Mn(s)FγoptL(s)) expression within the controller and therefore do

not cancel the unstable poles of the plant. The largest value for γ such that (4.20-a) -

(4.20-d) has a non-trivial solution is the minimal performance cost γopt. Lower and upper

bounds for γopt can also be computed [24]. The conditions (4.20-a) - (4.20-d) form a set

of linear equations with the coefficients of L1(s) and L2(s) as unknown variables. It can

be written in matrix form: 0 = Aγ · l, with vector l containing the unknown coefficients.

A nontrivial solution is obtained if and only if matrix Aγ is singular. Therefore, γopt is

found, for example, by searching the largest value of γ such that the minimum singular
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value of Aγ is 0. Once the optimal performance cost γopt is known, it is straightforward

to determine the corresponding controller Copt from equation (4.19).

The procedure described in this section is readily implementable on a computer. In fact,

a Matlab implementation is available [79] for the computation of Copt, γopt if P (s) is

already decomposed according to (4.18). Also, factorization of the plant has been done in

Matlab.

4.3.4 Reduction of Controller Dimension

The expression for Copt(s) (4.19) involves the possibly irrational transfer functions Mn(s)

and N1(s). Therefore, the optimal controller itself can be irrational. For practical imple-

mentation, it needs to be approximated by a rational transfer function. This is achieved

using an approximation technique based on Fourier transform and balanced model re-

duction developed in [34]. To approximate a stable possibly infinite-dimensional transfer

function G(s) the following steps are taken.

1. Define the discrete counterpart Gd(z) := G(λ(1 − z)/(1 + z)) using the bilinear

transform s = λ(1 − z)/(1 + z). This transform maps the imaginary axis in the

s-plane to the unit circle in the z-plane.

2. Discretize Gd(z) on the unit circle:

Gdk = Gd(zk) with zk = ej 2πk
M , k = 1, . . . , M. (4.21)

3. Compute the discrete Fourier transform (DFT) coefficients for Gdk:

cn =
1

M

M−1∑
k=0

Gdkz
n
k , n = 0, . . . , M − 1 . (4.22)

4. The inverse DFT yields: Gd(zk) =
M−1∑
n=0

cnz
n
k , k = 1, . . . , M . This expression is

used to approximate Gd(z) by Gd,appr(z) =
N∑

n=0

cnz
n, with some N < M .

5. Using the inverse bilinear transform z = (λ−s)/(λ+s) the approximation of G(s)

in the s-domain is obtained:

Gappr(s) =
N∑

n=0

cn

(
λ − s

λ + s

)n

(4.23)

with coefficients cn according to (4.22).
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Convergence of this approximation in the H∞ sense, i.e.

||G(s) − Gappr(s)||∞ → 0, for (N, M) → (∞,∞)

is established in [34] under certain mild conditions. However, for sufficiently close ap-

proximation, usually, very high approximation orders N are needed. Therefore, in a fur-

ther step the order is reduced via balanced realization truncation. The discrete approxi-

mation Gd,appr(z) obtained from the Fourier series can be realized in a special state space

form for which the observability and controllability Gramians needed for balanced order

reduction are especially easy to compute. Therefore, the combination of Fourier trans-

form and balanced model reduction yields a fast and numerically robust approximation

procedure. This procedure has been implemented in Matlab.

Note that the procedure described here is only applicable for stable transfer functions. If

the controller Copt(s) is unstable, the (stable) infinite-dimensional factors in (4.19) need

to be approximated separately. Namely, these factors are N1(s) and Mn(s). If in (4.19)

they are replaced by rational approximations a finite-dimensional approximation for the

controller Copt(s) is obtained.

An alternative way to deal with an unstable controller is to factorize it with stable factors

and subsequently approximate the infinite-dimensional factors. Any controller stabilizing

the plant P (s) can be represented in the form of the Youla parameterization [114]

C(s) =
X(s) + Md(s)Q(s)

Y (s) − Mn(s)N1(s)N2(s)Q(s)
(4.24)

where Md(s) and Mn(s)N1(s)N2(s) are coprime factors of the plant P (s) and the transfer

functions X(s) and Y (s) are chosen such that they satisfy the Bezout identity

Y (s)Md(s) + Mn(s)N1(s)N2(s)X(s) = 1. (4.25)

All transfer functions occurring in (4.24) are stable. The factors Y (s), Mn(s)N1(s) and

Q(s) are infinite-dimensional and, therefore, need to be approximated using the proce-

dure presented in this Chapter. A rational approximation of the controller is obtained by

replacing the infinite-dimensional factors in (4.24) by their respective approximations.
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4.4 H∞-Controller Design for the Crystallizer Model

4.4.1 Factorization of Plant Transfer Function

In this chapter, the H∞-technique described so far is applied to the simplified continuous

crystallizer model derived in Chapter 3. Two different designs are presented correspond-

ing to two different choices of weighting matrices in the mixed sensitivity problem (4.8).

To obtain the factorization (4.18) of the plant transfer function P (s), the right half plane

poles and zeros of P (s) have to be computed, i.e. the right half plane zeros of the quasi-

polynomials QP1(s) and QP2(s) in (3.31) have to be determined. This problem can be

solved numerically using the Nelder-Mead simplex search algorithm [73] implemented,

e.g., in Matlab. The zeros of the plant transfer function P (s) are computed by searching

for minima of the absolute value |P (s)|, the poles are determined by searching minima of

the inverse 1/|P (s)|. Appropriate starting values for the search can e.g. be provided based

on the visual inspection of a three dimensional magnitude plot of the transfer function’s

absolute value |P (s)| over the complex plane. The unstable pair of poles is found to be

s0/1 = (0.0236 ± 0.952j)1/h, (4.26)

the right half plane zeros are

z0/1 = (1.70 ± 1.95j)1/h

z2/3 = (0.354 ± 2.73j)1/h. (4.27)

See also Figure 3.14 for a plot of the locations of poles and zeros. In the Bode plot given

in Figure 3.12, it can be seen that the magnitude of the plant frequency response P (jω)

has a constant roll off rate of 20 dB per decade of ω for ω → ∞. With this roll off rate and

with a finite number of unstable poles it is possible to factorize the plant transfer function

P (s) according to (4.18):

• Mn(s) is an all-pass function with the right half plane zeros zi, i = 0, . . . , 3 given

in (4.27).

• Md(s) is an all-pass function with the unstable poles of the plant s0, s1 given in

(4.26) as its right half plane zeros.

• N2(s) has to produce the roll off of 20 dB per decade, because the other factors

are all proper but not strictly proper (the inner functions Mn(s) and Md(s) have

53



constant magnitude, the outer function N1(s) is required to be invertible in H∞).

Therefore, N2(s) is chosen to be a first order transfer function with one stable pole

sN2 and no zero.

Consequently, the plant factors in (4.18) are given by the following expressions

Mn(s) =

3∏
i=0

(s − zi)

3∏
i=0

(s + zi)

(4.28-a)

Md(s) =
(s − s0)(s − s1)

(s + s0)(s + s1)
(4.28-b)

N2(s) =
1

s − sN2

(4.28-c)

N1(s) =
P (s)Md(s)

Mn(s)N2(s)
. (4.28-d)

4.4.2 Controller Design for Multiplicative Uncertainty

The next step in the H∞ controller design is the choice of weighting functions Wd(s) and

Wm(s) involved in the mixed sensitivity problem (4.8).

For a first design, the weighting functions will be chosen according to the considerations

presented in Chapter 4.3.1, i.e. the controller is designed to guarantee stability and a cer-

tain level of disturbance attenuation in the presence of multiplicative model uncertainty.

Often, models are quite accurate at low frequencies but are rather uncertain in the high

frequency range. In particular, several parameters for the simplified model derived in

Chapter 3 were adapted to meet requirements at steady state, i.e. for ω → 0. In addi-

tion, the annular settling zone was considered quasi-stationary, neglecting fast dynamics.

Therefore, the simplified model is expected to be “good” for low frequencies but rather

inaccurate in the high frequency range. This is reflected by the choice of the multiplicative

uncertainty weighting function

Wm(s) =
(100s + 1)2

2(s + 1)
(4.29)

which is small in the low frequency range and large for high frequencies. Furthermore,

this transfer function has two zeros but only one pole (i.e. it is not proper) and hence

satisfies the condition that (Wm(s)N2(s))
−1 ∈ H∞, see Chapter 4.3.3.
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Disturbances acting on the process are usually varying relatively slowly. Therefore, dis-

turbance attenuation is desired to be good in the low frequency range and one does not

care for high frequencies. The corresponding weighting function is chosen such that

|Wd(s)| is large at low frequencies

Wd(s) = 10
(s + 1)3

(500s + 1)3
. (4.30)

For a Bode magnitude plot of both weighting functions see Figure 4.3. As is to be ex-

pected, the choice of these specific functions involves some trial-and-error.
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Figure 4.3: Magnitude of weighting functions Wd(jω) (solid line) and Wm(jω) (dashed)

for mixed sensitivity problem .

Following the procedure given in Chapter 4.3.3, it is straightforward to compute an ir-

rational optimal controller Cm,opt(s) as given in (4.19). Cm,opt turns out to be stable.

For approximation, the controller transfer function is discretized with M = 4096 sam-

pling points, see equation (4.21) and a Fourier series with N = 500 addends is computed

according to equation (4.23) with the parameter λ = 1.2. Then, the resulting transfer

function is reduced to 15th order by balanced reduction, which yields a reasonable ap-

proximation error.

A Bode plot of the frequency responses of both optimal controller Cm,opt(s) and approx-

imated 15th order controller Cm(s) is presented in Figure 4.4. Nyquist plots of the open

loop frequency responses with both controllers, i.e. P (jω)Cm,opt(jω) and P (jω)Cm(jω)

are shown in Figure 4.5. The open loop system has one pair of unstable poles. According

to the Nyquist stability criterion the Nyquist plot has to encircle the critical point −1 once

to make the closed loop stable.

The controller was designed to be robust with respect to multiplicative plant uncertainty.

However, its robustness can also be evaluated in terms of classical robustness measures

such as gain and phase margins. These measures are also included in Figure 4.5. Relations
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Figure 4.4: Bode plot of irrational optimal controller controller Cm,opt(jω) (solid line)

and 15th order approximation Cm(jω) (dashed) for multiplicative uncertainty.

between gain and phase margin on the one hand and H∞ robustness measures on the other

hand are discussed in the textbook [33]. The gain margin for the continuous crystallization

process with the 15th order controller Cm(s) is am = 1/0.70 = 1.4, the phase margin is

αm = 37.0◦. Typical values for a good design are given in [31]. The margins should be
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Figure 4.5: Nyquist plot of open loop transfer function P (jω)Cm,opt(jω) (solid line) and

P (jω)Cm(jω) (dashed) along with unit circle (for the determination of gain and phase

margins).
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at least

am = 2.5 . . . 10 (4.31-a)

αm = 30◦ . . . 60◦. (4.31-b)

According to these rules, the gain margin obtained with this controller design is not very

good. This may be improved by asking for less disturbance attenuation, i.e. by making

|Wd(jω)| smaller, in the low frequency range. The frequency, at which the gain margin is

obtained, is ω0 = 0.40 1/h.

4.4.3 Controller Design Based on Coprime Factor Uncertainty

In Chapter 4.3.2 a formulation of model uncertainty based on a coprime factorization of

the plant transfer function is presented. Furthermore, it is shown that the resulting robust

stabilization problem can be reformulated as a mixed sensitivity problem with the specific

choice of weighting functions given in (4.17). However, since the plant factor Nm(s) is

infinite-dimensional, the choice of weighting function Wm(s) according to (4.17) is in

conflict with the requirement of finite-dimensional weights, which is a major requirement

for the applicability of the H∞ method presented in Chapter 4.3.3. This problem can be

avoided by using a rational approximation of Nm(s) in the definition of the weighting

function

Wm(s) = N−1
m,appr(s) = k

(s + s0)(s + s1)
n1∏
i=2

(s − si)

3∏
i=0

(s + zi)
n2∏
i=4

(s − zi)

. (4.32)

This approximation makes use of the first few poles si and zeros zi of the plant P(s),

where s0, s1 and zi, i = 0, · · · 3 are in the right half of the complex plane. In Figure

4.6, a Bode magnitude plot of Wm(jω) from (4.32) and N−1(jω) is given, where 13

poles and 12 zeros of the plant are used in the definition of Nm,appr(s). Since only the

magnitude of the weighting function matters for the controller design, Wm can be chosen

to be stable and minimum phase. This is achieved by reflecting the right half plane poles

and zeros at the imaginary axis. This kind of controller design can be interpreted either as

an ’approximate’ coprime factor design or as a mixed sensitivity design with the choice of

weighting functions Wd(s) and Wm(s) being inspired by the robust stabilization problem

of coprime factor perturbed plants.

An optimal controller for this choice of weighting functions is obtained from (4.19).

Again, a Fourier expansion as given in equations (4.21-4.23) is determined with the pa-
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Figure 4.6: Magnitude plots of N−1(jω) (solid line) and weighting function Wm(jω)

(dashed line).

rameter values M = 4096, N = 500, λ = 1.2. Then, the resulting transfer function is

reduced to 16th order by balanced reduction.

In Figure 4.7 Bode plots of the frequency responses of the irrational optimal controller

Ccf,opt(s) and a 16th order rational approximation Ccf (s) are shown. Figure 4.8 presents

the Nyquist plot of the frequency responses of the open loop transfer function P (s)Ccf (s).

Gain and phase margins are also included in the plot. The gain margin with the finite-

dimensional controller Ccf (s) is found to be am = 1/0.30 = 3.3, the phase margin is

αm = 67.7◦. Compared to the mixed-sensitivity design presented in the previous chapter,

this controller design results in superior robustness properties in terms of the classical

robustness measures. The controller designed in this chapter satisfies the rules given in

(4.31-a) and (4.31-b).

4.5 Simulation Study

The uncontrolled process exhibits sustained oscillations. This means, after a transient

phase the system ends up on a limit cycle. For controller design, this implies the follow-

ing requirement. In order to be useful, a controller should not only stabilize the unstable

steady state but the domain of attraction should include the limit cycle. Then, the con-

troller can be switched on at any time while the crystallizer shows its natural oscillating

behaviour and the controller will bring the system to its steady state.

To verify if the controllers designed in the previous chapter based on the linearized design

model achieve this and in order to compare their performance and robustness properties,
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Figure 4.7: Bode plot of irrational optimal controller Ccf,opt(jω)) designed for coprime

factor uncertainty (solid line) and 16th order approximation Ccf (jω) (dashed.

they are tested in simulations with both the nonlinear simplified model derived in Chapter

3 and the original reference model presented in Chapter 2. For all simulations, the initial

condition is chosen randomly on the limit cycle. The process is operated open loop with

a constant fines flow rate V̇AZ,out = 3l/h for 10 hours. Obviously, the crystallizer shows

its characteristic oscillations. Then, at t0 = 10h the respective controller is switched on.

Figure 4.11 presents simulation results of the controller Cm(s) designed for multiplicative
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Figure 4.8: Nyquist plot of open loop transfer function P (s)Ccf,opt(jω) (solid line) and

P (s)Ccf (jω) (dashed) for coprime factor uncertainty.
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Figure 4.9: Simplified model simulation: controller started at t0 = 10h. From top to

bottom: Crystal mass in crystallizer (measured variable), fines flow rate (manipulated

variable), mass median crystal size L50 and supersaturation Srat.
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Figure 4.10: Simplified model simulation: mass density function with controller started

at t0 = 10h. Mixed sensitivity design 4.4.2 (left) and coprime factor design 4.4.3 (right).
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uncertainty in Chapter 4.4.2 and the controller Ccf (s) designed for coprime factor uncer-

tainty in Chapter 4.4.3, both tested with the simplified model derived in Chapter 3. The

first plot shows the overall crystal mass in the crystallizer, which is proportional to the

third moment m3(t) of the size distribution, i.e. the measured variable. It is brought to its

desired value in the time of about 3 cycle periods of the limit cycle. If only this variable is

considered both controllers perform quite similar. They both stabilize the steady state and

the speed of decay is comparable. However, the manipulated variable, i.e. the fines flow

rate V̇AZ,out(t), which is presented in the second plot, behaves quite differently for both

controllers. The controller Cm(s) uses much more control effort than Ccf (s). Further-

more, there is a slightly damped oscillation in the manipulated variable plot for Cm(s).

This results from an almost pole-zero cancellation between plant and controller close to

the imaginary axis. In the remaining plots, where the mass median crystal length L50(t)

and the supersaturation Srat(t) are shown, this oscillation is also observed.

In Figure 4.12, the temporal evolution of the crystal size distribution in the form of the

more intuitive mass density function

mdf(L, t) = kV ρAF (t)L3 (4.33)

is shown as a quasi 3D plot. Obviously, not only the scalar measures in Figure 4.11 are

brought to a constant value but also the mass density function mdf(L, t) converges to its

steady state distribution.

In simulations with the reference model, which was presented in Chapter 2, the difference

between the two controllers becomes even more apparent. The controller Cm(s) causes

an oscillation of the same frequency as in the previous simulation but instead of being

slightly damped the amplitude is slowly increasing. Hence, with the complex model the

limit cycle does not belong to the domain of attraction any more. Simulation results for

this case are not shown here.

In contrast, the controller Ccf (s) designed for coprime factor uncertainty demonstrates

its superior robustness. Just as in the simulation with the simplified model the steady

state is stabilized although it takes somewhat longer to reach the steady state. As can be

seen in Figure 4.11 the amplitude of the manipulated variable is, again, very acceptable.

Figure 4.12 shows the convergence of the mass density function towards the steady state

distribution.
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Figure 4.11: Reference model simulation: controller (coprime factor design) started at

t0 = 10h. Top to bottom: Crystal mass in crystallizer (measured variable), fines flow rate

(manipulated variable), mass median crystal size L50 and supersaturation Srat.
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Figure 4.12: Reference model simulation: controller (coprime factor design) started at

t0 = 10h. Temporal evolution of mass density function.
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4.6 Discussion

A controller design method for a continuous crystallizer has been presented. The con-

troller design was based on the simplified model presented in the previous chapter. This

model can be represented in the form of a transcendental transfer function. However, it

is only an approximation of the original model. Therefore, controller design has to take

into account robustness of the controller with respect to model uncertainties. H∞-theory

provides a framework for the formulation of robustness issues. Two different represen-

tations of model uncertainty were used, namely multiplicative uncertainty and coprime

factor uncertainty.

Optimizing robustness with respect to multiplicative uncertainty leads to the mixed sen-

sitivity minimization problem. This takes into account stability as well as disturbance

attenuation of the closed loop system. By adjusting two weighting functions emphasis

can be put on either of the properties, stability or disturbance attenuation. Also, optimiza-

tion of robustness with respect to coprime factor uncertainty can be formulated as a mixed

sensitivity problem, however, with a specific choice of weighting functions depending on

the plant model.

A solution method for the mixed sensitivity problem for transcendental transfer functions

from the literature has been presented and applied to the crystallizer control problem. In

simulations with both the simplified design model and the reference model, the effective-

ness of the controllers was tested. In the test with the simplified model both controllers

behaved well. The situation was different with the reference model. With the multiplica-

tive uncertainty approach, even after extensive trial-and-error, no choice of weighting

functions was found which produced a controller stabilizing the reference model such

that the limit cycle is in the domain of attraction. In contrast, with the coprime factor

approach this design objective was achieved without any tuning of weighting functions.

Unlike other approaches to the problem of continuous crystallizer control this controller

design is based on a distributed parameter model, i.e. an infinite-dimensional system.

Only in the last step, after obtaining an optimal (transcendental) controller, it is approx-

imated by a rational, i.e. finite-dimensional transfer function. Hence, the proposed con-

troller design follows a late lumping philosophy.

An alternative procedure would be to approximate the transcendental plant transfer func-

tion by a rational transfer function first and subsequently do a standard H∞ design with

the same performance objective as used in the infinite-dimensional design. Padé approxi-
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mations for the e−τis-terms could be used, for example. In this case, care is to be taken that

the unstable pair of poles, which is quite close to the imaginary axis, is not shifted to the

left half plane. However, the major disadvantage of this “early lumping approach” is that

one does not know how much better the controller could have been if it had been based on

a better finite-dimensional approximation. In contrast, with the late lumping procedure,

first the optimal solution is computed and then, in the last step, it is decided how much

performance one is willing to sacrifice for the sake of a low-dimensional controller.
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Chapter 5

Batch Crystallization – Flatness

Analysis

5.1 Introduction to Batch Crystallization

Crystallization in batch mode is used for the production of smaller amounts of high-value-

added fine chemicals and pharmaceuticals. The manufacturing of specialty products, such

as biochemicals or food additives, becomes more and more important in the chemical in-

dustry. Batch operation enables a higher flexibility to allow for rapidly changing product

specifications and quality requirements. Often, multi-purpose batch plants are used such

that it is possible to quickly react to market demand and specific requests of costumers.

Such demands can only be satisfied by employing advanced control strategies. The opera-

tion of one single plant in several different ways to obtain changing product specifications

requires the ability of the plant operator to determine appropriate operation strategies

which achieve prespecified product requirements. It is not desirable to determine these

operation strategies from tedious test series for each new case, but it should be possible to

quickly redetermine them, ideally on a batch-to-batch basis.

The batch-wise operation of crystallizers is quite different from the continuous mode.

Consequently, the control problems arising from these two types of operation are also

entirely different. Continuous crystallizers are operated without being changed for a long

time. They have to be kept at a steady state such that a constant product quality is main-

tained. This may require the application of a stabilizing feedback controller as described

in Chapter 4. Since the process is operated at a steady state, the controller can be designed
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based on a linearized model. In contrast, batch crystallization is a transient process and

does not achieve a steady state. Therefore, linearized models are not appropriate.

But not only the underlying model is different but also the reason for applying control

differs from the continuous case. The main control objective is to achieve a desired prod-

uct CSD at the end of the batch. The desired CSD may be specified in several different

ways. It may either be entirely determined as a function of crystal length, or it may only

be required to have certain properties (e.g. a certain mean crystal size). A third way to

define a desired product CSD is to define an objective function which is to be optimized

(e.g. maximize mean crystal size). Therefore, the control problem is to determine how

to operate the crystallizer during a batch run such that a desired CSD is obtained at the

end of the batch. This is, first of all, a problem of trajectory planning and feedforward

control. In a second step, it may be desirable to incorporate feedback to be able to react

to disturbances during the operation and to eliminate the effects of model uncertainties.

In the following, more specifically, batch cooling crystallization is considered, see Fig.

5.1. Cooling crystallization exploits the fact that solubility depends on temperature. The

initially undersaturated hot solution is cooled during batch operation. Since solubility

decreases with temperature the solution becomes supersaturated. Supersaturation is the

driving force for nucleation and crystal growth, the main processes involved in crystalliza-

tion. As the rates of nucleation and crystal growth depend on the degree of supersaturation

and supersaturation, in turn, is a function of temperature, the final product CSD can be

influenced by the temperature-time-profile during the batch. Consequently, crystallizer

temperature serves as the manipulated variable for batch cooling crystallizers. The con-

trol problem is to determine a feedforward control, i.e. a temperature trajectory, which

produces a desired CSD at the end of the batch.

Of course, in practice the temperature inside the crystallizer cannot actually be manipu-

lated. Only the inlet temperature to the cooling jacket Tc(t) can be influenced directly.

Viewing Tc(t) as the manipulated variable makes it necessary to augment the process

model by an ODE for temperature T (t) derived from an energy balance for the crystal-

lizer. However, it is common practice in batch crystallization control to use a fast feedback

controller that manipulates Tc(t) and makes sure that the crystallizer temperature T (t)

tracks its desired value. Hence, temperature T (t) can be pretended to be the manipulated

variable. This approach has the advantage that uncertainties in the transfer behaviour from

Tc(t) to T (t) are compensated by feedback. A common source for uncertainty is, e.g., the

change of the heat transfer coefficient from cooling medium to crystallizer content due to

fouling, i.e the deposition of crystal solids on the walls of the heat exchanger.
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Figure 5.1: Sketch of a batch cooling crystallizer

A further means to influence the final CSD, besides the control of crystallizer temperature,

is the addition of small seed crystals during the start of the batch. The amount and size dis-

tribution of seed crystals has a considerable effect on the achievable final CSD. The type

of process treated in this study therefore is called seeded batch cooling crystallization.

As explained above, a nonlinear model has to be used as a basis for batch control de-

sign. Hence, the model is inherently more complex than the design model in the case of

continuous crystallization. In order to keep the problem tractable we restrict ourselves

to a population balance model with simpler constitutive relations for crystal growth and

nucleation than in the model presented in Chapter 3. The population balance model con-

sidered here is of a standard type frequently used in the crystallization literature [86, 87].

The formulation used here is taken from [65] and is presented in Chapter 5.2. It is of a

specific form such that a finite-dimensional moment model can be derived, which exactly

describes the dynamics of a number of leading moments of the size distribution.

For the synthesis of control strategies the notion of differential flatness will be used. In

Chapter 5.3 the definition of differential flatness is recapitulated. The idea of flatness has

been introduced in [20, 22]. It is well known that flat systems possess a certain invertibility

property and, therefore, trajectory planning and feedforward control design can be done

in a very elegant way [94]. Therefore, in Chapter 5.4 flatness of the moment model is

tested. It turns out that it is not flat but can be rendered flat by a state dependent time

scaling. Such systems are called orbitally flat [21, 35, 89]. In Chapter 6 this property will

be exploited for the design of feedforward and feedback control strategies for the batch

crystallizer.
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5.2 Batch Crystallizer Model

5.2.1 Population Balance Model

The investigations carried out in this and the following chapter are based on a – relatively

simple – population balance model as, for example, described in the classical reference

[86]. The specific formulation used here can be found in [65] where a model is presented

describing crystallization of potassium nitrate (KNO3) from water in a laboratory scale

three litre batch cooling crystallizer. Differences compared to the continuous crystallizer

model described in Chapter 2, on the one hand, are due to the different operation of the

crystallizer and, on the other hand, they result from different modelling paradigms used.

In batch mode there are, obviously, no feed and product removal streams. Furthermore,

the crystallizer is not equipped with a fines dissolution unit. Consequently, the corre-

sponding terms do not exist in the batch model. Concerning the modelling paradigm, in

[65] the phenomena of nucleation, crystal growth and attrition are not described by de-

tailed first principles models. Instead, empirical relations are used to describe nucleation

and growth rates. The parameters involved in these equations have to be determined by

parameter identification techniques from experimental data. The parameters summarize

dependencies on the chemical system, the crystallizer type, size and geometry and the

operating conditions such as temperature range or stirrer speed. Attrition is not modelled

explicitly but the production of small fragments by attrition is contained implicitly in the

nucleation rate. Consequently, the model is not expected to be able to predict the effects

of, e.g., scale-up or changes in the operating conditions. But, as shown in [64], it is ca-

pable of describing the behaviour of a given process in the relevant operating range fairly

well. To be appropriate for control design, a model needs to be descriptive but not nec-

essarily predictive. Therefore, the type of model considered here has become and still is

standard in batch crystallizer control [87].

Under the assumption that all crystals grow at the same rate, i.e. the growth rate G is

independent of crystal size, and that nuclei are formed at negligible size, the temporal

evolution of the CSD is described by the following population balance equation with

boundary and initial condition

∂f(L, t)

∂t
= −∂(G(t)f(L, t))

∂L
(5.1-a)

f(0, t) =
B(t)

G(t)
(5.1-b)

f(L, 0) = fseed(L). (5.1-c)
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The rate of nucleation is denoted by B(t) and the CSD of seed crystals added at the

beginning of the batch is named fseed(L). A mole balance for the liquid phase yields

an ordinary differential equation for the solute mass concentration c(t) (in units of

kg solute/kg solvent).

dc(t)

dt
= −3ρckvh

∞∫
0

L2G(t)f(L, t) dL, (5.2)

with c(0) = c0

where ρc is the density of crystals, h is a conversion factor equal to the volume of slurry

per mass of solvent and kv is a volume shape factor defined such that the volume of a

crystal with length L is Vcrystal(L) = kvL
3. Furthermore, an ODE for the temperature

T (t) is obtained from an energy balance of the crystallizer

ρV cp(t)
dT (t)

dt
= −3ΔHc(t)ρckvV

∞∫
0

L2G(t)f(L, t) dL − UAc(T (t) − Tc(t)) (5.3)

with T (0) = T0.

The heat of crystallization ΔHc depends on the solution concentration. The dependence

can be adequately represented by a quadratic fit to empirical data

ΔHc(t) = B0 + B1c(t) + B2c(t)
2. (5.4)

The heat capacity of the solution as a function of solution concentration can be expressed

as

cp(t) = C0 + C1

(
c(t)

1 + c(t)

)
+ C2

(
c(t)

1 + c(t)

)2

. (5.5)

Relative supersaturation, which can be defined as

S(t) :=
c(t) − csat(t)

csat(t)
, (5.6)

represents the driving force for crystallization. Hence, the growth rate

G(t) = kgS(t)g (5.7)

is determined by supersaturation. Nucleation summarizes effects of primary and sec-

ondary nucleation (e.g. attrition) [86]. Therefore, the nucleation rate

B(t) = kbS(t)bkv

∞∫
0

L3f(L, t) dL, (5.8)

69



depends not only on supersaturation but also on the CSD. Both, the equations for nu-

cleation and growth are of empirical nature. The parameters kg, kb, g and b have to be

determined by parameter identification methods [65]. The saturation concentration csat

depends on the temperature of the solution. A quadratic fit to solubility data gives

csat(t) = A0 + A1T (t) + A2T (t)2. (5.9)

Thus, crystallizer temperature T (t) determines saturation concentration and hence it in-

fluences the rates of nucleation B(t) and growth G(t) via supersaturation S(t).

Equations (5.1-a) - (5.9) constitute an infinite-dimensional model for the batch crystal-

lizer. It basically consists of a PDE (5.1-a) with boundary condition (5.1-b) coupled with

two ODEs (5.2), (5.3). Values for all necessary parameters corresponding to the crystal-

lization of KNO3 from water are given in [64] and are summarized in Appendix B.

5.2.2 Moment Model

From the PDE (5.1-a) with boundary condition (5.1-b), a set of ODEs for the moments of

the CSD

μi(t) :=

∞∫
0

Lif(L, t) dL, i = 0, 1, 2, . . . (5.10)

can be derived. The zeroth moment μ0(t) gives the overall number of crystals. The second

moment μ2(t) is proportional to the overall crystal surface, and the third moment μ3(t) is

proportional to the volume of the crystalline material in the crystallizer. Since the duration

of the batch tend and the growth rate G(t) are finite, i.e.

tend < ∞ (5.11-a)

G(t) < ∞, ∀t (5.11-b)

it follows that the size of crystals is bounded. Hence, there is a maximum crystal length

Lmax such that the following is true

f(L, t) = 0, ∀L > Lmax. (5.12)

Consequently, by partial integration it follows from (5.1-a), (5.1-b) that

dμ0(t)

dt
= B(t)

dμi(t)

dt
= iG(t)μi−1(t), i = 1, 2, . . . (5.13)
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Since the overall mass of solute in the crystallizer is constant, an additional algebraic

equation can be derived, relating the third moment μ3(t) and the solute concentration c(t)

c(t) = c0 + ρckvh(μ3,Seed − μ3(t)) (5.14)

where c0 is the initial solute concentration and μ3,Seed :=
∫∞

0
fseed(L) dL is the third mo-

ment of the seed CSD. Hence, the ODE for the concentration (5.2) is redundant. Further,

note that the integral expression in the nucleation law (5.8) is the third moment, i.e.

B(t) = kbkvS(t)bμ3(t). (5.15)

Because of (5.6),(5.7),(5.9) and (5.14), B(t) and G(t) are entirely determined by μ3(t)

and T (t). Hence, the differential equations for the first four moments and the crystallizer

temperature can be written as

dμ0

dt
= B(μ3, T ) (5.16-a)

dμ1

dt
= G(μ3, T ) · μ0 (5.16-b)

dμ2

dt
= 2G(μ3, T ) · μ1 (5.16-c)

dμ3

dt
= 3G (μ3, T ) · μ2, (5.16-d)

dT

dt
= −3ρckv

ρ

ΔHc (μ3) G (μ3, T ) μ2

cp (μ3)
− UAc

ρV

(T − Tc)

cp (μ3)
, (5.16-e)

with initial conditions

T (0) = T0, μi(0) = μi,Seed =

∞∫
0

LifSeed(L) dL, i = 0, . . . , 3.

This constitutes a simplified model for the batch crystallizer. It is clearly nonlinear, but

finite-dimensional. The moments μ0(t) . . . μ3(t) and temperature T (t) are the system

states, and cooling medium temperature Tc(t) is the control input. Viewing the tempera-

ture T (t) as the control input by using a feedback tracking controller for the temperature

as discussed in Chapter 5.1 eliminates equation (5.16-e), resulting in a model with only

the moments as system states. The moment model (5.16-a)-(5.16-e) exactly describes the

dynamics of the moments of the CSD but it does, of course, not describe the evolution of

the entire CSD. As mentioned above, the moments have a clear physical meaning. For

some applications they represent the most important aspects of the CSD, hence the exact

shape of the CSD may not be of primary importance. Furthermore, as will be seen in the
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following, the CSD at a certain point in time can be determined from the past trajectories

of third moment and temperature. Hence, it is possible, on the basis of a moment model,

to design control strategies to achieve given product CSDs.

5.3 Differential Flatness and Orbital Flatness

5.3.1 Introduction to Flatness

The notion of flatness can be mathematically defined in a differential algebra setting [22]

or in the context of differential geometry of infinite jets and prolongations [23]. A finite

dimensional dynamic system

ẋ(t) = f (x(t), u(t)) , x(t) ∈ IRn, u(t) ∈ IRm (5.17)

is called differentially flat, or simply flat, if there exists a fictitious output y(t) ∈ IRm

which satisfies the following conditions.

A The output y(t) can be expressed as a function of the system states x(t) and inputs

u(t) and finitely many time derivatives of the inputs

y(t) = Φ
(
x(t), u(t), u̇(t), . . . u(α)(t)

)
. (5.18)

B Reversely, the system states and inputs can be expressed as functions of the output

y(t) and finitely many of its time derivatives

x(t) = Ψ1

(
y(t), ẏ(t), . . . , y(β)(t)

)
(5.19-a)

u(t) = Ψ2

(
y(t), ẏ(t), . . . , y(β+1)(t)

)
. (5.19-b)

The fictitious output y(t) is then called a flat output. It completely determines the dynamic

behaviour of system (5.17). If a sufficiently smooth trajectory of the flat output is given,

the trajectories of the entire system state x(t) and the system input u(t) are determined

by (5.19-a) and (5.19-b), respectively. They can be computed without solving a differ-

ential equation. This can be interpreted as an invertibility property. Therefore, trajectory

planning and feedforward control design can be done in a very elegant way for flat sys-

tems [94]. Since the flat output constitutes an algebraic parameterization of the system’s

dynamics, flatness is also a particularly useful property for the solution of dynamic opti-

mization problems. Furthermore, flatness is closely related to linearizability of nonlinear
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systems by feedback. For single-input systems, for example, flatness is equivalent to lin-

earizability by static state feedback. In general, flat systems are exactly linearizable by

endogenous feedback. Flatness based control has been applied to systems from a diverse

range of application areas such as chemical processes [93], bio processes [58], electrical

drives [42] and aircrafts [59]. Recently, the flatness concept is being extended to delay

systems and to distributed parameter systems, see e.g. [95, 96].

5.3.2 Orbital Flatness

The advantages of flat systems can also be extended to a somewhat larger class of systems

allowing an appropriate state-dependent time scaling ([21, 35, 89]). A new ‘time’-variable

τ is defined as follows:

[t0 tend] �→ [τ0 τend]

dt

dτ
= s(x(t), u(t)), τ(t0) = τ0. (5.20)

For the mapping of t to τ to be bijective, the scaling function s(x(t), u(t)) has to satisfy

0 < s(x(t), u(t)) < ∞, ∀t. (5.21)

This condition ensures that τ is a strictly monotonically increasing function in t and goes

to infinity if and only if t goes to infinity, as intuitively expected from a proper notion of

‘time’. Furthermore, (5.21) makes the time scaling invertible such that a control law u(τ)

designed in new time τ can be transformed back and applied in real time t. In new ‘time’,

the system (5.17) evolves according to

dx

dτ
= f(x(τ), u(τ))s(x(τ), u(τ)) ≡ g(x(τ), u(τ)). (5.22)

If the time scaled system (5.22) is flat then the original system (5.17) is called orbitally

flat. In the following, in a slight abuse of notation, the flat output of the time scaled system

(5.22) will sometimes also be referred to as the flat output of the original system (5.17).

5.4 Orbital Flatness of Crystallizer Model

5.4.1 Flatness Test for Moment Model

First, it will be shown that the moment model (5.16-a) - (5.16-e) is not flat. For single-

input systems flatness and input-state linearizability by feedback are equivalent [92]. A
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single-input system which is affine in the control variable u

ẋ = f(x) + g(x)u, x ∈ IRn, u ∈ IR (5.23)

is input-state linearizable at x0 if and only if the following conditions hold locally around

x0 [41, 77]:

A the matrix G(x) = [g0(x), g1(x), . . . , gn−1(x)] with gi = adi
fg(x) has full rank n

B the distribution D = span{g0, g1, . . . , gn−2} is involutive.

The notation adfg is standard to denote the Lie product of two vector fields f and g. For

the moment model (5.16-a) - (5.16-e) the vector fields f and g are defined as follows

f(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

B(μ3, T )

G(μ3, T )μ0

2G(μ3, T )μ1

3G(μ3, T )μ2

−3ρckv

ρ
ΔHc(μ3)G(μ3,T )μ2

cp(μ3)
− UAc

ρV
T

cp(μ3)

⎞
⎟⎟⎟⎟⎟⎟⎠ , g(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
UAc

ρV cp(μ3)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (5.24)

where the state vector x is given by x = (μ0, . . . , μ3, T )T . To check condition B, i.e.

involutivity of D, a Matrix D0,1 can be made up of all vectors spanning the distribution D
and the Lie product adg0g1(x) of the first two of these vectors

D0,1(x) = [g0(x) g1(x) g2(x) g3(x) adg0g1(x)] . (5.25)

It can be verified that this matrix has full rank for almost all x ∈ IR5. Hence, the Lie

product of the first two vector fields in the definition of D do not belong to D

g0 ∈ D, g1 ∈ D, but adg0g1 /∈ D. (5.26)

Hence, distribution D is not involutive, condition B is violated, the moment model

(5.16-a) - (5.16-e) is not input-state linearizable by feedback and therefore it is not flat.

5.4.2 Flatness of Time-Scaled Moment Model

In the following, it is shown that the system (5.16-a)-(5.16-e) is orbitally flat. Using the

scaling function

s(t) =
1

G(μ3(t), T (t))
, (5.27)
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a new notion of time is introduced by

dτ = G(μ3(t), T (t))dt, τ0 = 0. (5.28)

As G represents the crystal growth rate, the new ‘time’ τ is the length which a crystal has

gained since the beginning of the batch. This is a very natural way to describe the pro-

gression of the batch. According to (5.21) the scaling function has to be strictly positive

and finite. For the specific scaling function (5.27) used here this condition is equivalent

to the crystal growth rate G(μ3, T ) being strictly positive and finite. Because of (5.7) and

(5.6), this reduces to the requirement that the solution has to be kept supersaturated, i.e.

c(t) > csat(t), ∀t. Since in a crystallizer crystals are to be grown rather than dissolved

this condition makes eminent sense from a practical point of view. Using new time τ , the

system (5.16-a)-(5.16-e) is transformed to

dμ0(τ)

dτ
=

B(μ3(τ), T (τ))

G(μ3(τ), T (τ))
(5.29-a)

dμ1(τ)

dτ
= μ0(τ) (5.29-b)

dμ2(τ)

dτ
= 2μ1(τ) (5.29-c)

dμ3(τ)

dτ
= 3μ2(τ) (5.29-d)

dT (τ)

dτ
= −3ρckv

ρ

ΔHc (μ3) μ2

cp (μ3)
− UAc

ρV

(T − Tc)

G (μ3, T ) cp (μ3)
. (5.29-e)

This can be written in short form as

dx

dτ
= f̄(x) + ḡ(x)u, where f̄(x) =

f(x)

G(x)
, ḡ(x) =

g(x)

G(x)
(5.30)

with vector fields f and g according to (5.24). It is easy to check that both conditions A

and B for feedback linearizability in Chapter 5.4.1 are met. The matrix

Ḡ(x) = [ḡ0(x) ḡ1(x) . . . ḡ4(x)] with ḡi = adi
f̄ ḡ(x) (5.31)

has full rank for all x in the physically meaningful range. The matrices

D̄i,j(x) = [ḡ0(x) ḡ1(x) ḡ2(x) ḡ3(x) adḡi
ḡj(x)] , i, j = 0, . . . , 3 (5.32)

are singular for all x ∈ IR5. Hence, the corresponding distribution

D̄ = span{ḡ0(x) ḡ1(x) ḡ2(x) ḡ3(x)} is involutive. Therefore, the time scaled

system (5.29-a)-(5.29-e) is feedback linearizable and, consequently, it is flat. This
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implies that the moment model in original time (5.16-a)-(5.16-e) is an orbitally flat

system.

Exploiting flatness requires the knowledge of a flat output of the system. As in many

cases, also for the batch crystallizer the flat output has a physical meaning. Intuitively

speaking, the flat output of the crystallizer model is the element of the system state vector

on which the influence of the system input Tc is the “least direct”. The cooling temper-

ature Tc, of course, directly affects the crystallizer temperature T (5.29-e). Temperature

T determines the saturation concentration csat (5.9) and therefore has a direct effect on

supersaturation S (5.6) and hence also on growth and nucleation rates G and B, see equa-

tions (5.7) and (5.8), respectively. According to (5.29-a), G and B determine the deriva-

tive of the zeroth moment μ0. This, in turn, is the derivative of the first moment, and so

on. Hence, in some sense, the influence of the input Tc on the third moment μ3 is “least

direct”. With the third moment of the CSD as a flat output candidate, it is easy to verify

the flat output conditions (5.18), (5.19-a) and (5.19-b). In the following, it is shown that

for the output

y(τ) = μ3(τ) (5.33)

both conditions A and B in the definition of flatness (see Chapter 5.3.1) hold. As μ3(τ) is

a state variable, equation (5.18) and therefore requirement A hold trivially. Differentiating

the output y(τ) five times with respect to τ along the system trajectories yields

dy(τ)

dτ
= 3μ2(τ) (5.34-a)

d2y(τ)

dτ 2
= 6μ1(τ) (5.34-b)

d3y(τ)

dτ 3
= 6μ0(τ) (5.34-c)

d4y(τ)

dτ 4
= 6

B(μ3(τ), T (τ))

G(μ3(τ), T (τ))
(5.34-d)

d5y(τ)

dτ 5
= φ

(
μ3(τ), μ2(τ), T (τ), Tc(τ)

)
(5.34-e)

where

φ
(
μ3, μ2, T, Tc

)
= 6

G(μ3, T )(∂B
∂T

dT
dτ

+ ∂B
∂μ3

dμ3

dτ
) − B(μ3, T )(∂G

∂T
dT
dτ

+ ∂G
∂μ3

dμ3

dτ
)

G(μ3, T )2
. (5.35)

with the expressions for dμ3

dτ
and dT

dτ
according to (5.29-d) and (5.29-e), respectively. Note
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that φ(μ3, μ2, T, Tc

)
is affine with respect to the system input Tc, i.e. it is of the form

φ
(
μ3, μ2, T, Tc

)
= α(μ3, μ2, T ) + β(μ3, T )Tc. (5.36)

From (5.33), (5.34-a)-(5.34-c) it is immediately clear that the states μ3(τ) . . . μ0(τ) can be

computed from y(τ) and its first three derivatives. The state T (τ) can be determined from

(5.34-d) by additionally using the fourth derivative. Finally, the computation of the input

Tc(τ) from equation (5.34-e) also involves the fifth derivative of the flat output. Hence,

equations (5.19-a), (5.19-b) and therefore requirement B also hold. Consequently, y(τ) is

a flat output of the transformed system (5.29-a)-(5.29-e).

Note that the calculations presented in this chapter are - to a certain extend - independent

of the specific dependence of growth and nucleation rate B and G on the system states.

The flatness property of the system and the third moment μ3 as a flat output are indepen-

dent of the kinetics. The only requirement is that equation (5.34-d) must be solvable for

T (τ).

As described in Chapter 5.1, it may desirable to interprete the crystallizer temperature

T as the manipulated input and disregard equation (5.16-e) or (5.29-e), respectively. It

can easily be verified that the resulting model (5.16-a) - (5.16-d) with the four leading

moments μ0, . . . , μ3 as system states and T as input is also orbitally flat with the same

time scaling function (5.27) and the same flat output (5.33).

If one is interested in higher moments beyond μ3, ODEs of the form (5.13) have to be ap-

pended to the model (5.16-a) - (5.16-e). These higher order moment models are orbitally

flat for any finite number of moments, again, with the same time scaling function. This

can easily be checked by verifying that the highest moment which is taken into account is

a flat output for the time scaled system.

5.5 Discussion

A standard population balance model taken from the literature was presented in this chap-

ter. The model describes a lab-scale seeded batch cooling crystallizer. Its structure is

relatively simple, e.g. assuming growth rate being independent of crystal size, such that a

closed set of ODEs for the leading moments of the CSD can be derived.

The notion of differential flatness was introduced and it was shown that moment mod-

els are not flat but they possess the property of orbital flatness regardless of the model

dimension, i.e. the number of moments being considered. These results are used in the
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following Chapter for the design of control strategies. According to M. Fliess [19] this is

the first practical example where orbital flatness proves to be useful.

The flatness based approach presented in this chapter heavily relies on the specific model

structure under consideration. In particular, its applicability is restricted to population

balance models which allow the derivation of finite-dimensional moment models. As in

most cases, only a specific problem structure allows the use of powerful methods.
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Chapter 6

Batch Crystallization – Flatness Based

Control Synthesis

6.1 Introduction to Batch Crystallizer Control

Different cooling strategies lead to different product CSDs at the end of a batch. For a

given temperature trajectory, it is obviously possible to determine the resulting CSD by

running an experiment or by numeric simulation of a population balance model, such as

the one given in Chapter 5.2. The solution of the reverse problem, i.e. the design of a

temperature trajectory which produces a specific desired CSD defined as a function of

crystal length, requires the inversion of the system model. See Figure 6.1 for a graphical

illustration. This defines a feedforward control problem which, so far, had been unsolved.

Instead, in the literature, the problem of batch crystallizer control has been addressed

time
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Figure 6.1: Illustration of inverse problem
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mainly from an optimization point of view. A number of authors have considered the

problem of finding a temperature trajectory which maximizes or minimizes a character-

istic of the final CSD [1, 46, 51, 60, 65, 105]. These studies differ with respect to model

assumptions, optimization methods, objective functions and the question whether or not

constraints can be handled. The methods applied vary from Pontryagin’s maximum prin-

ciple to nonlinear dynamic optimization. Concerning the underlying process models, in

actual case studies, moment models (or even simpler equations) have been used, although

the more recent approaches could potentially handle more complex population balance

based model formulations. Since an optimal temperature trajectory represents an open

loop control law the positive effects may be lost due to plant-model mismatch or because

of imperfect tracking of the desired optimal temperature trajectory. This issue is treated in

[56]. Attempts to incorporate feedback in the optimal control of batch cooling crystalliz-

ers can be found in [8, 67, 115]. The influence of the distribution of seed crystals and its

use as a further degree of freedom for optimization is studied in [12]. Optimization of a

CSD over more than one characteristic crystal length has recently been considered in [57].

If the objective is to obtain large crystals it is beneficial to suppress nucleation as far as

possible such that seed crystals grow up to larger sizes. Therefore, in [70] a temperature

trajectory was derived to maintain nucleation at a constant low level. Because of the

nonlinear dependence of nucleation and growth rates on supersaturation it is also possible

to favour growth over nucleation by keeping the supersaturation at a constant low value.

This is another popular approach, which has been pursued, e.g., in [48] in an open loop

setting. In [113] a nonlinear feedback controller for the same purpose has been designed.

The usage of fines dissolution as an additional manipulated variable for batch crystallizer

control has been examined in [47, 91].

In this chapter, a considerably different approach is taken which is neither based on opti-

mization nor does it just keep one process variable constant. The approach presented here

rather uses methods from nonlinear control theory to analytically determine the feed-

forward control which steers the system into a desired final CSD. Differential flatness,

which was introduced in the previous chapter, is exploited for control design. Based on

this property, a procedure is developed which enables inversion of the system model and

hence makes it possible to check whether a desired final CSD, according to the model, is

physically possible and, if so, to compute the corresponding temperature trajectory. The

flatness property is further exploited in Chapter 6.3 to facilitate the dynamic optimization

of the CSD. In Chapter 6.4, trajectory planning is treated. It is shown how to design a tra-

jectory which achieves certain CSD properties (expressed in terms of moments) at the end
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of the batch. Finally, a feedback control scheme to track such a trajectory in the presence

of uncertainty is presented in Chapter 6.5. Parts of the results presented in this Chapter

have been published earlier in [112], [111].

6.2 Feedforward Control for Desired CSD

In the following, crystallizer temperature T is used as the manipulated input to control

the final CSD. The object is to invert the batch crystallizer model (5.1-a)-(5.2) such that

a desired final CSD fend,d(L) can be chosen and the corresponding desired temperature-

time profile Td(t) be determined. This is illustrated in Figure 6.2 where Σ is the system

(the batch crystallizer) and Σ−1 is the inverse system to be derived in this chapter.

Σ(L)end,df Σ
_ 1 dT (t)

=f (L)end,d

f (L,t     )end

Figure 6.2: Illustration of feedforward control by system inversion

Two specific properties of the batch crystallizer model are exploited to facilitate system

inversion and therefore feedforward control design. These properties are, on the one

hand, the orbital flatness of the moment model and, on the other hand, the simple form of

population balance equation (5.1-a) when rewritten in new time τ .

The system’s characteristic lines in the L − t domain, on which the CSD f(L, t) is con-

stant, are defined by
df(L, t)

dt
= 0. (6.1)

The total differential of f is given by

∂f(L, t)

∂L

dL

dt
+

∂f(L, t)

∂t
= 0. (6.2)

With the PDE (5.1-a) this leads to the following expression for the characteristic lines

dL

dt
= G(t). (6.3)

See Figure 6.3 for an illustration.

Applying the time transformation (5.28) to the PDE (5.1-a) yields the simple transport

equation
∂f(L, τ)

∂τ
= −∂f(L, τ)

∂L
. (6.4)
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This implies that f(L, τ) is constant on straight lines in the (L, τ)-domain with dL
dτ

= 1,

see Figure 6.4. Furthermore, the size distribution f(L, τ) can be split into two parts,

where one part represents grown seed crystals

fs(L, τ) =

{
f(L, τ) for L ≥ τ

0 else
(6.5)

and the other part describes the distribution of crystals produced by nucleation

fn(L, τ) =

{
f(L, τ) for L < τ

0 else
. (6.6)

Obviously, the distribution of grown seed crystals fs(L, τ) cannot be influenced by control

since it is equivalent to the initial seed distribution shifted in size by the length ΔL = τ

fs(L, τ) = fseed(L + τ). (6.7)

In contrast, the distribution of particles created by nucleation fn(L, τ) can be influenced

by appropriate manipulation of the crystallizer temperature T (τ), since the nucleation rate

B(τ) is temperature dependent. Consequently, a necessary condition for a desired CSD

at the end of the batch fend,d(L) to be attainable is

fend,d(L) = fseed(L − ΔLend), for L ≥ ΔLend, (6.8)

where ΔLend = τend is the increase in size which a crystal gains over the whole batch

run.

Since f(L, τ) is constant on the characteristic lines dL
dτ

= 1, the values of a desired

fend,d(L) in the size range 0 ≤ L < ΔLend can be traced back to values of the CSD

at the lower boundary of the size range f(0, τ) for 0 < τ ≤ τend. Consequently, if the

CSD at the end of the batch is desired to be a certain desired distribution

f(L, τend) = fend,d(L), (6.9)

then the time profile of the boundary condition which is necessary to produce the desired

distribution fend,d(L) is determined by

fd(0, τ) = fend,d(τend − τ), 0 < τ ≤ τend. (6.10)

Note that τend is the maximum length of nucleated crystals, which is also fixed when

choosing the desired final CSD fend,d(L). Equation (6.10) establishes the first step of a
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f (L , t)

f (0, t) tend

Figure 6.3: Evolution of CSD in the (L, t)-domain

f (L , τend)

= fend(L)

fseed(L)

τend τf (0, τ )

fn(L , τend)

fs(L , τend)
L

�Lend

fn(L , τ )

fs(L , τ )

Figure 6.4: Evolution of CSD in the (L, τ)-domain
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feedforward control design. If a desired final CSD fend,d(L) is chosen, (6.10) determines

the corresponding time profile of the CSD at length L = 0 (the lower boundary of the

length coordinate) required to produce fend,d(L). In a second step, flatness will be used

to determine the desired crystallizer temperature Td(τ), i.e. the feedforward control, from

the desired trajectory of the left boundary of the CSD fd(0, τ).

Because of boundary condition (5.1-b) and equation (5.34-d), the trajectory fd(0, τ) de-

termines the fourth derivative of the flat output

d4yd(τ)

dτ 4
= 6fend,d(τend − τ). (6.11)

Integrating this expression four times yields the flat output as a function of new time

τ . Integration constants are obtained from the initial condition, i.e. the seed CSD. The

desired trajectory of the flat output, i.e. the third moment of the CSD, connecting the seed

CSD fseed(L) with the desired final CSD fend,d(L) is

yd(τ) = 6

τ∫∫∫∫
0

fend,d(τend−θ) dθ4+μ3,Seed+3μ2,Seedτ+3μ1,Seedτ
2+μ0,Seedτ

3. (6.12)

According to the definition of flatness, all system states and the system input can be

determined from the flat output and its derivatives. This means in particular that equation

(5.19-b) determines a feedforward control Td(τ) which produces the trajectory of the

flat output defined by (6.12) and, therefore, creates the desired final CSD fend,d(L). To

compute Td(τ), in equation (5.34-d) all variables are replaced by their respective desired

counterparts. The resulting equation

d4yd(τ)

dτ 4
= 6

B(yd(τ), Td(τ))

G(yd(τ), Td(τ))
(6.13)

is solved for Td(τ). Due to the quadratic dependence of saturation concentration csat on

temperature T , see equation (5.9), this procedure yields two solutions for Td(τ) of which

at most one is physically meaningful. If for some τ both results are not meaningful, e.g.

in the case of complex conjugate solutions, this implies that the desired CSD fend,d(L) is

not compatible with the model, i.e. it cannot be produced by the given system from the

given initial CSD fseed(L).

Eventually, the time transformation (5.28) has to be inverted to obtain the control Td(t) in

original time. This requires the evaluation of the integral

t =

τ∫
0

1

G(μ3,d(θ), Td(θ))
dθ (6.14)
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trajectory of flat ouput yd(τ )

trajectory of input Td(τ )

trajectory of input Td(t) in original time t fend,d(L) physically impossible

real-valued
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range?

choose desired CSD at end of batch fend,d(L)

integration

flatness

trajectory of boundary condition fd(0, τ ) in new time τ

straight characteristic lines

inverse time transformation

yes no

Figure 6.5: Open Loop Control Design Procedure

and the solution of the resulting equation for τ . Depending on the kinetic relations used

for the growth and nucleation rate and the function chosen for the desired CSD fend,d(L),

these computations may be done analytically or numerically. If the inversion of the time

transformation can be done analytically an explicit functional dependence of temperature

Td on time t is obtained. Otherwise, the open loop control Td(t) can only be determined

at a number of time instances. However, this is not a severe restriction for practical

implementation.

In summary, the flatness property of the crystallizer model can be exploited for the follow-

ing tasks: checking if a desired final CSD fend,d(L) is physically possible and computing

the temperature trajectory Td(t) which produces this desired CSD. The corresponding

procedure is summarized schematically in Figure 6.5.

The system inversion derived in this chapter involves three main steps. The first step uses

the straight characteristic lines of the time scaled population balance model. The second

step exploits flatness of the time scaled moment model. In the last step, the time scaling

is reversed. This is illustrated as a block diagram in Figure 6.6.
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Example

For illustration, the procedure is applied to a specific example. The batch crystallizer is

supposed to be started with a solution of concentration

c0 = 0.493
gKNO3

gH2O

(6.15)

which corresponds to a saturation temperature of 32◦C. A small amount (mseed = 0.05g)

of seed crystals of size Lseed = 196μm is added, i.e. the initial number density function

is

fseed(L) =
Nseed

V
· δ(L − Lseed), (6.16)

where δ(•) is the Dirac delta impulse and the number of seed crystals is

Nseed =
mseed

ρckvL3
seed

. (6.17)

For a complete list of model parameter values and operating conditions see Appendix B.

As an example, the part of the desired final CSD which is to be generated by nucleation

is chosen as an exponential function Ae−BL, with two parameters A and B. The other

part, which cannot be influenced by the cooling mode, results from seed crystals which

have grown. This is described by the seed CSD shifted in the size domain by ΔLend. The

overall desired final CSD consequently is

fend,d(L) =

{
Ae−BL for L < ΔLend

fseed(L − ΔLend) for L ≥ ΔLend

=

{
Ae−BL for L < ΔLend

Nseed

V
· δ(L − (Lseed + ΔLend)) for L ≥ ΔLend.

(6.18)

From the given desired final CSD fend,d(L) the corresponding time trajectory of the de-

sired number density function at the lower boundary of the size range, fd(L = 0, τ), can

be obtained from equation (6.10)

fd(0, τ) = fend,d(τend − τ) = Ae−B(τend−τ), 0 < τ ≤ τend. (6.19)

Σ
_ 1

time scaled
population
balance

time scaled
moment
equations

inverse
time
scaling

(L)fend,d
dT (t)dT  (  )d(B/G)  (  )τ τ

Figure 6.6: Steps Involved in the System Inversion
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Because of boundary condition (5.1-b) and equation (5.29-a) this determines the deriva-

tive of the zeroth moment

dμ0,d(τ)

dτ
= fend,d(τend − τ) = Ae−B(τend−τ). (6.20)

According to (5.29-a)-(5.29-d), the trajectories of all four moments can be obtained by

essentially integrating the expression for the boundary condition (6.19) four times. The

integration constants are determined by the initial conditions for the moments of the CSD,

which in turn can be obtained from the seed CSD given in (6.16). This results in the

following expressions for the first four moments

μ0,d(τ) =
Ae−Bτend

(
eBτ − 1

)
B

+
Nseed

V
(6.21-a)

μ1,d(τ) =
Ae−Bτend

(
eBτ − Bτ − 1

)
B2

+
Nseed(Lseed + τ)

V
(6.21-b)

μ2,d(τ) =
Ae−Bτend

(
2eBτ − B2τ 2 − 2Bτ − 2

)
B3

+
Nseed(Lseed + τ)2

V
(6.21-c)

μ3,d(τ) =
Ae−Bτend

(
6eBτ − B3τ 3 − 3B2τ 2 − 6Bτ − 6

)
B4

+
Nseed(Lseed + τ)3

V
. (6.21-d)

From equation (5.14), the corresponding desired trajectory for the solute concentration

cd(τ) can be obtained. In the next step, equation (5.1-b) with expressions for growth and

nucleation rates from (5.7) and (5.15) is used to determine the temperature Td(τ). The

desired temperature trajectory Td(τ) is obtained by inserting the desired trajectories for

the boundary condition (6.19), the third moment (6.21-d) and concentration cd(τ) into

equation (5.1-b). Due to the quadratic dependence of csat(T ) on T (5.9), the resulting

equation

csat(Td(τ)) =
cd(τ)

1 +
(

kgfd(0,τ)

hkbkvμ3,d(τ)

) 1
b−g

(6.22)

has two solutions

Td(τ) =

−A1 ±
√

A2
1 − 2A0A2 + 4A2cd(τ)

(
1 +

(
kgfd(0,τ)

hkbkvμ3,d(τ)

) 1
b−g

)−1

2A2
(6.23)
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of which only the positive solution is physically meaningful. Finally, the time scaling has

to be inverted according to equation (6.14)

t =

τ∫
0

1

G(μ3,d(θ), Td(θ))
dθ

=

τ∫
0

[(
AB4eBθkgV

hkbkv

(
B4eBLendNseed(Lseed + θ)3

−AV (6(1 − eBθ) + 6Bθ + 3B2θ2 + B3θ3)
)−1

) −g
b−g/

kg

]
dθ. (6.24)

This integral has to be evaluated and the resulting equation has to be solved for τ . Insert-

ing the function τ(t) in equation (6.23) yields the desired temperature trajectory in origi-

nal time T (t). However, the integral in (6.24) cannot be evaluated analytically. Hence, the

temperature T cannot be obtained as an explicit function of time t but values at an arbitrary

number of time instants can be determined by numerical evaluation of (6.24). Plots of the

desired final CSD fend,d(L), the trajectory of the boundary condition fd(0, τ), the third

moment (i.e. the flat output of the system) μ3,d(τ), the temperature trajectory in scaled

time T (τ) and the temperature trajectory in original time (i.e. the desired feedforward

control) T (t) are presented in Figure 6.7. The parameters for the desired CSD in (6.18)

were chosen as follows: A = 2 · 107 #(mm l)−1, B = 7.5 mm−1, ΔLend = 0.9 mm.

6.3 Optimization of CSD Properties

As pointed out in Chapter 5.1, quite a number of researchers have applied optimization

techniques for the design of open loop control strategies for batch crystallizers. Com-

monly, dynamic optimization based on moment models is used to obtain a temperature

trajectory which optimizes selected properties of the CSD. Typical objectives are the max-

imization of the maximum crystal size or the weight mean size of crystals. Since in some

situations it is desirable to suppress nucleation as much as possible, another common op-

timization objective is the minimization of the ratio of the mass of crystals that have been

produced by nucleation and the mass of grown seed crystals.

In [36], it was shown that exploiting the invertibility of (orbitally) flat systems, dynamic

optimization problems can be facilitated significantly. As described in Chapter 5.3, a

flat output completely parameterizes the corresponding dynamic system. If the flat out-

put trajectory is known, the state and input trajectories - and hence any objective func-
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tion depending on the states - can be determined without solving a differential equation.

Therefore, if the flat output is parameterized, e.g. via splines, the complete system is pa-

rameterized and the dynamic optimization problem is reduced to a parameter optimization

problem.

For the problem of optimizing CSD properties, which is treated here, it is convenient to

directly choose a parameterization of the final CSD f(L, tend) rather than parameterizing

the flat output trajectory. Then, any objective depending on f(L, tend) can be easily ex-

pressed as an explicit function of the optimization parameters. Furthermore, as shown in

Chapter 6.2, the trajectory of the flat output can be determined from f(L, tend). Hence,

because of the system being flat, path constraints and final time constraints on the mo-

ments of the distribution, on solute concentration and on crystallizer temperature can also

be directly expressed in terms of the optimization parameters.

Figure 6.8 shows two block diagrams comparing standard dynamic optimization and flat-

ness based optimization of final CSD properties. In standard dynamic optimization the

system input, i.e. temperature T (t), is parameterized (e.g. piece-wise linear) using ndyn

sampling values Ti, i = 1, . . . , ndyn. The system equations are solved numerically. For

the resulting final CSD the objective function is evaluated. Furthermore, constraints may

be checked. Based on these evaluations a new set of Ti is chosen, and so on. In contrast,

in the flatness based procedure the system output, i.e. the final CSD f(L, tend) is param-

eterized (e.g. using splines) with nflat sampling values fi, i = 1, . . . , nflat. Now, the

cost function can be evaluated directly. If there are path constraints on the system input

or the system states, the respective trajectories have to be computed as shown in Chapter

6.2. Then constraints can be evaluated and a new set of fi is determined by the optimiza-

tion algorithm. Note that all the calculations can be done analytically such that during

run-time of the optimization procedure only the fi values have to be inserted to obtain

the value of the objective function and the trajectories of the system input and states. The

only numerical calculation which might be necessary during run-time of the optimization

procedure is the computation of tend if the batch time is to be constrained. Hence, by

eliminating the numerical solution of the system equations the optimization problem can

be solved in a much more robust and efficient manner.

Example

The potential of this flatness based optimization approach is demonstrated by means of a

specific example. The following case study is based on the model (5.16-a)-(5.16-d) with
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Figure 6.8: Block diagrams illustrating standard dynamic optimization (top) and flatness

based optimization (bottom) of CSD properties

the initial condition defined in equations (6.15) - (6.17). An optimization problem taken

from [65] is considered. The objective is to favour growth of seed crystals and suppress

nucleation as far as possible. Therefore, the objective function to be minimized is defined

as the ratio of crystal mass produced by nucleation to crystal mass produced by grown

seed crystals at the end of the batch

mn

ms

=

ρckvV
ΔLend∫

0

L3fn(L, tend) dL

ρckvV
ΔLend∫

0

L3fs(L, tend) dL

=

V
ΔLend∫

0

L3fn(L, tend) dL

Nseed(Lseed + ΔLend)3
. (6.25)

The batch time

tend =

τend∫
0

1

G(μ3(τ), T (τ))
dτ (6.26)

is restricted to lie between 50 and 80 minutes. The yield, i.e. the mass of crystals at the

end of the batch

mend = mn + ms (6.27)

has to be at least 100g. This is a final time constraint for the optimization. The crystallizer

temperature T (t) is not allowed to be smaller than 28◦ C over the whole batch run, which

imposes a path constraint.

For the solution of this problem, the final CSD of nucleated crystals fn,end is parameter-

ized via third order splines. Spline breaks are chosen to be at 0, 200, 380, 500, 600, 680,

750, 810, 860 μm and at the maximum length of nucleated crystals ΔLend. The optimiza-

tion parameters are the 10 function values fi at the spline breaks and the maximum size

91



ΔLend = τend. Hence, the following optimization problem has to be solved

min
fi,τend

mn

ms

(6.28)

subject to: 50min ≤ tend ≤ 80min

mend ≥ 100g

T (τ) ∈ IR and T (τ) ≥ 28◦C, ∀τ.

This is a nonlinear optimization problem which, due to the path constraint on T (τ), is

semi-infinitely constrained. Software packages such as the Matlab optimization toolbox

provide techniques for the numerical solution of this type of problems.

Note, that the optimization problem (6.28) does not involve any differential equations.

The objective function mn/ms, the yield mend and the temperature profile T (τ) can be

symbolically expressed as functions of the optimization parameters. The duration of the

batch tend has to be computed by numerical evaluation of the integral (6.26).

Results obtained with the Matlab optimization toolbox are presented in Figures 6.9 and

6.10. The trajectories of temperature and supersaturation as well as the final distribution

of nucleated crystals are shown for linear cooling, which was used as the starting point

of the optimization, and for optimized cooling. The shape of the temperature trajectory

matches with the results obtained in [65] by dynamic optimization. The temperature is

kept relatively high for the most part of the batch and drops sharply towards the end. This

results in low supersaturation over 60 minutes, thus favouring growth over nucleation.

Towards the end of the batch supersaturation rises sharply which results in a rapid growth

of existing crystals but also in a burst of nuclei. However, as these nuclei do not have time

to grow towards considerable sizes they do not contribute much to the mass of nucleated

crystals, which is in the numerator of the objective function (6.25). Conversely, linear

cooling leads to a peak in supersaturation and therefore the production of a large amount

of nuclei at an early instant of time. Hence the nuclei have time to grow, which leads

to a larger mass of nucleated crystals at the end of the batch. Furthermore, the final

size of seed crystals is only 1057 μm compared to 1126 μm with optimized cooling.

Therefore, the final mass of seed crystals (the denominator of the objective function)

is smaller than in the optimized case. The decrease of nucleated crystal mass and the

increase in final mass of seed crystals lead to an overall reduction of the cost (6.25) from

12.4 for linear cooling to 9.5 for optimal cooling. In Figure 6.11 the evolution of the

mass density function is shown for linear and optimized cooling. These are simulation

results where the linear and the optimized cooling curves shown in Figure 6.9 are applied,

92



0 20 40 60 80
28

28.5

29

29.5

30

30.5

31

31.5

32

time t [min]

T
 [ 
°C

]

optimized cooling
linear cooling   

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

time t [min]

S
 [−

]

optimized
linear   
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Figure 6.10: Mass density function obtained by optimized cooling (solid) and linear cool-

ing (dashed)

but in the initial condition the Dirac impulse at LSeed = 196μm has been replaced by

a quadratic function between 180 and 212μm with maximum at 196 μm. This is done

because a Dirac impulse cannot be represented properly in a plot. This difference in the

initial condition can be interpreted as an initial disturbance. The simulation results do not

deviate perceivably from the undisturbed case.
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Figure 6.11: Mass density function for linear (left) and optimized (right) cooling

6.4 Feedforward Control for Desired CSD Properties

In cases where CSD properties which can be formulated in terms of the moments of

the CSD are desired to assume prescribed values rather than being optimized, a more

direct way to design a feedforward control may be used. The flat output trajectory can

be parameterized, e.g. by a polynomial, in new time τ . The coefficients are determined

such that the trajectory is compatible with given initial conditions and with the desired

properties of the final CSD. Due to equation (5.19-b) in the definition of flatness it is then,

again, straightforward to compute the corresponding feedforward control T (τ).

As an example, in the following a trajectory is designed that steers the system from the

initial condition (6.15), (6.16) to a size distribution with prescribed weight mean size

Lwm :=
μ4

μ3

, (6.29)

overall crystal mass mend = kvρcV μ3 and maximum length of nucleated crystals, ΔLend.

Since the definition of the weight mean size Lwm involves the fourth moment μ4, the

equation
dμ4

dt
= 4G(μ3, T ) · μ3 (6.30)

has to be added to the model (5.16-a)-(5.16-e). Similarly, the time scaled model (5.29-a)-

(5.29-e) is augmented by the equation

dμ4

dτ
= 4μ3. (6.31)

As mentioned in Chapter 5.4.2 the resulting sixth order model is orbitally flat with flat

output y = μ4. In a first step, it is now shown how to invert this system model, i.e.
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how to determine the system input trajectory from the flat output and its time derivatives.

Afterwards, in a second step it is shown how to determine an appropriate flat output

trajectory.

Similar to equations (5.34-a)-(5.34-e), differentiating the flat output y six times with re-

spect to new time τ yields

dy(τ)

dτ
= 4μ3(τ) (6.32-a)

d2y(τ)

dτ 2
= 12μ2(τ) (6.32-b)

d3y(τ)

dτ 3
= 24μ1(τ) (6.32-c)

d4y(τ)

dτ 4
= 24μ0(τ) (6.32-d)

d5y(τ)

dτ 5
= 24

B(μ3(τ), T (τ))

G(μ3(τ), T (τ))
(6.32-e)

d6y(τ)

dτ 6
= 4φ

(
μ3(τ), μ2(τ), T (τ), Tc(τ)

)
(6.32-f)

where φ is defined by equation (5.35). If temperature T is used as the control input the

sixth derivative (6.32-f) is not needed for system inversion. In this case, equation (6.32-e)

is solved for the input T , using (6.32-a) to replace μ3. This is done in the following way.

Using the expressions for growth and nucleation rates given in equations (5.7) and (5.15),

equation (6.32-e) is solved for supersaturation

S(τ) =

(
kgy

(5)(τ)

6hkbkvy′(τ)

) 1
b−g

. (6.33)

Then the definition of supersaturation (5.6) together with the expression for the saturation

concentration (5.9) is solved for temperature T . Due to the quadratic dependence in (5.9)

this, as in (6.23), yields two solutions for T of which only the positive one is physically

meaningful

T (τ) = − A1

2A2

+

√
A2

1(1 + S(τ)) − 4A2(A0 − c(τ) + A0S(τ))

2A2

√
1 + S(τ)

. (6.34)

In this solution, S(τ) can be replaced by a function of the flat output y(τ) and its deriva-

tives using (6.33) and c(τ) is replaced using (5.14) and (6.32-a). Hence, this constitutes

the desired system inversion. For any desired trajectory of the flat output yd(τ), the corre-

sponding input trajectory Td(τ) can be calculated. If the open loop control is to be applied
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in “real” time t, the time scaling has to be inverted by (numerically) integrating (6.14) and

solving for τ .

In a second step, the problem of trajectory planning is treated. The flat output trajectory is

determined such that the system moves from the initial state to the desired final condition.

For this purpose, the desired flat output trajectory yd(τ) is parameterized by an eighth

order polynomial in new time τ

yd(τ) =
8∑

i=0

aiτ
i. (6.35)

The six leading coefficients a0 . . . a5 are determined such that the desired trajectory yd(τ)

is consistent with the initial values for the moments μ0 . . . μ4 and supersaturation S, which

is determined by the initial values for solute concentration c0 and temperature T0

yd(0) = a0 = μ4(0) (6.36-a)

y′
d(0) = a1 = 4μ3(0) (6.36-b)

y′′
d(0) = 2a2 = 12μ2(0) (6.36-c)

y′′′
d (0) = 6a3 = 24μ1(0) (6.36-d)

y
(4)
d (0) = 24a4 = 24μ0(0) (6.36-e)

y
(5)
d (0) = 120a5 = 24B/G. (6.36-f)

The prime in y′
d denotes differentiation with respect to τ . Furthermore, the following

desired final time conditions are to be met

Lwm(τend) =
μ4(τend)

μ3(τend)
=

4yd(τend)

y′
d(τend)

= 500μm, (6.37-a)

m(τend) = kvρcV μ3(τend) =
kvρcV

4
y′

d(τend) = 50g (6.37-b)

ΔLend = τend = 800μm. (6.37-c)

This, overall, constitutes nine equations for the determination of ten unknown parameters

(the 9 coefficients a0, . . . , a8 and final time τend). Hence, a family of solutions is obtained

of which one can be chosen, e.g., such that supersaturation, crystallizer temperature or

batch time remain within certain bounds. In Figure 6.12, trajectories resulting from dif-

ferent choices of the free coefficient a8 are shown. From the requirements (6.37-a) and

(6.37-b) it follows that all trajectories reach the same value of weight mean size Lwm

and fourth moment μ4 (i.e. flat output y) at final time tend. The final values of tempera-

ture T and supersaturation S may differ. As can be seen from the figure, batch time tend
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Figure 6.12: Desired trajectories for temperature T , supersaturation S, weight mean size

Lwm and flat output y = μ4 (top left – bottom right) for different values of coefficient a8.

decreases with a8. Also, the maximum temperature gradient observed during the batch

changes. For very small and very large values of a8 the maximum temperature gradient is

unrealistically high. Hence, these trajectories have to be ruled out. A good choice for the

free parameter is, e.g., a8 = 30mm−4cm−3, corresponding to the solid curves in Figure

6.12. For this choice all the variables remain in a reasonable range.

In the following chapter, a feedback tracking controller is designed to stabilize the system

around the desired trajectory resulting from this choice.
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6.5 Feedback Tracking Control

Beside their invertibility property, which can be exploited for trajectory planning and de-

sign of feedforward controls, flat systems possess a further advantage. They are lineariz-

able by feedback. Based on this property it is possible to synthesize feedback controllers

for the stabilization of batch crystallization processes around desired trajectories for the

moments of the CSD and the crystallizer temperature. Such desired trajectories may, for

example, be designed by one of the procedures presented in Chapter 6.2, 6.3 or 6.4.

In the following, as an example, a tracking controller is designed to stabilize the crys-

tallizer around the trajectory designed in the previous Chapter 6.4 such that the system

is steered from a given initial condition to a final CSD of which the weight mean size

Lwm(tend), crystal mass mend and final size of seed crystals ΔLend is prespecified. Since

a feedback controller is to be synthesized, the argument given in the introduction 5.1 for

the use of the crystallizer temperature T as a manipulated variable is not valid any more.

Consequently, the cooling jacket temperature Tc is used as the manipulated variable for

feedback control of the batch crystallizer.

Since the definition of weight mean size Lwm involves the fourth moment μ4 the crys-

tallizer model (5.16-a)-(5.16-e), again, is augmented by equation (6.31). As explained in

Chapter 6.4, y = μ4 is a flat output of the augmented model.

As the function φ defined in (5.35) occurring in the sixth derivative y(6)(τ) in (6.32-f) is

affine in Tc the feedback law

Tc =
v − α(μ3, μ2, T )

β(μ3, T )
(6.38)

with α and β according to (5.35),(5.36) exactly linearizes the nonlinear batch crystallizer

model. Using (6.32-f) the feedback linearized system

d6y

dτ 6
= v (6.39)

with the fictitious input v and flat output y is obtained. Asymptotic tracking of desired

trajectories yd(τ) is accomplished by a simple linear control law for the input v

v = y
(6)
d −

5∑
i=0

(
qi(y

(i) − y
(i)
d )

)
(6.40)

where the coefficients qi are chosen such that the tracking error dynamics are stable.

Equations (6.38) and (6.40) form a nonlinear tracking controller for the batch crystallizer.

98



The flat output and its derivatives occurring in the control law (6.40) can be replaced

by system states of the original crystallizer model using (6.32-a)-(6.32-f). Thus, (6.38),

(6.40) form a nonlinear static state feedback controller. The complete system state needs

to be measured (or estimated by an observer).

Note that the speed of convergence of the tracking error defined by the coefficients qi in

(6.40) is with respect to new time τ . Since τ is associated with crystal size L, in real time

t the tracking error decays fast when growth rate G is large, the decay is slow when G is

low.

For a simulation study, a controller as defined in (6.38), (6.40) is implemented with the

coefficients qi chosen such that all six poles of the tracking error dynamics in new time

are at λk = 20mm−1, k = 1, . . . , 6.
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Figure 6.13: Weight mean size Lwm(t), crystal mass m(t), and size increase of crystals

ΔL(t), actual (solid line) and desired (dashed line) trajectory.

In a first simulation, an initial error is considered. The desired trajectory starts from the

initial condition (6.15), (6.16) with the exception that the actual initial value of the fourth

moment μ4 is decreased by 10 %. Figure 6.13 shows the time trajectories of weight

mean size Lwm(t), crystal mass m(t), and size increase of crystals ΔL(t). These are
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Figure 6.14: Supersaturation S(t), crystallizer temperature T (t) and cooling jacket tem-

perature Tc(t).

the quantities involved in the final time requirements for the desired trajectory (6.37-a)-

(6.37-c). Figure 6.14 presents the corresponding time trajectories of supersaturation S(t),

crystallizer temperature T (t) and temperature of cooling jacket Tc(t). In Figure 6.15, the

tracking error is plotted versus original time t and new time τ . It can be seen that in
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Figure 6.15: Tracking error y − yd vs. new time τ and vs. original time t.
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Figure 6.16: Weight mean size Lwm(t), crystal mass m(t), and size increase of crystals

ΔL(t), actual (solid line) and desired (dashed line) trajectory, with model error.

new time τ the error dynamics exhibits the expected sixth order linear decay behaviour

whereas in original time t the error decays quickly during the time span 20 min< t <30

min, i.e. when the supersaturation (and therefore growth rate) is large.

In a second simulation, in addition to the initial error a model error is taken into ac-

count. The most uncertain part of the model is the nucleation rate as defined in equation

(5.8). Nucleation is hard to capture since several mechanisms contribute to this phe-

nomenon, furthermore it is heavily influenced by impurities in the solution. Therefore, to

demonstrate the performance of the tracking controller in the presence of model errors,

the nucleation rate parameter kb is increased by 20%.

Again, the same plots are presented as for the previous simulation. In Figure 6.16, it

can be seen that the final time requirements on weight mean size Lwm(tend), crystal mass

m(tend) and length increase ΔL(tend) are met quite precisely. The trajectories of supersat-

uration S(t), crystallizer temperature T (t) and cooling jacket temperature Tc(t) in Figure

6.17 are changed only slightly compared to the case without model error (see Figure 6.14)

. However, there are two main differences.
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Figure 6.17: Supersaturation S(t), crystallizer temperature T (t) and cooling jacket tem-

perature Tc(t), with model error.
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First, the absolute tracking error y(t) − yd(t) in Figure 6.18 obviously does not converge

to 0 any more. It can be shown that instead of the nominal error dynamics resulting from

(6.39) and (6.40) a modified error equation is obtained with the modified nucleation rate

B̄ = kerr · B

y(6) = kerr

(
y

(6)
d − q5

(
1

kerr

y(5) − y
(5)
d

)
−

4∑
i=0

qi(y
(i) − y

(i)
d )

)
(6.41)

or equivalently

(kerr − 1)(y
(6)
d + y

(5)
d ) = (y(6) − y

(6)
d ) + q5(y

(5) − y
(5)
d ) + kerr

4∑
i=0

qi(y
(i) − y

(i)
d )

= e(6) + q5e
(5) + kerr

4∑
i=0

qie
(i) (6.42)

where e := y − yd. The left hand side of equation (6.42) is a third order polynomial in

τ . If kerr is small enough the error dynamics is still stable and the tracking error e(t)

converges to a third order polynomial. However, as the desired trajectory is an eighth

order polynomial it grows faster than the tracking error, such that the relative tracking

error (y(t) − yd(t))/yd(t) converges to 0. This also explains the excellent tracking of

Lwm(t) and m(t) in Figure 6.16.

The second major difference is that the batch time tend is increased considerably. The

desired trajectory in the control law (6.40) is implemented in new time τ and it is assumed

that τ , which is equivalent to the length increase ΔL, is measurable in the process. Hence,

the duration of the batch is not fixed in original time t but in new time τ , i.e. the batch

runs until τ = τend = ΔLend is reached. With the model error in the nucleation rate,

nucleation is increased. To stay close to the desired trajectory, supersaturation has to be

lower than it had to be with the unperturbed model. Hence, the growth rate is lower and,

therefore, the duration of the batch has to be longer to achieve the desired length increase

ΔLend.

6.6 Discussion

In this chapter, the control of batch crystallization processes was treated in the framework

of differential flatness. It was shown that the time scaling involved in the verification of

orbital flatness of the process model transforms the population balance equation into a
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very simple form, namely a simple transport equation whose characteristics are straight

lines. These two characteristic features of the batch crystallizer model - orbital flatness of

the moment model and the simple structure of the time scaled population balance equation

- allows a very elegant design of feedforward and feedback control laws.

Several control problems were solved using this approach. First, it was shown that for

any given desired final CSD it can be decided whether this CSD is attainable and, if so,

the corresponding temperature-time profile can be determined analytically. This problem

was so far unsolved. A popular way to solve the feedforward control problem for batch

crystallization processes is the use of dynamic optimization, where some properties of the

CSD are optimized, rather than determining the entire shape of the CSD. In this context, it

was shown that flatness can be used to simplify the optimization problem considerably by

eliminating the differential equations describing the system dynamics. Finally, flatness

was used to design feedforward and feedback controllers which make sure that given

trajectories of the moments are tracked in the presence of uncertainties. For the feedback

controller design the fact is exploited that flat systems are linearizable by feedback. The

solution to each of these problems has been illustrated by an example. Hence, it was

shown that batch control problems can be solved in a very elegant, model-based way

using orbital flatness.
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Chapter 7

Conclusion

7.1 Summary

Research in control of crystallization processes essentially focuses on two main problems

resulting from the two ways to operate a crystallization plant, continuous or batch-wise.

Continuous crystallizers are operated at steady state. Product quality is determined by the

steady state CSD, which can be influenced by fines dissolution. Continuously operated

DTB crystallizers have been reported to exhibit oscillatory behaviour especially if fines

dissolution is employed. In this case, the desired steady state, at which one intends to op-

erate the process, is unstable. This poses a stabilization problem which can be addressed

using feedback control. In batch crystallization, product quality is determined by the CSD

obtained at the end of the batch, which is influenced by the operation of the process during

the entire batch-run. In batch cooling crystallization, the cooling rate is manipulated to

shape the final CSD. This poses a problem of trajectory planning and feedforward con-

trol. In this thesis, new methods for the solution of both problems are presented. Both

approaches are based on population balance models.

In their excellent review article, Rawlings et al. [87] asserted that, at that time, no atten-

tion had been paid to robustness issues in continuous crystallizer control. They identified

this lack of up-to-date robust control theory as one of the major shortcomings in the area

of continuous crystallizer control. This problem is addressed in this thesis by applying

H∞ robust control theory for infinite-dimensional systems developed by Foias et al. [24].

A relatively complex, detailed population balance model [66] is approximated by a pop-

ulation balance model with simpler kinetic expressions. Furthermore, since the process
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is to be kept at its steady state, it is justified to linearize the model at this steady state.

The structure of the simplified model is chosen such that it allows the derivation of a

(transcendental) transfer function from manipulated input to measured output. For this

transfer function the H∞ mixed sensitivity problem is solved. This yields robustly sta-

bilizing controllers for the simplified model. In simulation studies it is shown that, with

a proper choice of weighting functions during the design process, controllers can be de-

signed to stabilize also the original, more complex model. Apart from the robustness

issues, the distinguishing feature of this approach is its late lumping philosophy, which

does not involve discretization of the process model prior to controller synthesis.

The batch crystallizer control problem is addressed using a standard population balance

model with empiric kinetic expressions [65], which allows the derivation of a moment

model. The notion of differential flatness introduced in Fliess et al. [20] is very useful

in the context of feedforward control problems. For flat systems, trajectory planning and

design of feedforward control strategies can be solved in a very elegant way. It is shown

that the moment model is not differentially flat but can be made flat by an appropriate

time scaling, i.e. it is orbitally flat. The time scaled model does not answer the question

“what is the state of the crystallizer after x minutes” but rather “ what is its state after the

crystals have been increased in length by x μm”. This establishes a very natural notion of

timing for a batch crystallizer. The same time scaling which renders the moment model

flat makes the characteristics of the population balance model straight lines in the length

– “time” domain. Due to this simple structure of the time scaled model it is possible to

analytically determine the corresponding temperature trajectory in new time for any given

desired final CSD. Only the last step of feedforward control design, i.e. inversion of the

time scaling, may have to be done numerically. Based on these results, it can easily be

checked whether a given final CSD can be attained under the given conditions. Further-

more, flatness can be used to significantly simplify dynamic optimization of final CSD,

which has been the most common approach to batch crystallizer control. Finally, nonlin-

ear feedback tracking controllers can be designed by feedback linearization to stabilize

the system around a desired trajectory of moments.

7.2 Perspectives

For the future, there are several ways to continue and extend the work presented in this

thesis. First, the control strategies, which have only been tested in simulations, should
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be implemented in experiments. Of course, this requires a model for the specific process

to be controlled. The derivation of a model, in turn, requires the availability of on-line

measurements. In the area of measurement techniques for supersaturation and CSD, work

at the Max-Planck-Institute is going on at present.

Second, it would be desirable to extend the results obtained for the batch case to less

restrictive models. There is strong evidence, that this is possible for a class of systems

with size dependent growth, where the growth law is a product of a size dependent term

and a term depending on supersaturation. Then, analogous to the time scaling a length

scaling can be used to transform the population balance equation to the same simple form

as in the case of length independent growth. A remaining problem to be solved is that

concentration c is a function of the third moment in original length coordinates but in

general is not a function of moments in the new length.

Furthermore, the use of the distribution and amount of seed crystals to influence the fi-

nal CSD could be investigated systematically using the flatness based approach. In the

trajectory planning problem treated in Chapter 6.4, there would remain more parameters

to be chosen freely than in the present case, where the seed distribution, i.e. the initial

condition, is given.

Moreover, the start-up of continuously operated plants remains a challenge. Just as in the

batch control problem, the system does not stay close to a steady state. The objective is to

find suitable trajectories and control strategies to steer the system along these trajectories.

It appears promising to investigate the use of the flatness based methods presented in

Chapters 5 and 6 to the start-up problem.

Finally, other particulate processes exhibit similar problems as the ones encountered in

crystallization. For example, sustained oscillations have been observed in granulation

[38] or fermentation of cell cultures [117]. Both processes can be described by population

balance models. Therefore, the approaches developed for crystallization in this thesis are

potentially useful for other particulate processes as well.
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Appendix A

Continuous Crystallizer

Two models for a continuous crystallizer are used in this thesis. This appendix sum-

marizes the technical details for the detailed reference model presented in Chapter 2 as

well as all parameter values for both the reference model and the simplified design model

derived in Chapter 3. Parameter values correspond to the evaporative crystallization of

Ammonium Sulphate (NH4)2S04 from aqueous solution in a draft tube baffled crystal-

lization plant operated at the Laboratory for Process Equipment at Delft University of

Technology [28, 43, 74].

A.1 Details for Reference Model

In the following, a complete list of expressions occurring in the reference model in Chap-

ter 2 is given. In particular, this comprises the terms needed in the growth and attrition

kinetics. For detailed derivations see [66] and the references therein.

Mass transfer coefficient for growth law:

kd(L) =
DAB

L

(
0.8

(
ε̄L4

ν3
L

)1/5 (
νL

DAB

)1/3

+ 2

)

νL =
ηL

ρL

ρL = cLML

ML = xL,AMA + (1 − xL,A)MB
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Molar concentrations:

cS =
ρA

MA

cB =
ρB

MB

cL =
nL

VL

=
ρAρB

xL,AMAρB + (1 − xL,A)MBρA

cFeed,L = cL,sat =
ρAρB

xL,A,satMAρB + (1 − xL,A,sat)MBρA

cFD,L =
ρAρB

xFD,L,AMAρB + (1 − xFD,L,A)MBρA

xFeed,L,A = xL,A,sat

cL,A,sat,ideal =
xL,A,satρAρB

xL,A,satMAρB + (1 − xL,A,sat)MBρA

nAZ,L =
VAZ,LρAρB

xAZ,L,AMAρB + (1 − xAZ,L,A)MBρA

cAZ,L =
nAZ,L

VAZ,L

Critical particle length for dissolution:

Lcrit =
2γSLMA

RT ln(Srat)ρA

Srat =
cL,A

cL,A,sat

γSL = 0.414kBT (cSNA)2/3 ln
cS

cL,A
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Attrition kinetics:

β̄(L, r) =
V̇pump

V
(ηgeo,edge(r)ηtar,edge(L, r) + ηgeo,blade(r)ηtar,blade(L, r))

ηgeo,edge/blade(r) =
Ltar,edge/blade(r)ast

πR2
dt

Ltar,edge/blade = bedge/blade

ηedge/blade

sin(α(r))

ηedge(r) = cos(α(r) − β)

ηblade(r) = | sin(α(r) − β)|
α(r) = arctan

wax

wst(r)

wst(r) = 2πrωst

wax =
V̇pump

πR2
dt

V̇pump = NpumpR
3
stωst

ηtar,edge/blade(L, r) =

(
Ψedge/blade(L, r)

0.32 + Ψedge/blade(L, r)

)2.1

Ψedge/blade(L, r) =
(ρA − ρL)L2w∞(r)

18ηLLtar,edge/blade(r)

w∞(r) =
√

w2
ax + w2

st(r)

Vattr,edge/blade(L, r) =
2H

2/3
V Kr

3μshearΓ
E

4/3
kin,edge/blade(L, r)

Ekin,edge/blade(L, r) =
ρAkV L3w2

coll,edge/blade(L, r)

2

wcoll,edge/blade(L, r) = w∞(r)ηtar,edge/blade(L, r)ηedge/blade

ffrag,edge/blade(L
′, L, r) =

(
h(L − Lfrag,min) − h(L − Lfrag,max,edge/blade(L

′, r))
)

· 2.25L−3.25

L−2.25
frag,min − Lfrag,max,edge/blade(L′, r)

Lfrag,min =
48μshearΓ

π4/3KrH2
V

Lfrag,max,edge/blade(L
′, r) =

3 · 24/3K
1/3
r E

4/9
kin,edge/blade(L

′, r)

π4/3μ
1/3
shearΓ

1/3H
1/9
V
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Volumetric flow rates:

V̇Product,L = εLV̇Product

εL =
VL

V

V̇Feed = V̇Product + V̇vap

V̇AZ,out = V̇FD,out

V̇AZ,in = V̇AZ,out + V̇AZ,back

V̇AZ,back = kV

∞∫
0

L3ḞAZ,back dL

V̇AZ,L,in = εLV̇AZ,in

V̇AZ,L,out = εAZ,LV̇AZ,out

εAZ,S =
VAZ,S

VAZ

εAZ,L =
VAZ,L

VAZ

Particle sink velocity in annular zone:

vs(L, εAZ,S) =
1 − εAZ,S

(1 + ε
1/3
AZ,S) exp

(
5εAZ,S

3(1−εAZ,S)

)
⎛
⎝−A(L)

2
+

√(
A(L)

2

)2

+ B(L)

⎞
⎠2

A(L) =
4.8

√
ηL

0.63
√

LρL

B(L) =
1

0.63

√
4L(ρA − ρL)g

3ρL

Annular zone volumes:

VAZ = hAZ · AAZ

VAZ,S = kV

∞∫
0

L3FAZ(L) dL

111



A.2 Parameters for Reference Model

The reference model has been developed in [66]. The corresponding parameter values

and their original sources, where appropriate, can also be found there. For completeness,

these values are listed here.

Description Symbol Value Unit

General physical constants:

ideal gas constant R 8.314 J
mol K

Boltzmann’s constant kB 1.38 · 10−23 J
K

Avogadro’s number NA 6.022 · 1023 1
mol

Mechanical properties of ammonium sulphate crystals:

shear modulus μshear 8.90 · 109 N
m2

fraction resistance Γ/Kr 2.8 J
m2

vickers hardness HV 3.55 · 108 N
m2

Physical properties of ammonium sulphate and water

density of solute (substance A, crystals) ρA 1.769 · 103 kg
m3

density of solvent (substance B) ρB 0.987 · 103 kg
m3

molecular weight solute (substance A) MA 132.1 · 10−3 kg
mol

molecular weight solvent (substance B) MB 18.015 · 10−3 kg
mol

volume shape factor (sphere) kV 0.524 –

diffusion coefficient DAB 0.83 · 10−9 m2

s

dynamic viscosity of liquid phase ηL 2.1 · 10−3 Ns
m2

mole fraction at saturation xL,A,sat 0.10268 –

Physical properties related to crystal growth

integration coefficient kr 1.0 · 10−5 m4

mol s

surface related energy increase ΓS 1.22 · 10−4 J m
mol

Continued on next page
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Continued from previous page

Description Symbol Value Unit

Operation conditions

temperature of slurry T 323.15 K

volume of slurry V 1.1 m3

mean specific power input ε̄ 2.3 W
kg

stirrer radius Rst 0.2425 m

pumping capacity Npump 2.56 –

stirrer revolution speed ωst 370 1
min

number of stirrer blades ast 3 –

height of stirrer blade bedge 0.006 m

width of stirrer blade bblade 0.18 m

angle of stirrer blades β 25 ◦

draft tube radius Rdt 0.5 m

product removal flow rate (slurry) V̇Product 880 l
h

volume loss due to evaporation V̇vap 185.0 l
h

Operation conditions related to fines dissolution

fines removal flow rate V̇FD,out 10800 l
h

annular zone cross sectional area AAZ 0.761 m2

annular zone height hAZ 1.018 m

residence time in fines dissolution τFD 200 s
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A.3 Parameters for Design Model

The design model is derived in Chapter 3. There, it is also discussed how appropriate

parameter values are determined. These values are listed in the following table.

Description Symbol Value Unit

in- and outflow rate V̇Product 14.667 l
min

crystallizer volume V 1100.0 l

annular zone volume VAZ 775.0 l

fines dissolution cut size LFD 100 μm

fines dissolution rate V̇AZ,out 180.0 l
min

large crystal dissolution factor kFD,large 0.2 –

large crystal dissolution cut size LFD,large 950 μm

growth rate constant kg 6.774 · 103 μm
min

(
l

mol

)1.6

growth rate exponent g 1.6 –

growth rate corner size Lgrowth 100 μm

negative growth rate constant kg,attr −2.111 · 10−3 1
min

negative growth rate corner size Lg,attr 550.0 μm

nucleation rate constant kb 2.931 · 10−11 1
μm4min

nucleation rate exponent b 4 –

crystal density ρA 1769 g
l

mole mass MA 132.1 g
mol

volumetric shape factor kV π/6 –

saturation concentration cL,A,sat 4.273 mol
l

inlet concentration cFeed,L,A 5.171 mol
l

Continued on next page
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Continued from previous page

Description Symbol Value Unit

smallest crystal length L0 16.5 μm

largest crystal length Lend 1100 μm
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Appendix B

Batch Crystallizer

The batch crystallizer model is presented in Chapter 5. The control design examples

in Chapter 6 are worked out for the laboratory scale crystallization of potassium nitrate

KNO3 from water as described in [64]. The corresponding parameter values and their

original sources, where appropriate, can also be found there. For completeness, these

values are listed here.

Description Symbol Value Unit

growth coefficient kg 6.97 · 103 μm
min

growth exponent g 1.32 –

nucleation coefficient kb 3.47 · 107 1

cm3min

nucleation exponent b 1.78 –

volume shape factor kv 1·10−12 cm3

μm3

density of crystals ρc 2.11 g
cm3

conversion factor h 1.246 cm3

gH2O

heat transfer coefficient · area UAc 903.74 J
min K

Continued on next page
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Description Symbol Value Unit

volume of slurry V 2056 cm3

saturation parameters A0 0.1286
gKNO3

gH2O

A1 5.88 · 10−3
gKNO3

gH2O
◦C

A2 1.721 · 10−4
gKNO3

gH2O
◦C2

parameters for heat of crystallization B0 -358.78 J
gKNO3

B1 388.36
JgH2O

g2
KNO3

B2 -418.27
Jg2

H2O

g3
KNO3

parameters for heat capacity C0 4.172 J
gsolutionK

C1 -4.435 J
gsolutionK

C2 4.213 J
gsolutionK
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Appendix C

Computations for the Derivation of

Plant Transfer Function

As mentioned in Chapter 3.2.5, the PBE (3.24), the boundary condition (3.9) and the mole

balance (3.26) are linearized with respect to the desired steady state with the fines flow

rate V̇AZ,out considered to be the system input. This leads - after some restructuring - to

the following linear process model:

population balance

(V + VAZ)
∂Δf(L, t)

∂t
=

−V

(
∂2G(L, σ)

∂L∂cL,A

∣∣∣∣
ss

fss(L) +
∂G(L, σ)

∂cL,A

∣∣∣∣
ss

dfss(L)

dL

)
Δσ(t)

−
(

V
∂Geff (L, σss)

∂L
+ V̇out + hFD(L)V̇FD,ss

)
Δf(L, t)

−hFD(L)fss(L)ΔV̇FD(t) − V Geff (L, σss)
∂Δf(L, t)

∂L
(C.1)

boundary condition

Δf(L = L0, t) =

ΔB(t)

Geff (L0, σss)
− Bss

Geff (L0, σss)2

∂G(L0, σ)

∂cL,A

∣∣∣∣
ss

Δσ(t) (C.2)
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mole balance

dΔσ

dt
=

V̇out

V + VAZ

Δσ(t) +
3kV ρAV

εssMA(V + VAZ)

∫ L∞

L0

Gattr(L)L2Δf(L, t)dL

−
(

V̇out(MAcFeed,L,A − ρA) + 3kV ρAV
∫ L∞

L0
Gattr(L)L2fss(L)dL

εssMA(V + VAZ)

)
Δε

+
ρA − MAcL,A,ss

εssMA

dΔε(t)

dt
(C.3)

The symbols Δf(L, t), Δσ(t), ΔB(t), ΔV̇FD(t) and Δε(t) denote the deviations of

time dependent functions from their respective steady state values fss(L, t), σss(t), Bss,

V̇FD,ss(t) and εss(t). The time derivative of the volume fraction Δε(t) can be computed

as follows
dΔε(t)

dt
= −kV

∫ L∞

L0

∂Δf(L, t)

∂t
L3dL (C.4)

with ∂Δf(L,t)
∂t

according to (C.1). This linear model is then Laplace transformed. Thus, a

first order ordinary differential equation with non-constant parameters with independent

variable L is obtained from the linear PBE (C.1). This equation can be solved analytically

which yields the following expression for the crystal size distribution

Δf(L, s) =

eA(L,s)

(
ΔB(s)

Geff (L0, σss)
− Bss

Geff (L0, σss)2

∂G(L0, Δc)

∂cL,A

∣∣∣∣
ss

Δσ(s)

−
∫ L

L0

eA(ξ,s)

V Geff (ξ, σss)

(
hFD(ξ)fss(ξ)ΔV̇FD(s)

+V

(
∂2G(ξ, σ)

∂ξ ∂cL,A

∣∣∣∣
ss

fss(ξ) +
∂G(ξ, σ)

∂cL,A

∣∣∣∣
ss

dfss(ξ)

dξ

)
Δσ(s)

))
dξ (C.5)

where s is the complex Laplace variable and

A(L, s) =

∫ L

L0

s(V + VAZ) + V
∂Geff (ξΔc)

∂ξ

∣∣∣
ss

+ V̇out + hFD(ξ)V̇FD,ss

V Geff (ξσss)
dξ. (C.6)

With the piecewise linear expressions for the growth rates (3.1) and (3.3) the integrals in

the above equations can be computed analytically. This is done with a computer algebra
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system and leads to rather lengthy expressions that are therefore omitted here. However,

the solution for the crystal size distribution is of the form

Δf(L, s) = Φ1(L, s)Δσ(s) + Φ2(L, s)ΔB(s) + Φ3(L, s)ΔV̇FD(s). (C.7)

The measured output is the third moment of the distribution, i.e.

Δm3(s) =

∫ L∞

L0

L3Δf(L, s)dL

= Ψ3,1(s)Δσ(s) + Ψ3,2(s)ΔB(s) + Ψ3,3(s)ΔV̇FD(s). (C.8)

The nucleation rate is proportional to the fourth moment of the size distribution (3.10)

ΔB(s) = kb

∫ L∞

L0

L4Δf(L, s)dL

= kb(Ψ4,1(s)Δσ(s) + Ψ4,2(s)ΔB(s) + Ψ4,3(s)ΔV̇FD(s)), (C.9)

where the functions Ψk,i(s) are defined as

Ψk,i(s) =

∫ L∞

L0

LkΦi(L, s)dL, i = 1 · · · 3, k = 3, 4. (C.10)

Inserting the expression for the size distribution Δf(L, s) (C.7) in the Laplace trans-

formed version of the linearized mole balance (C.3) and solving it for the concentration

Δσ(s) leads to an equation of the form

Δσ(s) = Γ1(s)ΔB(s) + Γ2(s)ΔV̇FD(s). (C.11)

Finally, a transfer function from manipulated input ΔV̇FD(s) to measured output Δm3(s)

can be obtained from equations (C.8), (C.9) and (C.11) by eliminating Δσ(s) and ΔB(s).

This concludes the derivation of the plant transfer function P (s) in (3.31).
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Appendix D

Notation

Abbreviations

CSD crystal size distribution

DTB draft tube baffled

PBE population balance equation

PDE partial differential equation

ODE ordinary differential equation

D.1 Continuous Crystallization, Chapters 2-4

Latin Symbols

A(L) auxiliary variable for particle sink velocity
√

m/s

AAZ cross sectional area of annular zone m2

am gain margin in controller design -

ast number of stirrer blades -

B(L) auxiliary variable for particle sink velocity m/s

B(t) birth (nucleation) rate (design model) 1/s

b nucleation rate exponent (design model) -

bblade width of stirrer blade m

bedge width of stirrer edge m

C constant in expression for steady state size distribution 1/m

C(s) controller transfer function (m3/s)/m3

c molar concentration mol/m3

Continued on next page
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Continued from previous page

DAB diffusion coefficient m2/s

Ddis dissolution rate 1/s

E(s) auxiliary function in controller design -

Ekin kinetic energy J

F number density function 1/m

Ḟ number density flux 1/(m s)

F (s) auxiliary function in controller design -

ffrag volume based number density function 1/(m m3)

G(σ, L) growth rate m/s

g acceleration of gravity m/s2

g growth rate exponent (design model) -

HV Vicker’s hardness N/m2

H(s) auxiliary function in controller design -

hAZ height of annular zone m

hFD(L) fines dissolution classification function (design model) -

Kr crack efficiency -

kB Boltzmann constant J/K

kb nucleation rate constant (design model) 1/(μm4 min)

kd mass transfer coefficient m/s

kg growth rate constant (design model) μm/min (l/mol)1.6

kg,attr negative growth rate constant (design model) m

kFD,large large crystal dissolution factor (design model) -

kr integration coefficient m4/(mol s)

kV volume shape factor -

L characteristic crystal length m

L0 smallest crystal length (design model) m

L50 mass median crystal length m

Lcrit critical crystal length for dissolution m

Lend largest crystal length (design model) m

Lgrowth growth rate corner size (design model) m

Ltar projected length of stirrer edge m

L(s) auxiliary function in controller design -

M molar mass kg/mol

M(s) plant transfer function factor

Continued on next page
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Continued from previous page

m3 third moment of size distribution m3

mdf(L, t) mass density function kg/m

N amount (number) -

N(s) plant transfer function factor

NA Avogadro constant 1/mol

Npump pumping capacity -

n number of moles mol

ṅ molar flux mol/s

P (s) plant transfer function m3/(m3/s)

P set of transfer functions

R ideal gas constant J/(mol K)

Rdt radius of draft tube m

Rst stirrer radius m

r radial position on stirrer m

S(s) closed loop sensitivity transfer function -

Srat supersaturation (ratio of concentrations) -

s Laplace variable 1/s

sk, k = 1, 2, . . . transfer function poles 1/s

T temperature K

t time s

V volume m3

V̇ volumetric flow rate m3/s

vs particle sink velocity m/s

Wd(s) weighting function in controller design -

Wm(s) weighting function in controller design -

w velocity m/s

x mole fraction -

z discrete frequency variable -

zk, k = 1, 2, . . . transfer function zeros 1/s

Greek Symbols

α(r) approach angle of crystal towards stirrer ◦

αm phase margin in controller design ◦

β stirrer blade angle ◦

Continued on next page
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Continued from previous page

β̄(L, r) stirrer radius based attrition rate 1/(s m)

β(L) attrition rate 1/s

Γ fracture resistance J/m2

ΓS surface related energy increase J m/mol

γ performance index in H∞ controller design -

γSL surface tension J/m2

Δ deviation from steady state

Δ(s) model uncertainty

ε volume fraction -

ε̄ mean specific power input W/kg

ηL dynamic viscosity N s/m2

ηgeo effective fractional area -

ηtar collision probability between crystal and stirrer -

λ parameter in bilinear transform 1/s

μshear shear modulus N/m2

νL kinematic viscosity m2/s

ρ density kg/m3

σ absolute supersaturation mol/m3

τ residence time s

Ψ stokes separation number -

ω angular frequency rad/s

ωst stirrer rotational velocity 1/s

Subscripts

A component A (solute)

AZ annular settling zone

attr attrition

B component B (solvent)

b birth (nucleation)

cf coprime factor uncertainty

dis dissolution

dt draft tube

eff effective

FD fines dissolution

Continued on next page
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Continued from previous page

frag fragment

g growth

L liquid

m multiplicative uncertainty

opt optimal

P particle

S solid

sat saturation

ss steady state

st stirrer

vap vapour

Δ with uncertainty

D.2 Batch Crystallization, Chapters 5-6

Latin Symbols

ai, i = 1, 2..8 coefficients for trajectory planning

B birth (nucleation) rate 1/(m m3)

c solute mass concentration (kg solute)/(kg solvent)

cp heat capacity of slurry J/K

f volume based number density function 1/(m m3)

fs part of CSD originating from seeds 1/(m m3)

fn part of CSD originating from nucleation 1/(m m3)

G growth rate m/s

ΔHc heat of crystallization J/kg

h conversion factor (m3 slurry)/(kg solvent)

kb birth (nucleation) rate coefficient 1/(m3 s)

kerr model error parameter -

kg growth rate coefficient m/s

kv volume shape factor -

L characteristic crystal length m

Lwm mean crystal size (mass based) m

ΔLend length increase of crystals over complete batch m

Continued on next page
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Continued from previous page

m mass (of crystals) kg

N number (of crystals) -

qi, i = 1, 2..5 coefficients for closed loop error dynamics

S relative supersaturation -

s(t) time scaling function s/m

T slurry temperature ◦C

Tc coolant temperature ◦C

t time s

tend duration of batch s

UAc heat transfer coefficient · heat transfer area J/(s K)

V volume of slurry m3

v new input in flatness based feedback control

y flat output

Greek Symbols

μi ith moment of CSD mi/m3

ρc crystal density kg/m3

ρ density of slurry kg/m3

τ scaled time m

Subscripts

0 initial condition

d desired value

n resulting from nucleation

s resulting from seeds

sat saturation
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