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Chapter 1

Introduction

Multistationarity means the existence of at least two positive steady state solutions to a system of
Ordinary Differential Equation (ODEs) derived from a biochemical reaction network. It is an interesting
question in its own right: one is looking for the number of positive solutions to a system of polynomial
equations in the unknown concentrations with, in most application cases, unknown rate constants.
From a mathematical point of view this question is still unanswered. There exists a variety of results
that gives an upper bound for the number of (positive) solutions to a system of polynomials. However,
whether or not a given system of polynomials actually has the predicted number of zeros can usually
not be decided (among these results are Descartes rule of signs for positive solutions and Bernstein’s
and Bezout’s Theorem for all solutions, including negative and complex; see, for example, [13, 14]
and [62]). Moreover, all of these results hold for systems of polynomials with known coefficients. The
question whether or not a system of polynomial equations with unknown coefficients can admit at least
two positive solutions has received little attention in mathematics.
In Chemical Engineering, in the so-called Chemical Reaction Network Theory (CRNT) by Martin
Feinberg and his co-workers this question has received some attention [30, 24, 25, 26, 55, 28, 22,
21]. Here, the special structure of equations defined by a (bio)chemical reaction network with mass
action kinetics is used to derive necessary and sufficient conditions for the existence of at least two
positive solutions. These results, however, require that that the network under consideration has
certain structural properties. Only recently these results have been recognized in the mathematical
literature, for example in [33, 35].
The approach taken in this thesis is inspired by CRNT, even though it has been derived independent of
the aforementioned references. In particular the results used to decide about multistationarity presented
in Chapter 3 are not based on CRNT (albeit resulting from an attempt to give a self-contained proof of
the results given in [25, 27] and [23]). The results described in Chapter 3 are in fact complementary to
those presented in the aforementioned references: they can be successfully applied, where CRNT fails,
while CRNT might be successfully applied, where the results of Chapter 3 fail (see Chapter 5, where
multistationarity is confirmed for two networks, for which CRNT is inconclusive).
Only recently CRNT has been applied to biochemical reaction networks, in a Systems Biology inspired
context, that is, in a context, where the analysis of large and complex reaction networks is required
and where parameter uncertainty is predominant. Often, in this context, qualitative knowledge about
the dynamics of the system exists; for example, it might be known from experimental observations
that the system exhibits bistability or some other form of multistationarity. Suppose there are different
hypotheses, each corresponding to a different reaction network with uncertain parameters, related
to a specific biological process. Suppose, furthermore, that a certain qualitative behaviour has been
observed in experiments. It is then natural to ask which of the postulated networks can, for some
conceivable parameter vector, exhibit the observed behaviour. To this end, CRNT has been applied in
[15, 16, 17, 18]: suppose experimental evidence suggests that the system under consideration admits
different steady states, as is, for example, the case in signal transduction networks and cell cycle
regulation. Further suppose, all hypotheses lead to reaction networks that can be analysed using CRNT.
Then all networks corresponding to hypotheses where multistationarity is excluded for any conceivable
parameter vector can be discarded, as these networks can never reproduce the experimental behaviour.
With a similar goal CRNT has been applied in [10, 11, 12] (see also Chapter 4, where a similar analysis
is performed using the results presented in Chapter 3).

1



2 CHAPTER 1. INTRODUCTION

In many cases, a certain qualitative behaviour, like multistationarity has been observed for rate con-
stants that vary over a wide range of values. Traditionally, one therefore concludes that the system
is robust with respect to changes in these rate constants. Using the results of Chapter 3, it is, for
certain network structures, possible to obtain a parameterization of rate constants that can serve as an
explanation of this robustness. Moreover, in these cases, it is possible to obtain analytical expressions
of ’critical points’ and ’critical parameters’, that is points where certain bifurcations occur.
The outline of this thesis is a follows: in Chapter 2, the notation used to describe biochemical reaction
networks with mass action kinetics is introduced. In Chapter 3 conditions for multistationarity are
derived. Furthermore, an algorithm is presented, whose steps can be applied to any biochemical reaction
network to test for multistationarity (but may be inconclusive). If multistationarity is possible, the
results of Chapter 3 allow the computation of a pair of steady states and the corresponding vector of
rate constants. In some cases, depending on the network structure, the conditions for multistationarity
derived in Chapter 3 are necessary and sufficient, while in other cases only sufficient conditions can
be obtained. However, a precise description of those network properties that facilitate necessary and
sufficient conditions remains open.
In Chapters 4 – 7 the results obtained in Chapter 3 are applied to a variety of reaction networks
in order to tackle the questions of multistationarity, robustness of multistationarity and bifurcation
points: Chapter 4 deals with model discrimination for a double-phosphorylation mechanism, while in
Chapter 5 two reaction networks proposed in cell cycle regulation are analysed with respect to the
ability to admit multistationarity. Chapter 6 deals with robustness and Chapter 7 with bifurcation
points of the double-phosphorylation mechanism discussed in Chapter 4. The appendices contain the
structural data of all networks analysed in this thesis, as well the matlab code of some of the algorithms
developed in this thesis to verify/falsify multistationarity.



Chapter 2

Biochemical reaction networks with
mass action kinetics

2.1 Notation

The following symbols will be used throughout this work:
IRn . . . the n-dimensional Euclidian space,
IRn

>0 . . . the positive orthant of IR
n,

IRn
≥0 . . . the nonnegative orthant of IR

n.
Let p and q be positive integers. Then IRp×q is used to denote the set of all p× q real valued matrices.
If A ∈ IRp×q then AT is used to denote its transpose. Vectors v ∈ IRn are considered as column
vectors and, in most cases, denoted as transposed row vectors, e.g. v =

(
1
0
1

)
will be displayed as

v = ( 1, 0, 1 )T . For vectors u, v ∈ IRn, the standard scalar product in IRn is denoted by 〈u, v〉 =∑n
i=1 ui vi. Furthermore, for vectors u ∈ IRn, the following abbreviations are used:

u > 0 ⇔ u1 > 0, . . . , un > 0, (2.1a)

1
u
=

(
1
u1
, . . . ,

1
un

)T

, ui �= 0 (2.1b)

lnu = (lnu1, . . . , lnun)
T
, u > 0 (2.1c)

eu = (eu1 , . . . , eun)T. (2.1d)

The symbol diag (u) is used to denote the n× n-diagonal matrix:

diag (u) :=

⎡⎢⎣u1 0 0

0
. . . 0

0 0 un

⎤⎥⎦. (2.1e)

Let A ∈ IRp×q be a matrix. Then [A] is used to denote the range (image) of A:

[A] := im (A) . (2.1f)

2.2 Modeling of biochemical reaction networks with mass ac-
tion kinetics

In this section the notation used to describe biochemical reaction networks with mass action kinetics
is introduced. Consider reaction network N1:

A
k1

0
k2

k3

B
k4

2A+B
k5

3A
k6

(N1)

3



4 CHAPTER 2. BIOCHEMICAL REACTION NETWORKS WITH MASS ACTION KINETICS

This network consists of two species A and B. The symbol n is used to denote the number of species.
Thus n = 2 for network N1. Network N1 contains five complexes : A, 0, B, 2A+B and 3A, that is, in
graph-theoretical terms, the nodes of the graph representing the reaction network are called complexes.
The symbol m is used to denote the number of complexes, thus m = 5 for network N1. The zero
complex 0 is used to denote that a system is open with respect to a certain species: A and B can enter
and leave the system. Throughout this work, it is assumed that the reaction network is in the standard
form of CRNT, as defined in, for example, [27]: node labels are unique (i.e. complexes appear exactly
once). The complexes are linked by reactions : some of them are A→ 0, or 2A+B → 3A. The symbol
r is used to denote the number of reactions, thus r = 6 for N1. Associated to every reaction, there is a
rate constant : k1, . . . , k6 for N1.
To every species belongs a concentration variable, x1 for A and x2 for B. Thus, in general, x ∈ Rn, the
n-dimensional Euclidian space. Associate to each species the corresponding unit vector, that is e1 to A
and e2 to B. Then every complex can be represented by a vector yi, which is the sum of its constituent
species. In the above example, y1 = e1 for A, y2 = 0, the two dimensional zero vector for 0, y3 = e2 for
B, y4 = 2 e1 + e2 for 2A+B and y5 = 3 e1 for 3A. Collect all yi in a matrix Y , thus

Y =
[
y1 . . . y5

]
(2.2a)

=
[
1 0 0 2 3
0 0 1 1 0

]
.

Thus Y ∈ IR2×5 for N1 and Y ∈ IRn×m, in general. The graph of the reaction network is represented
by its incidence matrix Ia. Each colum of Ia represents a reaction and contains exactly two nonzero
entries: +1 for the product complex and −1 for the educt complex. Thus Ia ∈ IR5×6 for N1 and
Ia ∈ IRm×r, in general. Consider, for example, the reaction 2A+B → 3A. Here the product complex
is 3A and the educt complex is 2A+B. Thus Ia contains the column vector (0, 0, 0, −1, 1)T . For N1

one obtains:

Ia =

⎡⎢⎢⎢⎢⎣
−1 1 0 0 0 0
1 −1 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎦ . (2.2b)

Up to now, the structure of the reaction network has been described. To describe dynamics, a reaction
rate is associated to each reaction. As only mass-action kinetics are considered in this thesis, each
reaction rate consists of the rate constant multiplied by the product of the species concentrations
corresponding to its educt complex. Hence one obtains v1 := k1 x1, v2 := k2, v3 := k3, v4 := k4 x2,
v5 := k5 x

2
1 x2 and v6 = k6 x

3
1 for N1. To formalize this, let Y (L) be the matrix of educt complexes,

where each educt complex is listed as often, as it is an educt complex of a reaction. For example, for
N1, one obtains (using yi, i = 1, . . . , 5, as defined above):

Y (L) =
[
y1 y2 y2 y3 y4 y5

]
(2.2c)

=
[
1 0 0 0 2 3
0 0 0 1 1 0

]
.

Thus one obtains Y (L) ∈ IR2×6 for N1 and Y (L) ∈ IRn×r, in general. Using y
(L)
i to denote column

vectors of Y (L) and the definition

xy := xy1
1 xy2

2 . . . , xynn =
n∏
i=1

xyii , (2.3a)

for vectors x, y ∈ IRn, one obtains the monomial vector

φ (x) :=

⎛⎜⎜⎝
xy

(L)
1

...
xy

(L)
r

⎞⎟⎟⎠ (2.3b)

and the vector of reaction rates

v(k, x) = diag (k) φ (x) ,
= diag (φ (x)) k,

(2.3c)
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where k := (k1, . . . , kr)
T , the vector of rate constants. For the reaction network N1 φ (x) = ( x1, 1, 1,

x2, x21 x2, x
3
1 )T and thus v(k, x) =

(
k1 x1, k2, k3, k4 x2, k5 x1

2 x2, k6 x1
3
)
. Then the ODEs describing

the dynamics of a reaction networks are given as

ẋ(t) = Y Ia v(k, x(t)). (2.4)

Note the n × r-matrix Y Ia is sometimes called stoichiometric matrix and denoted by N := Y Ia.
Consequently, in the literature on Chemical Reaction Network Theory, the linear subspace spanned by
the columns of N is called stoichiometric subspace. Usually n (the number of species) is less than r
(the number of reactions) and this will be a standing assumption in this thesis. The symbol s is used
to denote its dimension, that is s := rank (N). The symbol S is used to denote the stoichiometric
subspace, that is S := im (N). If s < n, then the system (2.4) is subject to conservation relations. Let
W ∈ IRn×(n−s), with WT N = 0. Then the flow of (2.4) is invariant under [W ] [58, 34, 35]. Thus one
has to consider

WT x = c, (2.5)

for some c ∈ IRn−s
>0 . Often c is considered as a parameter that has to be determined. Observe that, by

elementary linear algebra
[W ] = S⊥, (2.6)

that is, the range of W is the orthogonal complement of N (which follows naturally from the property
WT N = 0, [61]). Observe that the ODEs (2.4) are linear in the rate constants, as

ẋ (t) = Y Ia v(k, x(t)) = Y Ia diag (φ (x (t))) k.

For network N1, the stoichiometric matrix is

N =
[ −1 1 0 0 1 −1

0 0 1 −1 −1 1

]
(2.7)

and s = 2. The ODEs defined by the network are

ẋ1 = k2 − k1 x1 − k6 x1
3 + k5 x1

2 x2

ẋ2 = k3 + k6 x1
3 − k4 x2 − k5 x1

2 x2.

2.2.1 Properties of φ (x) and v(k, x)

Recall the definition of φ (x):

φ (x) =

⎛⎜⎜⎝
xy

(L)
1

...
xy

(L)
r

⎞⎟⎟⎠ .

Let α ∈ IRn and observe that (diag (α) x) = (α1 x1, . . . , αn xn)
T and thus

(diag (α) x)y = (α1 x1)
y1 (α2 x2)

y2 . . . (αn xn)
yn = αy xy,

for α, x, y ∈ IRn. Thus one obtains

φ (diag (α) x) =

⎛⎜⎜⎝
(diag (α) x)y

(L)
1

...

(diag (α) x)y
(L)
r

⎞⎟⎟⎠ =

⎛⎜⎜⎝
αy

(L)
1 xy

(L)
1

...
αy

(L)
r xy

(L)
r

⎞⎟⎟⎠

= diag
(
αy

(L)
1 , . . . , αy

(L)
r

) ⎛⎜⎜⎝
xy

(L)
1

...
xy

(L)
r

⎞⎟⎟⎠ = diag (φ (α)) φ (x) .

(2.8)
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Using the abbreviation ex := (ex1 , . . . , exn)T for vectors x ∈ IRn, one obtains in particular (for μ ∈ IRn)

φ (eμ) =

⎛⎜⎜⎝
(eμ)y

(L)
1

...

(eμ)y
(L)
r

⎞⎟⎟⎠ =

⎛⎜⎜⎝
e〈y

(L)
1 , μ〉
...

e〈y
(L)
r , μ〉

⎞⎟⎟⎠ = eY
(L)T μ. (2.9)

Further note

1
φ (x)

=

⎛⎜⎜⎜⎝
(
xy

(L)
1

)−1
...(

xy
(L)
r

)−1
⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
(
x−1

)y(L)
1

...

(x−1)y(L)
r

⎞⎟⎟⎠ = φ
(
x−1

)
. (2.10)

As k ∈ IRr
>0, positive values of x will result in positive values of v(k, x), that is

x ∈ IRn
>0 ⇒ v(k, x) ∈ IRr

>0

and vice versa.

2.3 Chemical Reaction Network Theory (CRNT)

The distinguishing feature of CRNT is its ability to make a connection between the structure of a
reaction network and the existence of (multiple) equilibria for the corresponding system of ODEs.
Its general idea can be summarised in the following way: for any network, a non-negative integer δ
called the deficiency can be derived from the network structure alone. For its formal definition one
more concept is needed – the linkage class. Network N1 consists of two sets of complexes: {A, 0, B}
and {2A+ B, 3A}. Both sets are internally connected by reactions, while no reactions exist between
elements of distinct sets. Sets of complexes that are internally connected by reactions are called linkage
classes. Let � be the number of linkage classes in an arbitrary network. Then the deficiency of this
network is defined as the non-negative integer [24, 25]

δ = m− �− s (2.11)

Note that the deficiency of the network only depends on the network structure and thus, in particular,
δ is independent of parameter values. For network N1, δ = 1. If δ is zero for a particular network, then
no system of ODEs endowed with mass action kinetics that can be derived from the network can admit
multiple steady states, regardless of the rate constants. Furthermore, sustained periodic oscillations are
impossible [24, 27]. If δ is one and the network satisfies some mild additional conditions, the so-called
Deficiency One Algorithm can be applied to decide whether or not the network can admit multiple
steady states. If the deficiency is greater than one, under certain conditions the so-called Advanced
Deficiency Theory can be used to decide about the possibility of multistationarity (for the Deficiency
One Algorithm see [25, 28] and for Advanced Deficiency Theory see [23, 21, 22]).
For certain networks with δ = 1, the deficiency one algorithm can be used to decide about the existence
of a parameter vector k such that the corresponding system of ODEs endowed with mass action kinetics
admits at least two positive steady-states. For certain networks of higher deficiency, the so-called
Advanced Deficiency Theory can be applied. The principle idea of both the Deficiency One Algorithm
and the Advanced Deficiency Theory is as follows: for each network where the algorithm or the theory
is applicable, several systems of linear equalities and inequalities can be formulated (inequality systems,
for short). (Note, whether or not the algorithm or the theory are applicable depends on the network
structure alone; see the aforementioned references.) These inequality systems only depend on the
network structure and the complexes, that is, the way the species are combined in the complexes and
the way the complexes interact. If, for any of these systems, a solution exists and if this solution is
sign compatible with the subspace S, then multistationarity is possible (and a set of rate constants
together with two distinct steady-states can be calculated from this solution). If no such solution
exists, then multistationarity is impossible. (Note that, following the notation used in [24], a vector is
sign compatible with a linear subspace if this subspace contains at least one vector with the same sign
pattern; that is, the vector (1, -1) is sign compatible with the subspace spanned by (1, 0) and (1, -2)
because (1, -2) has the same sign pattern as (1, -1), namely (+, -).)



Chapter 3

Conditions for multistationarity

Consider the Ordinary Differential Equations describing the dynamics of a biochemical reaction network
as introduced in (2.4), (2.5) in Chapter 2:

ẋ(t) = Y Ia v(k, x(t))

WT x = c

In this thesis only positive solutions x are considered, thus the corresponding reaction network is said
to exhibit multistationarity, if two distinct positive vectors a, b ∈ IRn

>0, a positive vector k ∈ IRr
>0 and

values ci, i = 1, . . . , n− s, can be found such that the following conditions hold:

N v(k, a) = 0 (3.1a)

WT a = c (3.1b)

and

N v(k, b) = 0 (3.2a)

WT b = c. (3.2b)

In the remainder of this chapter (3.1a), (3.1b) and (3.2a), (3.2b) are analysed and transformed into
equivalent conditions that are in most cases easier to handle: in a first step the polynomial equations
(3.1a) and (3.2a) are transformed and the rate constants are eliminated. This is described in Section 3.1.
Solvability of the resulting system of equations is analysed in Section 3.2. As an arbitrary solution
obviously can only be expected to satisfy (3.1a) and (3.2a), conditions are derived that guarantee that
(3.1b) and (3.2b) hold as well. This is described in Section 3.3. Section 3.4 contains a discussion of the
connection between multistationarity in a subnetwork and multistationarity in the overall network. This
chapter closes with an algorithm to decide about multistationarity in a biochemical reaction network
with mass action kinetics in Section 3.5. This algorithm incorporates the results obtained in Section 3.1
– 3.4.

3.1 Positive solutions to the polynomial equations

For biochemical reaction networks only positive solutions a, b to (3.1a), (3.1b) and (3.2a), (3.2b) are of
interest. As discussed in the previous chapter, if k > 0, this requirement is equivalent to v(k, a) and
v(k, b) being positive. The equations Y Ia v(k, a) = 0 and Y Ia v(k, b) = 0 with the positivity constraint
can be simplified using the pointed polyhedral cone ker(Y Ia) ∩ IRr

≥0 defined by the intersection of the
null space of Y Ia, ker (Y Ia), with the nonnegative orthant of IRr, IRr

≥0. For this purpose some
properties of ker(Y Ia) ∩ IRr

≥0 are discussed in Section 3.1.1, before the equations are transformed in
Section 3.1.2.

3.1.1 The cone ker(Y Ia) ∩ IRr
≥0

The cone ker(Y Ia)∩IRr
≥0 is a well studied object, due to its importance in the (bio)chemical literature,

starting with the classical work of Clarke [8]. As a pointed polyhedral cone it can be represented by

7
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non-negative linear combinations of a finite set of extreme rays [52]. The calculation of these rays is
in general computationally hard, however, due to the importance of ker(Y Ia) ∩ IRr

≥0, there exists a
variety of algorithms and software tools, for example, [56, 32].
The aforementioned papers are part of the huge body of literature concerned with metabolic flux anal-
ysis, where each element of ker(Y Ia) ∩ IRr

≥0 is interpreted as a particular flux, an allocation of values
vi ∈ IR to each reaction of the network, such that the overall network is in steady state. An elementary
flux is a an element v ∈ ker(Y Ia) ∩ IRr

≥0 with a maximum number of zero entries. If every reaction in
the network is ‘irreversible’ (in the terminology used in metabolic flux analysis), then elementary fluxes
are equivalent to extreme rays generating ker(Y Ia) ∩ IRr

≥0 [32].
In the literature on metabolic flux analysis the term irreversible reaction is defined differently than
in the context of this work: forward and backward reaction are represented as a single edge in the
directed graph representing the reaction network. Thus, in particular, negative reaction rates vi(k, x)
are possible. These correspond to reactions ‘in opposite direction’ (relative to the edge in the directed
graph). Therefore, in this setup, x ∈ IRn

>0 ⇒ vi(k, x) > 0 is required only for irreversible reactions. In
the setup considered in this thesis, x ∈ IRn

>0 ⇒ vi(k, x) > 0 for every reaction, thus all reactions are
irreversible in the context of metabolic flux analysis. As a consequence, it is possible to use the software
tools from metabolic flux analysis to calculate the extreme rays of ker(Y Ia) ∩ IRr

≥0.
As defined in [32], extreme rays Ei of ker(Y Ia) ∩ IRr

≥0 satisfy (3.3a), (3.3b) and (3.3c) given below:

Y IaEi = 0, (3.3a)
Ei ∈ IRr

≥0. (3.3b)

Given Ei, Ej with Y Ia Ei = 0, Y Ia Ej = 0 and Ei, Ej ∈ IRr
≥0. Then

supp (Ei) ⊆ supp (Ej)⇒ Ei = 0 or Ej = αEi, α ∈ IR>0, (3.3c)

where supp (Ej) = { i ∈ { 1, . . . , r } |Eji > 0, } denotes the support of vector Ej , i.e. the set of indices
where Ej has nonzero values. Let p be the number of extreme rays of ker(Y Ia) ∩ IRr

≥0. (Note that
extreme rays need not be linearly independent.) If a set of extreme rays {E1, . . . , Ep } is complete, in
the sense that their nonnegative linear combination is all of ker(Y Ia) ∩ IRr

≥0, its elements are called
generators of ker(Y Ia) ∩ IRr

≥0.
In metabolic flux analysis the importance of the generators of ker(Y Ia) ∩ IRr

≥0 stems from their one-
to-one correspondence to the reactions: nonzero entries can be interpreted as ‘active’ reactions, zero
entries as ‘inactive’ (in steady state). In this sense every generator defines a subnetwork of the original
reaction network consisting of all ‘active’ reactions.

3.1.2 Parametrizing positive solutions – the equation Y (L)T μ = ln E ν
E λ

Let E be a matrix, whose columns are generators for ker(Y Ia) ∩ IRr
≥0, as described in Section 3.1.1.

Then the equations Y Ia v(k, a) = 0 and Y Ia v(k, b) = 0 with the positivity constraint are equal to:

v(k, a) = E λ, λ ∈ IRp
≥0, E λ > 0, (3.4a)

v(k, b) = E ν, ν ∈ IRp
≥0, E ν > 0, (3.4b)

where p denotes the number of extreme rays of ker(Y Ia)∩IRr
≥0. Equations (3.4a) and (3.4b) guarantee

that v(k, a) ∈ IRr
>0 and v(k, b) ∈ IRr

>0. The definition of v(k, ·) in (2.3c) in turn ensures that v(k, a) ∈
IRr

>0 and v(k, b) ∈ IRr
>0 imply a, b ∈ IRn

>0.
To streamline the discussion define the set of all nonnegative vectors x ∈ IRp

≥0 such that E x is positive:

Λ (E) :=
{
x ∈ IRp

≥0 | E x > 0
}
. (3.5)

Then (3.4a), (3.4b) can be rewritten as

v(k, a) = E λ,

v(k, b) = E ν,

ν, λ ∈ Λ (E) .
(3.6)
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Remark 1. Some comments about Λ (E): Λ (E) is the union of cones. It consists of the positive
orthant IRp

>0 and some of its boundaries. To see this, observe the following points:

(1) As E ∈ IRr×p
≥0 , x ∈ IRp

>0 implies E x > 0, that is IRp
>0 ⊆ Λ (E).

(2) Let x ∈ IRp
≥0 with one zero component and the remaining components positive. Denote the zero

component with xi and let nTi ∈ IRp
≥0, i = 1, . . . , r be the row vectors of E. Then

E x =

⎛⎜⎝ 〈n1, x〉
...

〈nr, x〉

⎞⎟⎠ > 0,

if and only if no scalar product 〈nj , x〉 is a multiple of xi (i.e. if and only if 〈nj , x〉 =
∑p

l=1 njl xl �=
nji xi ). That is, if and only if i ∈ supp (nj) implies | supp (nj | > 1), j = 1, . . . , r. A similar
argument can be made for x ∈ IRp

>0 with several components equal to zero.

(3) In general the constraint ν, λ ∈ Λ (E) is not hard to test: one can, for example, start with looking
for positive ν, λ. Only if those cannot be established, one might have to consider ν, λ with some
components equal to zero. As such Λ (E) is easily obtained once E is obtained . It is a standing
assumption of this thesis that Λ (E) is known.

To proceed with the transformation, let nTi ∈ IRp
≥0, i = 1, . . . , r be the row vectors of E, that is

E =

⎡⎣ nT
1

...
nT
r

⎤⎦. Then (3.4a), (3.4b) are

k1 a
y
(L)
1 = 〈n1, λ〉 k1 b

y
(L)
1 = 〈n1, ν〉

...
...

kr a
y(L)
r = 〈nr, λ〉 kr b

y(L)
r = 〈nr, ν〉

As all terms are positive, application of ln to both sides of each equation is well justified (using for
vectors v ∈ IRn the abbreviation ln v := (ln v1, . . . , ln vn)

T ):

ln k1 + 〈y(L)1 , ln a〉 = ln〈n1, λ〉 ln k1 + 〈y(L)1 , ln b〉 = ln〈n1, ν〉
...

...

ln kr + 〈y(L)r , ln a〉 = ln〈nr, λ〉 ln kr + 〈y(L)r , ln b〉 = n〈nr, ν〉
In short:

ln ki + 〈y(L)i , ln a〉 = ln〈ni, λ〉 ln ki + 〈y(L)i , ln b〉 = ln〈ni, ν〉, i = 1, . . . , r.

Subtracting equations in a from equations in b yields (using the definition μ :=
(
ln b1

a1
, . . . , ln bn

an

)T
):

〈y(L)i , μ〉 = ln
〈ni, ν〉
〈ni, λ〉 , i = 1, . . . , r. (3.7)

Further note that the equations (3.7) are independent of the parameter vector k. These equations can
be used to state a lemma connecting the existence of a, b ∈ IRn

>0 and k ∈ IRr
>0 to the existence of

vectors λ, ν, ∈ IRp
>0 and μ ∈ IRn. With the definition

ln
E ν

E λ
:=

(
ln
〈n1, ν〉
〈n1, λ〉 , . . . , ln

〈nr, ν〉
〈nr, λ〉

)T

(3.8a)

equation (3.7) can be written as

Y (L)T μ = ln
E ν

E λ
. (3.8b)
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Lemma 1. Let ẋ(t) = Y Ia v(k, x(t)) be a set of ordinary differential equations derived from a biochem-
ical reaction network endowed with mass action kinetics. Further let E = [E1, . . . , Ep], E ∈ IRr×p

≥0 be
a matrix, whose columns are generators of ker(Y Ia) ∩ IRr

≥0 and let Λ (E) be the set of all nonnegative
vectors x ∈ IRp

≥0 such that E x > 0, as defined in (3.5). Then the following statements are equivalent:

(I) There exist two vectors a, b ∈ IRn
>0, a �= b and a vector k ∈ IRr

>0 with

Y Ia v(k, a) = 0
Y Ia v(k, b) = 0

(II) There exist two vectors λ, ν ∈ Λ (E) and a vector μ ∈ IRn with

Y (L)T μ = ln
E ν

E λ
.

Proof. (I) ⇒ (II): Let a, b ∈ IRn
>0 with k ∈ IRr

>0 with

Y Ia v(k, a) = 0 (3.9a)
Y Ia v(k, b) = 0. (3.9b)

To obtain μ ∈ IRn and ν, λ ∈ Λ (E) proceed as above: (3.9a), (3.9b) and positivity of k imply v(k, a) >
0, v(k, b) > 0 and v(k, a) ∈ ker(Y Ia)∩IRr

≥0, v(k, b) ∈ ker(Y Ia)∩IRr
≥0. Thus there exists λ, ν ∈ Λ (E)

such that

v(k, a) = E λ

v(k, b) = E ν.

These equations can be transformed in the same process as described above:

Y (L)T μ = ln
E ν

E λ
,

where μ := ln b
a .

(II) ⇒ (I): Assume λ, ν ∈ Λ (E) and μ ∈ IRn are given such that Y (L)T μ = ln E ν
E λ holds. Then one

has to show the existence of a, b ∈ IRn
>0 and k ∈ IRr

>0 such that Y Ia v(k, a) = 0 and Y Ia v(k, b) = 0.
To this end choose any vector a ∈ IRn

>0 and observe that a is a steady state if a positive vector k
exists, such that v(k, a) = E λ, where λ ∈ Λ (E) is known by assumption. Recall that v(k, a) =
diag (k) φ (a) = diag (φ (a)) k. Thus it is straightforward to obtain k:

k = diag
(
φ
(
a−1

))
E λ.

Then b = diag (eμ) a is a positive steady state as well, where μ ∈ IRn is fixed by assumption. To see
this, one has to show that v(k, b) = E ν, with k as above. Note that ν ∈ Λ (E) is known by assumption.
Recall, that, by assumption as well, ν, λ and μ satisfy Y (L)T μ = ln E ν

E λ . Observe the following:

v(k, b) = diag (k) φ (b) = diag
(
φ
(
a−1

))
diag (E λ) diag (φ (eμ)) φ (a)

= diag (φ (eμ)) diag (E λ) diag
(
φ
(
a−1

))
φ (a)︸ ︷︷ ︸

=1

= diag (φ (eμ)) E λ

= diag
(
eY

(L)T μ
)
E λ

= diag
(
E ν

E λ

)
E λ

= E ν.

�
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Solutions μ ∈ IRn and ν, λ ∈ Λ (E) can be associated with the difference of two positive steady state
solutions: if a satisfies Y Ia v(k, a) = 0 (i.e. v(k, a) = E λ) then b = diag (eμ) a satisfies Y Ia v(k, b) = 0
(i.e. v(k, b) = E ν). Note that, as is shown in the proof of Lemma 1, any positive vector a ∈ IRn

>0 can
be a steady state solution. Simply solve v(k, a) = diag (k) φ (a) for the parameter vector k ∈ IRr

>0

(note that this equation is linear in k):

k = diag
(
φ
(
a−1

))
E λ. (3.10a)

Thus, a solution (μ, ν, λ) defines in fact a continuum of solutions parameterized by a ∈ IRn
>0: for a

given solution (μ, ν, λ) choose a ∈ IRn
>0 and fix k as in (3.10a). Then, by Lemma 1,

b = diag (Exp (μ)) a (3.10b)

is a steady state solution as well. However, a and b need not satisfy the conservation relations (3.1b)
and (3.2b) for the same values ci. To find pairs a and b that satisfy these constraints as well, see
Section 3.3.

3.2 Solvability of Y (L)T μ = ln E ν
E λ

In this Section (3.8b) is analysed. Note that

Y (L)T μ = ln
E ν

E λ

is solvable for given ν, λ, if and only if

UT Y (L)T = 0⇒ UT ln
E ν

E λ
= 0. (3.11)

This is a consequence of the fact that (3.8b) is only solvable, if the right hand side is contained in
the image of Y (L)T , that is, if ln E ν

E λ ∈
[
Y (L)T

]
. This is the case, if and only if the orthogonal

complement of
[
Y (L)T

]
,
[
Y (L)T

]⊥
, is orthogonal to ln E ν

E λ . Note that by the ‘fundamental theorem of

linear algebra
[
Y (L)T

]⊥
= ker

(
Y (L)

)
[61]. In Section 3.2.1 and Section 3.2.2 two solution strategies

based on condition (3.11) are discussed. Recall that Y (L) ∈ IRn×r, where n is the number of species
and r the number of reactions. As, by assumption, r > n, condition (3.11) will exist for almost any
biochemical reaction network.

3.2.1 Solvability I

Let U be a basis for ker
(
Y (L)

)
with integer coefficients (such a basis can always be obtained by an

adequate scaling of basis-vectors, as Y (L) ∈ INn×r
0 ). Consider basis-vector ui and let ui = u⊕i − u�i ,

where u⊕i , u
�
i are vectors with nonnegative integer coefficients. Then

uTi ln
E ν

E λ
= 0

evaluates to

u⊕i
T
ln
E ν

E λ
= u�i

T
ln
E ν

E λ∑
j∈supp(u⊕i )

u⊕ij ln
〈nj , ν〉
〈nj , λ〉 =

∑
l∈supp(u�i )

u�il ln
〈nl, ν〉
〈nl, λ〉

∑
j∈supp(u⊕i )

ln
( 〈nj , ν〉
〈nj , λ〉

)u⊕ij
=

∑
l∈supp(u�i )

ln
( 〈nl, ν〉
〈nl, λ〉

)u�il
.
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Using the summation rule for ln one obtains

ln
∏

j∈supp(u⊕i )

( 〈nj , ν〉
〈nj , λ〉

)u⊕ij
= ln

∏
l∈supp(u�i )

( 〈nl, ν〉
〈nl, λ〉

)u�il
.

By removing ln (by taking both sides to e·), multiplying with numerators and rearranging terms one
finally obtains∏

j∈supp(u⊕i )
(〈nj , ν〉)u

⊕
ij

∏
l∈supp(u�i )

(〈nl, λ〉)u
�
il −

∏
l∈supp(u�i )

(〈nl, ν〉)u
�
il

∏
j∈supp(u⊕i )

(〈nj , λ〉)u
⊕
ij = 0,

i = 1, . . . , r − rank
(
Y (L)

)
.

(3.12)

There are r− rank
(
Y (L)

)
basis-vectors for ker

(
Y (L)

)
and thus r− rank

(
Y (L)

)
polynomials of the form

given in (3.12). If a solution to these polynomials exists, then it is straightforward to solve (3.8b) in
terms of the μi. To see this, let ν̃, λ̃ ∈ IRp

>0 be such that (3.12) holds. Then ln E ν̃
E λ̃

∈
[
Y (L)T

]
. Thus

Y (L)T μ = ln
E ν̃

E λ̃

is solvable and, as these equations are linear in μ, it is straightforward to obtain μ. In this case μ =M κ,
where M is a matrix of appropriate dimension and [M ] ⊆ IRn is a linear subspace of IRn.

Remark 2. In this Chapter the question of the existence of more than one positive solution to the
system of polynomials Y Ia v(k, x) = 0 has been analysed. In general Y Ia v(k, x) = 0 is a system of
n polynomials with r > n unknown coefficients ki in the n unknowns xi. Lemma 1 and the preceeding
discussion show that this question is equivalent to the question of the existence of at least one solution
ν, λ ∈ Λ (E) to a system of r − rank

(
Y (L)

)
polynomials with known coefficients in the 2 p unknowns

ν and λ. Thus it can be expected that these polynomials are easier to handle (in fact, it is possible
to examine these polynomials numerically, even though the rate constants ki are unknown). However,
even though the polynomials are now accessible numerically it will in general not be easy to find positive
solutions, let alone all of them.

3.2.1.1 Special form of polynomials

The matrix Y (L) as described in Section 2.2 contains all reactant complexes of the network. If a complex
is reactant in several reactions (say in γ reactions) then Y (L) contains exactly γ copies of this complex
vector. Then a basis for ker

(
Y (L)

)
, the kernel of Y (L), exists, that contains γ − 1 vectors with exactly

one entry +1, one entry −1 and the remaining entries 0. Let Y (R) ∈ IRn×nr. of reactant complexes be
the matrix of reactant complexes (i.e. the matrix that contains the vectors of each reactant complexes
exactly once). If this matrix is of full rank and the number of reactant complexes is less than n, the
number of species, then ker

(
Y (L)

)
is spanned only by vectors of this form; this is, for example, the

case for the networks related to the activation of an MAPK, see Chapter 4. Vectors of this form lead
to a special system of polynomials that will be discussed here.
Let ui = ( 0, . . . , 1, 0, . . . , −1, 0, . . . )T (with supp (ui) = {j, l}). Then (3.12) simplifies to

〈nj , ν〉 〈nl, λ〉 − 〈nl, ν〉 〈nj , λ〉 = 0

as u⊕ij = 1 and u�il = 1. This is equivalent to⎛⎝ ∑
s∈supp(nj)

njs νs

⎞⎠ ⎛⎝ ∑
t∈supp(nl)

nlt λt

⎞⎠−
⎛⎝ ∑

s∈supp(nj)

njs λs

⎞⎠ ⎛⎝ ∑
t∈supp(nl)

nlt νt

⎞⎠ = 0.

Let Γi := supp (nj) × supp (nl), be the set of all ordered pairs of elements of supp (nj) and supp (nl).
Then ⎛⎝ ∑

s∈supp(nj)

njs νs

⎞⎠ ⎛⎝ ∑
t∈supp(nl)

nlt λt

⎞⎠ =
∑

(s,t)∈Γi

njs nlt νs λt
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and ⎛⎝ ∑
s∈supp(nj)

njs λs

⎞⎠ ⎛⎝ ∑
t∈supp(nl)

nlt νt

⎞⎠ =
∑

(s,t)∈Γi

njs nlt νt λs.

This leads to the following special form for (3.12):

〈nj , ν〉 〈nl, λ〉 − 〈nl, ν〉 〈nj , λ〉 =
∑

(s,t)∈Γi

njs nlt (νs λt − νt λs) . (3.13)

Let αi = (njs nlt)(s,t)∈Γi
and βi (ν, λ) = (νs λt − νt λs)(s,t)∈Γi

. Then (3.13) is equivalent to 〈αi, βi (ν, λ)〉 =
0. Clearly each ui of the form discussed here yields vectors αi and βi. By collecting all binomials of
the form νs λt − νt λs in a vector β (ν, λ) and, after an appropriate filling with zeros, of all αi as row
vectors of a matrix A one obtains the following compact representation:

Aβ (ν, λ) = 0. (3.14)

3.2.2 Solvability II

Instead of solving the polynomials associated with UT ln E ν
E λ = 0 as described in the previous section

the equation Y (L)T μ = ln E ν
E λ is transformed in the following way: note that (3.8b) is equivalent to

diag
(
eY

(L)T μ
)
E λ = E ν

and, after rearranging terms,[
E − diag

(
eY

(L)T μ
)
E
] (

ν
λ

)
= 0 , ν, λ ∈ Λ (E) . (3.15)

Recall that E ∈ IRr×p
≥0 , r the number of reactions and note that in general r > p. Thus, for the

remainder of Section 3.2.2 the following assumption will be made:

Assumption 1. The number of reactions r is greater than p the number of generators of ker(Y Ia) ∩
IRr
≥0.

Recall that ν, λ ∈ Λ (E), as they are coordinates of points in the interior of a pointed polyhedral cone.
Let let U ∈ IRr×r be a matrix such that U E is in row reduced echelon form:

U E =
[
Io Eo

0 0

]
,

where o = rank (E) and
[

E0

−Ir−o

]
is a basis for ker (E). The row reduced echelon form is a result of

Gauss-Jordan elimination (after a possible reordering of variables). Thus, such a matrix U can always

be obtained [61]. Let U =
[
U1

U2

]
and multiply (3.15) by U to obtain

⎡⎣ Io E0 −U1 diag
(
eY

(L)T μ
)
E

0 0 −U2 diag
(
eY

(L)T μ
)
E

⎤⎦
︸ ︷︷ ︸

=:Q(μ)

(
ν
λ

)
= 0 , ν, λ ∈ Λ (E) . (3.16)

Observe the following facts:

(i) Equation (3.16) is feasible, only if Q2 (μ) := U2 diag
(
eY

(L)T μ
)
E has a kernel vector λ ∈ Λ (E),

that is only if
Q2 (μ) λ = 0, λ ∈ Λ (E)

is feasible for some μ ∈ IRn.
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(ii) However ν ∈ Λ (E) has to hold as well. Thus, in general, one has to consider the complete
matrix Q (μ). There might be cases, where one must not consider all of Q (μ): if Q1 (μ) :=[
E0 − U1 diag

(
eY

(L)T μ
)
E
]
contains nonpositive rows. Let Q1 (μ) =

[
q1(μ)

...
qo(μ)

]
and let I ⊆

{ 1, . . . , o } be the set of indices such that qi (μ) ≤ 0, qi (μ) �= 0, for all μ ∈ IRn. That is,
qi (μ) is a nonpositive row vector of Q1 (μ), not identically zero. Split ( νλ ) =

(
ν̃
ν0
λ

)
accordingly.

Then

ν̃ = −
[
E0 −U1 diag

(
eY

(L)T μ
)
E
] (

ν0
λ

)
= −Q1 (μ)

(
ν0
λ

)
.

Obviously, if qi (μ) ≤ 0, qi (μ) �= 0 then ν̃i = −qi (μ) ( ν0λ ) > 0, if ( ν0λ. ) > 0. Thus the row qi (μ)
can be excluded, as ν̃i will be positive, if (

ν0
λ ) > 0.

(iii) Suppose Q1 (μ) as defined above contains a nonnegative row (for all μ ∈ IRn), that is, qj (μ) ≥ 0,
for some j ∈ { 1, . . . , o }. Then ν̃i = −qi (μ) ( ν0λ ) ≤ 0, if ( ν0λ ) > 0 and multistationarity is
excluded, as by Lemma 1, the system cannot admit two positive steady state solutions.

As a consequence of the previous discussion, for the remainder of Section 3.2.2, the following assumption
will be made:

Assumption 2. No row of Q1 (μ) as defined above is nonnegative (for all μ ∈ IRn).

As a consequence of and the above assumption, it suffices to consider those rows of Q1 (μ) that contain
positive and negative elements. Let I± ⊆ { 1, . . . , o } be the set of indices that correspond to rows
of Q1 (μ) containing positive and negative entries and let pm := |I±|. Then one has to examine the
following submatrix of Q (μ):

Q̃ (μ) :=
[
Ipm (qi (μ))i∈I±
0 Q2 (μ)

]
.

Note that this submatrix is defined mainly for convenience. The algorithms presented in the remainder
of this Chapter depend on the size of this matrix. Thus a removal of those rows of Q (μ) that always
have a positive null vector can simplify the analysis. Thus, from now on, Q (μ) will be used to denote
the matrix, where all nonpositive rows of Q1 (μ) gave been removed.
Further note that (3.16) is linear in ν and λ. For fixed values of μ the computation of ν, λ is straight-
forward, by determining the extreme rays of ker (Q (μ)) ∩ IR2 p

≥0. However, ker (Q (μ)) ∩ IR2 p
≥0 might

be the empty set for a particular μ. In some cases it is known, that for any choice of μ the cone
ker (Q (μ))∩ IR2 p

≥0 has nonempty interior, that is there exists a positive kernel vector for Q (μ). This is
the case, if Q (μ) is a so-called L+-matrix [44].

3.2.2.1 L+-matrices matrices and sign-central matrices

In some cases it is possible to decide about the existence of positive kernel vectors by the sign pattern
of a matrix. In many applications a system of linear equations of the form Qy = 0 has to be solved,
where the entries Qij of Q are known only approximately, if at all. It is however frequently the case
that the sign of the Qij is known. There exist certain matrices Q where the sign pattern of the solutions
y to Qy = 0 can be determined by the sign pattern of Q (see e.g. [6] for a general introduction, [40]
and [41] or [3] for nonnegative solutions and [44] for positive solutions). In the context of this section,
the results of [44] and of [3] are of the most importance: in [44] L+-matrices are introduced and in
[3] sign-central matrices are introduced. If Q is an L+-matrix, then every matrix with the same sign
pattern has a positive kernel vector. If Q is a sign-central matrix, then every matrix with the same sign
pattern has a nonnegative kernel vector.
To state the main results, some additional notation is necessary: let A ∈ {−1, 0, 1}m×n be a sign
pattern. A nonzero vector σ ∈ {−1, 0, 1}m is called a signing and a nonzero vector σ ∈ {−1, 1}m is
called a strict signing. Furthermore, in [44, 3], the ‘requires’ and ‘allows’ terminology is used: let P be
a property that a matrix can or cannot have. Then the sign pattern A requires P if each matrix with
the same sign pattern has property P, and A allows P if there exists some matrix with the same sign
pattern with property P. Consider [44, Theroem 2.4, p. 6]:

Theorem 1. Let A be an m by n sign pattern. Then the following are equivalent:
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(a) A is an L+-matrix.

(b) A requires a positive null vector and A has no zero row.

(c) For each signing σ, some column of diag (σ) A is nonzero and nonnegative.

(d) For each signing σ, some column of diag (σ) A is nonzero and nonpositive.

and [3, Theorem 2.1, p. 286]:

Theorem 2. Let A be an m by n sign pattern. Then the following are equivalent:

(a) A is a sign-central matrix.

(b) For every strict signing, σ, some column of diag (σ) A is nonzero and nonnegative.

(c) For each strict signing, σ, some column of diag (σ) A is nonzero and nonpositive.

Recall that by definition a sign-central matrix has a nonnegative kernel vector [3, p. 284]. Note that
Theorem 1 and 2 already contain primitive algorithms to determine whether or not a given sign pattern
is an L+- or a sign-central matrix, respectively.
In general Y (L)T μ and thus the sign of the entries Qij of Q (μ) is unknown, however, in certain cases,
the signs of the Qij can be determined by systems of linear inequalities. In the remainder of this section
it is in a first step shown under what conditions the sign-pattern of Q (μ) can be determined by linear

inequality systems, before in a second step L+-matrices are used to solve Q (μ)
(
ν
λ

)
= 0, ν, λ ∈ Λ (E).

3.2.2.2 Sign patterns of Q (μ) determined by linear inequalities

Consider

Q (μ) =
[
Io E0

0 0 −U diag
(
eY

(L)T μ
)
E

]
as defined above. Split Q (μ) =

[
Qf −Qv (μ)

]
, Qf ∈ IRr×p

>0 , Qv (μ) ∈ IRr×p, where

Qf :=
[
Io E0

0 0

]
, Qv (μ) := U diag

(
eY

(L)T μ
)
E. (3.17)

Obviously sign (Qf ), the sign pattern of Qf , is fixed, while sign (Qv (μ)), the sign pattern of Qv (μ), de-
pends on the vector μ. Under some conditions it is possible to determine all sign patterns sign (Qv (μ)),
that Qv (μ) can admit, for any conceivable vector μ ∈ IRn. This is examined in this section.
Consider Qv (μ) = U diag

(
eY

(L)T μ
)
E and observe that

Qij = UT
i diag

(
eY

(L)T μ
)
Ej , i, j = 1, . . . , r,

where UT
i is the i-th row vector of U and Ej the j-th column vector of E. Then

Qij =
r∑

l=1

e〈y
(L)
l , μ〉 Uil Ejl, i, j = 1, . . . , r.

Obviously e〈y
(L)
l , μ〉 UilEjl = 0, if Uil = 0 or Ejl = 0. Thus

Qij =
∑

l∈supp(UT
i )∩supp(Ej)

e〈y
(L)
l , μ〉 Uil Ejl.

Now assume supp
(
UT
i

)∩supp (Ej) = {sij , tij}, that is supp
(
UT
i

)
and supp (Ej) have only two elements

in common. Then

Qij = e
〈y(L)

sij
, μ〉

Uisij Ejsij + e
〈y(L)

tij
, μ〉

Uitij Ejtij .
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If either

e
〈y(L)

sij
, μ〉

Uisij Ejsij > 0 and e
〈y(L)

tij
, μ〉

Uitij Ejtij > 0

or

e
〈y(L)

sij
, μ〉

Uisij Ejsij < 0 and e
〈y(L)

tij
, μ〉

Uitij Ejtij < 0,

then trivially Qij > 0 or Qij < 0, respectively. Thus assume

e
〈y(L)

sij
, μ〉

Uisij Ejsij > 0 and e
〈y(L)

tij
, μ〉

Uitij Ejtij < 0.

Then

sign (Qij) =

⎧⎪⎪⎨⎪⎪⎩
> 0, if e〈y

(L)
sij

, μ〉
Uisij Ejsij > e

〈y(L)
tij

, μ〉
Uitij Ejtij

< 0, if e〈y
(L)
sij

, μ〉
Uisij Ejsij < e

〈y(L)
tij

, μ〉
Uitij Ejtij

= 0, if e〈y
(L)
sij

, μ〉
Uisij Ejsij = e

〈y(L)
tij

, μ〉
Uitij Ejtij

(3.18)

It is easy to see that the conditions in (3.18) are linear: simply apply ln (·) to obtain

Qij < 0, if 〈y(L)sij , μ〉+ ln
(
Uisij Ejsij

)
< 〈y(L)tij , μ〉+ ln

(
Uitij Ejtij

)
.

Qij = 0, if 〈y(L)sij , μ〉+ ln
(
Uisij Ejsij

)
= 〈y(L)tij , μ〉+ ln

(
Uitij Ejtij

)
.

Qij > 0, if 〈y(L)sij , μ〉+ ln
(
Uisij Ejsij

)
> 〈y(L)tij , μ〉+ ln

(
Uitij Ejtij

)
.

Thus one obtains
sign (Qij) = sign (〈vij , μ〉+ βij) , (3.19a)

where

vij := y(L)sij − y
(L)
tij , (3.19b)

βij := ln
Uisij Eisij

Uisij Eisij

. (3.19c)

This motivates the following Lemma:

Lemma 2. Let U =

⎡⎣ UT
1

...
UT

r

⎤⎦ and E = [E1 ... Ep ]. Then the sign pattern of Q (μ) as defined in (3.16)

can be determined by linear inequality systems if supp
(
UT
i

) ∩ supp (Ej) ≤ 2, ∀i, j ∈ 1, . . . , r.

Remark 3. Note that if for Qij either all terms e〈·, ·〉 have the same sign or supp
(
UT
i

)∩supp (Ej) ≤ 1,
it is straightforward to determine the sign of Qij.

Next determine all entries Qij , where the sign has to be determined by a linear inequality, that is define
the index set

I :=
{
(i, j) ∈ {1, . . . , r} × {1, . . . , r} | supp (Ui) ∩ supp (Ej) = {sij , ti,j}

and
(
Uisij Ejsij

) (
Uitij Ejtij

)
< 0

}
.

(3.20)

Let s0 be the number of entries Qij , where the sign has to be determined by a linear inequality (i.e.
s0 = |I|) and collect all vij as defined in (3.19b) as row vectors in a matrix V ∈ IRs0×n:

V :=
[
vTij

]
(i,j)∈I (3.21a)

and all βij as defined in (3.19c) in a vector β ∈ IRs0 :

β := (βij)(i,j)∈I , (3.21b)
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using I as in (3.20). Note that one can determine all possible values of sign (V μ+ β): let σ ∈
{−1, 0, 1}s0 be a signing and observe that sign (V μ+ β) = σ, if and only if

V μ+ β − diag (σ) s = 0, s > 0 (3.22)

has a solution (μ, s), s > 0. Thus, by checking feasibility of (3.22), for every σ ∈ {−1, 0, 1}s0 , one can
determine all signings that sign (Q (μ)) can assume. A signing σ, such that (3.22) is feasible is called a
feasible signing. Observe the following fact:

Fact 1. Suppose βij = 0, ∀ (i, j) ∈ I. In this case, if (μ̄, s̄) is solution to (3.22) for σ, then (−μ̄, s̄) is
solution for −σ. Thus, if σ is a feasible signing for (3.22), then −σ a feasible signing as well.

To see this, suppose (μ̄, s̄) has been established as a solution to (3.22), that is

V μ̄− diag (σ) s̄ = 0

holds. Observe that
V (−μ̄)− diag (−σ) s̄ = −V μ̄+ diag (σ) s̄ = 0.

The following algorithm can be used to determine all feasible signings:

Algorithm 1.

(1) Let s0 be the number of inequalities. Create all signings Σ := {−1, 0, 1}s0.
(2) ∀σ ∈ Σ:

(a) Solve [
V β − diagσ

] ⎛⎝μ
s̄
s

⎞⎠ = 0, s > 0, s̄ = 1.

(b) If (μ, s̄, s), with s̄ = 1, s > 0 exists, then σ is a feasible signing.

Remark 4. For Algorithm 1 the system (3.22) has to be solved (3s0 − 1) times (if the signing σ = 0
is excluded). If β = 0, the system has only to be solved 1

2 (3
s0 − 1) times (as in this case (μ, s) is a

solution to (3.22) for σ implies by Fact 1 that (−μ, s) is a solution to (3.22) for −σ).
Remark 5. The existence of a signing such that the sign pattern of Q (μ) is an L+-matrix is necessary,
but not sufficient for the existence of a positive solution to (3.16).

Remark 6. If one cannot establish signings, such that Q (μ) is an L+-matrix, it might still be possible
to establish signings, such that Q (μ) is a sign-central matrix. In this case some elements of ν and λ
and thus of the vector of rate constants k can equal zero. In this case one can try to find values for
the zero elements of k using the results discussed in Section 3.4 (This approach has been successfully
applied to one of the models for cell cycle regulation discussed in Chapter 5).

3.2.2.3 An example: application to network N1

As an illustration the matrix Q (μ) for network N1 is determined. Recall that for the example network

Y Ia =
[ −1 1 0 0 1 −1

0 0 1 −1 −1 1

]
The generators of ker(Y Ia) ∩ IR6

≥0 are given as the column vectors of the matrix

E =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1 0
1 0 0 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
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For Λ (E) as defined in (3.5) one obtains

Λ (E) =
{
x ∈ IR5

≥0 | x1 = 0&(x2 = 0&(x3 = 0&x4 > 0&x5 > 0||x3 > 0&x4 > 0&x5 > 0)||
x2 > 0&(x3 = 0&x4 > 0&x5 > 0||x3 > 0&x4 > 0&x5 > 0))||

x1 > 0&(x2 = 0&(x3 = 0&x4 > 0&x5 > 0||x3 > 0&x4 > 0&x5 > 0)||
x2 > 0&(x3 = 0&x4 > 0&x5 > 0||x3 > 0&x4 ≥ 0&x5 ≥ 0))

}
.

And the transformation matrix U , with U E =
[
Io Eo
0 0

]
is given by

U =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 −1
1 −1 0 0 −1 1
0 0 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Therefore one obtains

QN1 =
[
Io E0

0 0 −U diag
(
eY

(L)T μ
)
E

]

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 1 −1 0 0 0 −1
0 1 0 0 1 0 −eμ2 0 0 −eμ2

0 0 1 0 1 0 0 −e3μ1 0 −e3μ1

0 0 0 1 −1 0 0 q1 −e2μ1+μ2 e3μ1

0 0 0 0 0 q2 0 −q1 q3 q4
0 0 0 0 0 0 q5 −q1 q6 q7

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with

q1 = e3μ1 − e2μ1+μ2

q2 = 1− eμ1

q3 = −eμ1 + e2μ1+μ2

q4 = 1− e3μ1

q5 = −1 + eμ2

q6 = −1 + e2μ1+μ2

q7 = −e3μ1 + eμ2 .

As every row of Q (μ)contains positive and negative entries, no row can be discarded. To determine the
sign pattern of Q (μ), the signs of the qi have to be determined. This can be done by solving systems
of linear inequalities: sign (q1) = sign (μ1 − μ2), sign (q2) = sign (−μ1), sign (q3) = sign (μ1 + μ2), . . . .
Let q = (q1, . . . , q7)

T . Then
sign (q) = sign (V μ) ,

where

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 0
1 1

−3 0
0 1
2 1

−3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let σ ∈ {−1, 0, 1}7. The signing σ = (1, 1, 1, 1, 1, 1)T , for example, corresponds to q1 > 0, . . . , q7 > 0
and thus V μ > 0. Each signing defines an inequality system that is feasible if an only if the system[

V − diag (σ)
] (

μ
s

)
= 0, s > 0 (3.23)
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is feasible. (Note that β = 0 in this case.) Solutions to (3.23) form a pointed polyhedral cone, whose
extreme rays can be computed by efficient algorithms. Let the columns of E =

[
A1
A2

]
be generators

of this cone (where A1 and A2 are matrices of appropriate dimension). Then μ = A1 κ, κ > 0 is a
parametrization of all μ that satisfy (3.23) for a particular signing.
The inequality system defined by σ = (1, 1, 1, 1, 1, 1)T has no solution, as the inequality −μ2 > 0 (a
consequence of the first two inequalities μ1 − μ2 > 0 and −μ1 > 0) is not compatible with the fifth
inequality μ2 > 0. Thus the sign pattern defined by σ = (1, 1, 1, 1, 1, 1)T

sign (Q (μ)) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 1 −1 0 0 0 −1
0 1 0 0 1 0 −1 0 0 −1
0 0 1 0 1 0 0 −1 0 −1
0 0 0 1 −1 0 0 1 −1 1
0 0 0 0 0 1 0 −1 1 1
0 0 0 0 0 0 1 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
is not a feasible sign pattern for Q (μ). The sign pattern

sign (Q (μ)) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 1 −1 0 0 0 −1
0 1 0 0 1 0 −1 0 0 −1
0 0 1 0 1 0 0 −1 0 −1
0 0 0 1 −1 0 0 −1 −1 1
0 0 0 0 0 1 0 1 −1 1
0 0 0 0 0 0 1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
is feasible. It corresponds to the signing σ∗ = (−1, 1, −1, 1, 1, −1, 1) that defines the feasible inequality
system

μ1 − μ2 < 0
−μ1 > 0

μ1 + μ2 < 0
−3μ1 > 0

μ2 > 0
2μ1 + μ2 < 0

−3μ1 + μ2 > 0

The pointed polyhedral cone defined by the corresponding equalities

[
V − diag (σ∗)

] (
μ
s

)
= 0, s > 0 (3.24)

is generated by

Eσ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
0 1
1 2
1 1
1 0
3 3
0 1
2 1
3 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus all μ = A1 κ, κ > 0, with

A1 =
[ −1 −1

0 1

]
. (3.25)

are solutions to the inequality system. Equation (3.24) is feasible for the following signings σ ∈
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{−1, 0, 1}7

σ1 =(−1, −1, 1, −1, 1, 1, −1)T
σ2 =(−1, −1, 1, −1, 1, 1, 0)T

σ3 =(−1, −1, 1, −1, 1, 1, 1)T

σ4 =(−1, 1, −1, 1, −1, −1, 1)T

σ5 =(−1, 1, −1, 1, 0, −1, 1)T

σ6 =(−1, 1, −1, 1, 1, −1, 1)T

σ7 =(−1, 1, 0, 1, 1, −1, 1)T

σ8 =(−1, 1, 1, 1, 1, −1, 1)T

σ9 =(−1, 1, 1, 1, 1, 1, 1)T

σ10= (0, −1, 1, −1, 1, 1, −1)T
σ11= (0, 1, −1, 1, −1, −1, 1)T

σ12= (1, −1, −1, −1, −1, −1, −1)T
σ13= (1, −1, −1, −1, −1, 1, −1)T
σ14= (1, −1, 0, −1, −1, 1, −1)T
σ15= (1, −1, 1, −1, −1, 1, −1)T
σ16= (1, −1, 1, −1, 0, 1, −1)T
σ17= (1, −1, 1, −1, 1, 1, −1)T
σ18= (1, 1, −1, 1, −1, −1, −1)T
σ19= (1, 1, −1, 1, −1, −1, 0)T

σ20= (1, 1, −1, 1, −1, −1, 1)T

(3.26)

Of these twenty signings only the signings

σ6 =(−1, 1, −1, 1, 1, −1, 1)T

σ15= (1, −1, 1, −1, −1, 1, −1)T (3.27)

define sign patterns of Q (μ) that are L+-matrices. This is easy to verify using Theorem 1. The signings
given in (3.27) correspond to the following sign patterns of Q (μ):

sign (Q (μ)) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 1 −1 0 0 0 −1
0 1 0 0 1 0 −1 0 0 −1
0 0 1 0 1 0 0 −1 0 −1
0 0 0 1 −1 0 0 −1 −1 1
0 0 0 0 0 1 0 1 −1 1
0 0 0 0 0 0 1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
for σ6 and

sign (Q (μ)) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 1 −1 0 0 0 −1
0 1 0 0 1 0 −1 0 0 −1
0 0 1 0 1 0 0 −1 0 −1
0 0 0 1 −1 0 0 1 −1 1
0 0 0 0 0 −1 0 −1 1 −1
0 0 0 0 0 0 −1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
for σ15. Consider σ6, the solutions to the corresponding inequality systems are given above as μ1 =
−κ1 − κ2, μ2 = κ2, κ1, κ2 > 0. Choose, for example, κ1 = κ2 = 1. Then μ = (−2, 1)T and

Q (−2, 1) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 −1 0 0 0 −1
0 1 0 0 1 0 −e 0 0 −e
0 0 1 0 1 0 0 − 1

e6 0 − 1
e6

0 0 0 1 −1 0 0 1
e6 − 1

e3 − 1
e3

1
e6

0 0 0 0 0 1− 1
e2 0 − 1

e6 + 1
e3

1
e3 − 1

e2 1− 1
e6

0 0 0 0 0 0 −1 + e − 1
e6 + 1

e3 −1 + 1
e3 − 1

e6 + e

⎤⎥⎥⎥⎥⎥⎥⎦
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The cone ker (Q (−2, 1)) ∩ IR10
≥0 is generated by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.0342879e + 02 0.0000000e + 00 1.0000000e + 00 4.0242879e + 02 0.0000000e + 00 0.0000000e + 00
6.4346646e + 03 3.1936309e + 02 1.5193499e + 01 6.4336646e + 03 3.1936309e + 02 3.0516959e + 02
1.0000000e + 00 0.0000000e + 00 0.0000000e + 00 0.0000000e + 00 0.0000000e + 00 1.0000000e + 00
2.3320418e + 02 3.1696090e + 01 5.0321472e − 01 2.3420418e + 02 3.1696090e + 01 3.0192875e + 01
0.0000000e + 00 1.0000000e + 00 0.0000000e + 00 1.0000000e + 00 1.0000000e + 00 0.0000000e + 00
0.0000000e + 00 0.0000000e + 00 1.0000000e + 00 0.0000000e + 00 1.0000000e + 00 0.0000000e + 00
1.9637520e + 03 1.1685499e + 02 5.5893760e + 00 1.9637520e + 03 1.1785499e + 02 1.1226562e + 02
0.0000000e + 00 4.0242879e + 02 0.0000000e + 00 0.0000000e + 00 4.0342879e + 02 4.0342879e + 02
4.7041168e + 03 2.3420418e + 02 1.0107338e + 01 4.7041168e + 03 2.3320418e + 02 2.2309685e + 02
4.0342879e + 02 1.0000000e + 00 0.0000000e + 00 4.0342879e + 02 0.0000000e + 00 0.0000000e + 00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A solution for ν, λ is

ν = (8.0685759e+ 01, 1.3827419e+ 03, 2.0000000e− 01, 5.6149664e+ 01, 3.0000000e− 01)T (3.28a)

λ = (2.0000000e− 01, 4.2800691e+ 02, 1.2092864e+ 02, 1.0108846e+ 03, 8.0785759e+ 01)T

(3.28b)

A pair of steady states is given by a = (1, 1) and b =
(
e−2, e1

)
. The corresponding parameter vector is

given by

k =
(
1.0110846e+ 03, 8.0985759e+ 01, 1.4388915e+ 03, 5.0879266e+ 02,

1.1318133e+ 03, 2.0171440e+ 02
)T
.

(3.28c)

3.3 Positive solutions satisfying the conservation relations

Recall the present situation: the goal is to find two positive steady state solutions a, b ∈ IRn
>0 and a

parameter vector k ∈ IRr
>0, such that Y Ia v(k, a) = Y Ia v(k, b) = 0 and WT a = WT b. As a result of

Section 3.1, it is known how a, b ∈ IRn
>0 and k ∈ IRr

>0 can be established: by obtaining solutions to

Y (L)T μ = ln
E λ

E ν
,

where ν, λ ∈ Λ (E) and μ ∈ IRn. If a solution ν, λ, μ exists, then

a∈ IRn
>0, arbitrary

b = diag (eμ) a

k = diag
(
φ
(
a−1

))
E λ

satisfy Y Ia v(k, a) = Y Ia v(k, b) = 0. However, the condition WT a = WT b will in general not hold
for arbitrary vectors a. But, as a can be chosen freely, WT a = WT b can be checked independent of
the rate constants k. Note that WT a =WT b is equivalent to WT (b− a) and thus to b−a ∈ S, where
S = [Y Ia]. Let M1 and M2 be two subsets of IRn, not necessarily linear subspaces. The following
lemma gives necessary and sufficient conditions for the existence of two positive vectors p ∈ IRn

>0 and
q ∈ IRn

>0 with the following properties:

ln
q

p
∈M1, (3.29a)

where, as usual, ln q
p :=

(
ln q1

p1
, . . . , ln qn

pn

)T
and

q − p ∈M2. (3.29b)

The following Lemma formalizes the discussion in [25], or [23, p. 187-188]:

Lemma 3. LetM1 ⊆ IRn andM2 ⊆ IRn be two nontrivial subsets of IRn and defineM3 :=
{
(m1,m2) ∈

M1 ×M2

∣∣ sign (m1) = sign (m2)
}
as the set of all ordered pairs (m1,m2) of elements m1 ∈ M1 and
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m2 ∈M2 with the same sign pattern. Two positive vectors p and q with the properties given in (3.29a)
and (3.29b) exist, if and only if M3 �= ∅. Moreover, any pair (m1,m2) ∈M3 defines a pair p, q:

(pi)i=1....,n =

{
m2i

em1i−1 , if m1i �= 0
p̄i > 0, arbitrary, if m1i = 0

(3.30a)

and

(qi)i=1....,n = em1i pi. (3.30b)

Proof. Suppose p and q with the properties given in (3.29a) and (3.29b) exist. One has to show that
M3 �= ∅. As ln qi

pi
< 0 iff qi − pi < 0, ln qi

pi
> 0 iff qi − pi > 0 and ln qi

pi
= 0 iff qi − pi = 0 one has

sign
(
ln q

p

)
= sign (q − p). As, by assumption, ln q

p ∈ M1 and q − p ∈ M2 the desired result M3 �= ∅
follows.
Suppose, on the other hand, M3 �= ∅. Then it remains to show that p and q as defined in (3.30a) and
(3.30b) have the properties defined in (3.29a) and (3.29b). Pick any pair (m1,m2) ∈ M3 and suppose
m1i �= 0, i = 1, . . . , n. Then

qi − pi = em1i pi − pi = pi (em1i − 1) = m2i and ln
qi
pi

= m1i.

Otherwise, if m1i = 0 for some i ∈ {1, . . . , n}, then qi = pi = p̄i. Moreover, sign (m1) = sign (m2)
ensures m2i = qi − pi = 0 and ln qi

pi
= m1i = 0.

Thus q − p = m2 ∈ M2 and q
p = m1 ∈ M1, by definition. p ∈ IRn

>0 follows from sign (m2) = sign (m1)
and the fact that sign (em1i − 1) = sign (m1i), i = 1, . . . , n, positivity of q follows from positivity of p.
�

As an easy consequence of Lemma 3 necessary and sufficient conditions for the existence of multiple
positive steady state solutions can be derived:

Theorem 3. Consider a biochemical reaction network with mass action kinetics and the matrices
Y ∈ IRn×m, Ia ∈ IRm×r and Y (L) ∈ IRn×r as defined in Chapter 2. Let the columns of E ∈ IRr×p be
generators of ker(Y Ia) ∩ IRr

≥0. Obtain

M =
{
μ ∈ IRn|∃ν, λ ∈ Λ (E) such that Y (L)T μ = ln

E ν

E λ

}
. (3.31)

Let S = [Y Ia] denote the stoichiometric subspace and define the set of all ordered pairs (μ, v) of
elements μ ∈M and v ∈ S with the same sign pattern:

T := {(μ, v) ∈ M× S| sign (μ) = sign (v)} . (3.32)

The ODEs derived from the biochemical reaction network admit multistationarity, if and only if T �= ∅.
Moreover, any element of T defines a pair of steady state solutions a, b ∈ IRn

>0 and a vector of rate
constants k ∈ IRr

>0 with

Y Ia v(k, a) = Y Ia v(k, b) = 0

WT b = WT a

in the following way:

(ai)i=1, ..., n =

{
vi

eμi−1 , if μi �= 0
āi > 0, arbitrary, if μi = 0

(3.33a)

b = diag (eμ) a (3.33b)

k = diag
(
φ
(
a−1

))
E λ, (3.33c)

for some λ ∈ Λ (E), such that Y (L)T μ = ln E ν
E λ .
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Proof.

⇒ Suppose T �= ∅. Therefore M �= ∅. Then there exist μ ∈ IRn and ν, λ ∈ Λ (E) such that
Y (L)T μ = ln E ν

E λ . Thus, by Lemma 1, for arbitrary positive a, vectors b ∈ IRn
>0 as in (3.33b) and

k ∈ IRr
>0 as in (3.33c) satisfy Y Ia v(k, a) = Y Ia v(k, b) = 0. As T �= 0, Lemma 3 implies that

b− a ∈ S and thus WT a =WT b , if a as in (3.33a).

⇐ Suppose a, b ∈ IRn
>0 and k ∈ IRr

>0 exist with Y Ia diag (k) φ (a) = Y Ia diag (k) φ (b) = 0 and
WT a = WT b. As a, b > 0, the assumption Y Ia diag (k) φ (a) = Y Ia diag (k) φ (b) = 0 implies
diag (k) φ (a) = E λ and diag (k) φ (b) = E ν, for some ν, λ ∈ Λ (E). From Lemma 1 follows that
μ := ln b

a satisfies Y (L)T μ = ln E ν
E λ , for ν, λ as above. Thus M �= ∅. Observe that WT a =WT b

implies b− a ∈ S and thus T �= ∅ by Lemma 3.

�

Corollary 1. Suppose dim (S) = n, that is, the system has no conservation relations. Then the ODEs
derived from the biochemical reaction network admit multistationarity, if and only if M �= ∅, with M
as defined in (3.31). Any vector μ ∈M defines a, b ∈ IRn

>0 and k ∈ IRr
>0 with

Y Ia v(k, a) = Y Ia v(k, b) = 0

in the following way:

a∈ IR>0, arbitrary
b = diag (eμ) a

k = diag
(
φ
(
a−1

))
E λ,

for some λ ∈ Λ (E), such that Y (L)T μ = ln E ν
E λ .

Moreover, based on Lemma 3, it is, at least in principle, possible to prove that a certain network
structure cannot admit multiple (positive) steady state solutions. This motivates the following corollary:

Corollary 2. Suppose M �= ∅, M as in (3.31) and T = ∅, T as in (3.32). Then multistationarity is
impossible (in the sense, that no pair a, b ∈ IRn

>0 of positive steady state solutions satisfies WT b =
WT a).

Results similar to Lemma 3 have been known in the literature on Feinberg’s Chemical Reaction Network
Theory for some time (see, for example, the informal discussion in Ellison’s Ph.D. thesis [23, p. 187-
188]). In fact, both the Deficiency One Algorithm and the Advanced Deficiency Algorithm utilize the
way p and q are constructed in (3.30a) and (3.30b). Note that multistationarity does not depend on
specific parameter values. This motivates the following fact.

Fact 2. For a biochemical reaction network with mass action kinetics multistationarity is a network
property, that is, it can be tested without any knowledge of parameter values whatsoever. Con-
clusiveness of a test depends on the existence of vectors ν, λ ∈ Λ (E) and a vector μ that satisfy the
nonlinear equation (3.8b) and a vector v ∈ [Y Ia] with sign (v) = sign (μ).

3.3.1 The linear subspace case

Suppose that M as given in (3.31) defines a linear subspace of IRn. In this case it is straightforward
(but may be computationally demanding) to check whether or not T �= ∅ (i.e. to check whether or not
there exists μ ∈ M and v ∈ S with sign (μ) = sign (v)): to see this, suppose, for a particular μ ∈ M,
a vector v ∈ S with sign (v) = sign (μ) can be determined. Then all vectors α v with α > 0 also satisfy
sign (v) = sign (μ). In fact, every vector v ∈ S that is contained in the same orthant as μ also satisfies
sign (v) = sign (μ). And vice versa: suppose for a given vector v ∈ S there exists a μ ∈ M with
sign (μ) = sign (v). Then every vector μ ∈ M that is contained in the same orthant as v also satisfies
sign (μ) = sign (v). Thus, to show that T �= ∅, it suffices to find an orthant that intersects M as well
as S (provided that M is a linear subspace of IRn).
To formalize this discussion, let δ ∈ {−1, 0, 1}n be a vector composed of entries +1, 0 and −1. It
is used to denote a particular orthant IRn

δ :=
{
x ∈ IRn | δ = sign (x), j = 1, . . . , n

}
, with δ the
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signature of the orthant. In this notation the positive orthant, for example, is represented by the
vector δ = (1, . . . , 1)T , entirely composed of entries +1, and IRn

δ , δ = (0, 1, . . . , 1)T is the part of the
hyperplane x1 = 0 separating IRn

δ̄
with δ̄ = (1, . . . , 1)T from IRn

δ̃
with δ̃ = (−1, 1, . . . , 1)T . Using this

notation the previous discussion can be summarized as follows:

Fact 3. Recall that S is a linear subspace of IRn. Suppose M ⊆ IRn as given in (3.31) is a linear
subspace of IRn. Then T as defined in (3.32), has T �= ∅, if and only if there exists an orthant IRn

δ as
defined above with M∩ IRn

δ �= ∅ and S ∩ IRn
δ �= ∅. Note that in this case M∩ IRn

δo
�= ∅ and S ∩ IRn

δo
�= ∅,

with δo = −δ as well.

Proof. Recall that T �= ∅, if there exists v ∈ S and μ ∈ M with sign (v) = sign (μ) = δ, which implies
M∩ IRn

δ �= ∅ and S ∩ IRn
δ �= ∅. As S and M are linear vector spaces, −v ∈ S and −μ ∈ M holds.

Obviously sign (−v) = sign (−μ) = −δ =: δo. Thus M∩ IRn
δo
�= ∅ and S ∩ IRn

δo
�= ∅. �

Note that a, b and k can be recast using the conesM∩IRn
δ and S∩IRn

δ . Let Δ :=
{
δ ∈ {−1, 0, 1}n |M∩

IRn
δ �= ∅ and S ∩ IRn

δ �= ∅}. Using elements δ ∈ Δ, a representation of aδ, bδ, kδ can be derived in terms
of the generators ofM∩ IRn

δ and S ∩ IRn
δ : let E

Sδ

1 , . . . , ESδ

p
Sδ

be a set of generators for the cone S ∩ IRn
δ

and define the matrix ES
δ

=
[
ES

δ

1 , . . . , ES
δ

pSδ

]
. Further let EM

δ

1 , . . . , EM
δ

pMδ
be a set of generators for

the cone M∩ IRn
δ and define the matrix EM

δ

=
[
EM

δ

1 , . . . , EM
δ

pMδ

]
. Then, for a particular orthant Rn

δ ,
all μ ∈ M∩ IRn

δi
can be represented by

μδ = EM
δ

αδ, αδ ∈ IR
pMδ

>0 , (3.34a)

and all v ∈ S ∩ IRn
δ can be represented by

vδ = ES
δ

βδ, βδ ∈ IR
pSδ

>0 . (3.34b)

Using (3.34a) and (3.34b) in (3.33a) a can be parametrized in terms of αδ and βδ. The symbol aδ

is used to denote this parametrization of a for each δ ∈ Δ. Using aδ in (3.33b) and (3.33c) yields
parametrizations of bδ and kδ in terms of αδ and βδ. Thus, for each orthant δ ∈ Δ a different
representation of a, b and k can be derived.
It seems worthwhile to discuss the following property of M and S: whenever v ∈ S (μ ∈ M) holds,
−v ∈ S (−μ ∈ M) holds as well. In terms of orthants this is equivalent to the fact, that whenever
δ ∈ Δ, then −δ ∈ Δ as well. It is sufficient to consider either δ or −δ, as all representations a−δ, b−δ,
k−δ can be obtained from representations aδ, bδ, kδ. To be more precise, let μδ1 ∈ M∩IRn

δ , v
δ
1 ∈ S∩IRn

δ

and μ−δ2 ∈ M ∩ IRn
−δ, v

−δ
2 ∈ S ∩ IRn

−δ with μ−δ2 = −μδ1 and v−δ2 = −vδ1 . Without loss of generality

assume μδ1i �= 0, μ−δ2i �= 0, vδ1i �= 0, v−δ2i �= 0, i = 1, . . . , n. Then aδ1i =
vδ1i

eμ
δ
1i−1

and b1i = eμ
δ
1i a1i. Using

v−δ2i = −vδ1i and μ−δ2i = −μδ1i in a−δ2i yields

a−δ2i =
v−δ2i

eμ
−δ
2i − 1

=
−vδ1i

e−μδ
1i − 1

=
−vδ1i

e−μδ
1i

(
1− eμ

δ
i1

) =
1

e−μδ
1i

vδ1i
eμ

δ
1i − 1

= eμ
δ
1i

vδ1i
eμ

δ
1i − 1

= bδ1i.

In a similar way b−δ2i = aδ1i can be derived. As k is determined by a, all representations a−δ, b−δ, k−δ

can be derived from aδ, bδ, kδ as a−δ = bδ, b−δ = aδ and k−δ = kδ.
Let B and W be two matrices of appropriate dimension with [B] =M⊥ and [W ] = S⊥ and note that
x ∈ IRn

δ is equivalent to x = diag (δ) ξ, ξ ∈ IRn
>0. Observe that M∩ IRn

δ �= ∅ and S ∩ IRn
δ �= ∅ hold for

a particular δ, if and only if the system

BT diag (δ) ξ = 0 (3.35a)

WT diag (δ) ξ = 0 (3.35b)

has a positive solution ξ ∈ IRn
>0. The following algorithm can be used to obtain orthants withM∩IRn

δ �=
∅ and S ∩ IRn

δ �= ∅ (see Appendix D, where (3.35b) and (3.35a) are used):

Algorithm 2.



3.4. MULTISTATIONARITY IN SUBNETWORKS 25

(1) Assumptions:

(i) In solving (3.8b), ν, λ ∈ Λ (E) can be determined independently of μ ∈ IRn.

(ii) M as defined in (3.31) is a linear subspace of IRn.

(2) Determine all δ ∈ {−1, 0, 1}n with S∩IRn
δ �= ∅ (e.g. using the algorithms discussed in Appendix D):

ΔS := {δ ∈ {−1, 0, 1}n |S ∩ IRn
δ �= ∅} (3.36a)

(3) Determine all δ ∈ {−1, 0, 1}n with M ∩ IRn
δ �= ∅ (e.g. using the algorithms discussed in Ap-

pendix D).
ΔM := {δ ∈ {−1, 0, 1}n |M ∩ IRn

δ �= ∅} (3.36b)

(4) Determine Δ := ΔS ∩ΔM. If and only if

Δ �= ∅ (3.36c)

multistationarity is possible. This is a consequence of Fact 3 and Theorem 3.

(5) If Δ �= ∅, use (3.34a) and (3.34b) in (3.33a), (3.33b) and (3.33c) to obtain parametrizations for a
pair of steady state aδ, bδ and the corresponding vector of rate constants kδ. Note that one obtains
a different parameterization for each δ ∈ Δ.

There exists a variety of algorithms and software tools to check feasibility of (3.35b) and (3.35a).
However, as up to 1

2 3
n inequality systems have to be checked, it is computationally hard, to use Fact 3

to check sufficient conditions for multistationarity. For systems of moderate size, as those presented in
Section 4, the algorithms presented in Appendix D can be used.

3.4 Multistationarity in subnetworks

Consider again the pointed polyhedral cone ker(Y Ia)∩ IRr
≥0 and its generators. Let Ei be a generator.

Then two different types of generators can be distinguished: trivial generators with IaEi = 0 and
stoichiometric generators with IaEi �= 0.1,2 As explained in Section 3.1.1 every generator corresponds
to a subnetwork of the overall network. The ODEs corresponding to any subnetwork can be obtained
from the ODEs of the overall network by setting those rate constants to zero, that correspond to
reactions not contained in the subnetwork. Thus, if J ⊆ {1, . . . , r} is the index set of the reactions
contained in a subnetwork, then ki = 0, i /∈ J (if the subnetwork is defined by a stoichiometric generator
Ej , this is equivalent to ki = 0, if i /∈ supp (Ej)).
The motivation of this section is based on the idea that steady states in a subnetwork are connected
to steady states in the overall network. Intuitively, if x(1), x(2) are steady states of a subnetwork and
if in the overall network those ki previously set to zero are assigned arbitrarily small numbers, then
the overall network should have steady states ‘close’ to x(1), x(2). In Section 3.4.1 multistationarity in
subnetworks defined by a stoichiometric generator are examined. For these subnetworks it is particularly
easy to establish multistationarity, as this can often be done using the Deficiency One Algorithm of
CRNT. This means, in particular, that multistationarity can be established by analysis of systems of
linear inequalities. Furthermore, as a consequence of the results presented in Section 3.1 and 3.3 it is
straightforward to obtain a parametrization of pairs of steady states and the corresponding parameter
vectors.
[35] describes how steady states of the overall network deform to steady states of subnetworks defined by
stoichiometric generators, if the ki not contained in the subnetwork approach zero. In Section 3.4.2 the
other direction is pursued: starting with (multiple) equilibria in a subnetwork, conditions are derived
that guarantee that these steady states are steady states of the overall network as well. Moreover, by
testing these conditions for a specific (pair of) steady state(s) it is possible to obtain values for those
parameters of the overall network that are not contained in the subnetwork.

1Note that trivial generators correspond to cycles in the directed graph defined by Ia.
2The term stoichiometric generators is used in [35]
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3.4.1 Multistationarity in subnetworks defined by stoichiometric generators

In this Section a subnetwork of a (bio)chemical reaction network that is defined by a stoichiometric
generator of the larger network is considered. To distinguish subnetwork and overall network the symbol
ˆ is used to mark all entities that belong to the overall network: Îa for the incidence matrix, Ê for the
stoichiometric generator that defines the subnetwork and Ŷ (L) for the matrix of exponent vectors. Both
subnetwork and overall network involve the same complexes, thus Y is used for both networks. Note
that the incidence matrix Ia and the matrix of exponent vectors of the subnetwork consist of column
vectors Îa,i and ŷ

(L)
i of the overall network, namely those with i ∈ supp

(
Ê
)
. Let r̂ be the number of

reactions contained in the overall network and r be the number of reactions in the subnetwork. Let E
be the vector obtained from Ê by deleting all zero entries; obviously E > 0. It follows that Y IaE = 0
and Ia E �= 0.
This Section contains two parts. In the first part algebraic properties of subnetworks defined by a
stoichiometric generator are derived, before in the second part parametrizations of pairs of steady
states and the corresponding parameter vectors are derived.

3.4.1.1 Algebraic properties of subnetworks defined by a stoichiometric generator

Recall the properties of generators Ei, Ej of ker(Y Ia) ∩ IRr
≥0:

Y Ia Ei = 0, Y Ia Ej = 0
Ei ∈ IRr

≥0.

Given Ei, Ej with Y Ia Ei = 0 and Y IaEj = 0. Then

supp (Ei) ⊆ supp (Ej)⇒ Ei = 0 or Ej = αEi.

Further note the well-known result from algebraic graph theory concerning incidence matrices of arbi-
trary (oriented) graphs (for details see, for example, [36, Theorem 8.3.1, p. 168]). It is given here using
the notation introduced in [24, 25].

Lemma 4. Let Ia be the incidence matrix of a graph with m vertices and l connected components (i.e.
linkage classes). Then rank Ia = m− l.

The following facts can be established for the matrix product Y Ia (the matrices associated to the
subnetwork defined by Ê):

Lemma 5. Let Ê be a stoichiometric generator and E a vector obtained by deleting all zero entries of
Ê. Further let Y and Ia be the matrices associated with the subnetwork, as described above. Then the
following holds:

(i) E is a generator of ker(Y Ia) ∩ IRr
≥0 and it is the only generator, that is

ker(Y Ia) ∩ IRr
≥0 = αE, α ≥ 0

(ii) dim (ker (Y Ia)) = 1

(iii) Ia has full column rank

(iv) Ia contains m− l columns

(v) rank (Y Ia) = m− l − 1

Proof. (i.) Follows from the fact that Ê is a generator of ker
(
Ŷ Îa

)
∩ IRr̂

≥0 and positivity of E.
Let E0 be a nonzero nonnegative vector that satisfies (3.3a) and (3.3b). Positivity of E implies
supp (E0) ⊆ supp (E). Let Ê0 ∈ IRr̂

≥0 be obtained from E0 by an appropriate padding with zeros.

Then Ŷ ÎaÊ0 = 0 and supp
(
Ê0

)
⊆ supp

(
Ê
)
follow from the construction of Ê0. As Ê is by

definition a generator of ker
(
Ŷ Îa

)
∩IRr̂

≥0 we conclude that Ê0 = α Ê, α > 0 and thus E0 = αE,
α > 0. Thus E is a generator of ker(Y Ia) ∩ IRr

≥0.
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That E is the only generator follows again from positivity of E: any nonzero nonnegative vector
E0 that satisfies (3.3a) and (3.3b) will inevitably satisfy supp (E0) ⊆ supp (E). As E is a generator
of ker(Y Ia) ∩ IRr

≥0 all E0 satisfying (3.3a) and (3.3b) must satisfy E0 = αE, α > 0. Thus E is
the only generator of ker(Y Ia) ∩ IRr

≥0.

(ii.) The proof is similar to the one for (i): suppose there exists a nonzero vector E0 ∈ IRr, E0 �∈ [E]
with Y Ia E0 = 0. That E0 contains negative entries follows from (i): otherwise E0 = αE, α > 0
and dim (ker (Y Ia)) = 1 from (i). Let Ẽ = αE + E0. Then Ẽ > 0, for sufficiently large α and
Ẽ = β E by (i), a contradiction. Thus dim (ker (Y Ia)) = 1.

(iii.) As Ia E �= 0 by definition of E and dim (ker (Y Ia)) = 1 by (ii), Ia must have full column rank.

(iv.) By Lemma 4 rank (Ia) = m − l. By (iii) Ia has full column rank. Thus Ia must have m − l
columns.

(v.) By a standard result of linear algebra for any matrixA (see e.g. [61]) dim (ker (A)) = nr. of columns−
rank (A). As dim (ker (Y Ia)) = 1 by (ii) and nr. of columns = m − l by (iv) the desired result
rank (Y Ia) = m− l − 1 follows.

�

Suppose the subnetwork defined by Ê contains several linkage classes and let � be the number of linkage
classes of the subnetwork with � ≥ 2. Let Ji ⊆ 1, . . . ,m be the set of indices whose complexes are part
of linkage class i. Each linkage class can be considered as a graph of its own with an incidence matrix
IJi
a , that contains those columns of Ia that are indexed by Ji. The following result can be established
for the rank of the matrix product Y IJi

a :

Corollary 3. Assume the subnetwork defined by Ê has � ≥ 2 linkage classes. Consider one of these
linkage classes. Let Ji ⊆ 1, . . . ,m be the set of indices whose complexes are part of that linkage class
and let IJi

a the incidence matrix associated to the linkage class (as described above, IJi
a , that contains

those columns of Ia that are indexed by Ji). Let mi be the number of complexes in the linkage class.
Then

rank
(
Y IJi

a

)
= mi − 1.

Proof. By assumption the linkage class contains mi nodes. By definition a linkage class is a graph with
one connected component. Thus rank

(
IJi
a

)
= mi − 1 by Lemma 4. By Lemma 5, (ii) one has for the

subnetwork defined by Ê, that dim (ker (Y Ia)) = 1. As a consequence Y IJi
a must have full column

rank. To see this, assume that Y IJi
a does not have full column rank, that is, there exists a vector E0

of appropriate dimension with Y IJi
a E0 = 0. Let Ẽ0 be a suitable padding of E0 with zeros. One has

Y Ia Ẽ0 = 0 for the complete subnetwork and Ẽ0 /∈ [E] (as E is a positive vector and Ẽ0 contains zero
entries). Thus dim (ker (Y Ia)) = 2, a contradiction. Thus Y IJi

a has full column rank. As Y IJi
a has

full column rank and as rank
(
IJi
a

)
= mi − 1 one obtains rank

(
Y IJi

a

)
= mi − 1. �

Subnetworks defined by stoichiometric generators are intimately connected to the Deficiency One The-
orem of CRNT. To see this, recall the definition of network deficiency D, as given in, for example,
[24, 25, 27, 28]:

D = m− �− s.

Recall that s is the dimension of the stoichiometric subspace, that is s = rank (Y Ia) for the subnetwork
defined by the stoichiometric generator Ê. As a consequence of Lemma 5 and Corollary 3 the following
result can be established:

Corollary 4. Consider a subnetwork with � ≥ 2 linkage classes defined by a stoichiometric generator
Ê. For the deficiency D of the subnetwork as well as for the deficiencies Di of the linkage classes of
the subnetwork the following holds:

(i.) D = 1

(ii.) Di = 0, i = 1, . . . , �

Proof. Lemma 5 (v) and (2.11) imply (i), Corollary 3 and (2.11) imply (ii). �
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In CRNT the Deficiency One Algorithm can be used to decide about multistationarity. It is applicable
to biochemical reaction networks with deficiency D = 1 that satisfy certain additional constraints.
To state these a concept of graph theory is needed: the strongly connected component. A directed
graph is called strongly connected if for every pair of nodes u and v there is a path from u to v and
a path from v to u. The strongly connected components of a directed graph are its maximal strongly
connected subgraphs. In the notation introduced in [27, 28], strongly connected components are called
strong linkage classes. If no edge from a node inside a strong linkage classes to a node outside exists,
this strong linkage class is called terminal. The Deficiency One Algorithm is applicable to biochemical
reaction networks satisfying the the following requirements [25, 28]:

(I) The network deficiency is D = 1

(II) The deficiency of the linkage classes is Di = 0, i = 1, . . . , �

(III) There exists a positive vector E with Y IaE = 0.

(IV) The terminal strong linkage classes do not contain any cycles

(V) Each linkage class contains only one terminal strong linkage class

Note that (I) and (II) hold by Corollary 4 and that (III) holds by Lemma 5. Further note that the
graph cannot contain any cycles, as by Lemma 5 Ia has full column rank. Thus (IV) holds as well.
However, no information about (V) is obtainable using Lemma 5. This motivates the following fact:

Fact 4. Consider a biochemical reaction network that is a subnetwork of a larger network defined by a
stoichiometric generator of the larger network. Assume that the subnetwork is displayed in the standard
form of CRNT. Then the following holds: if every linkage class of the subnetwork contains only one
terminal strong linkage class, the Deficiency One Algorithm is applicable. Thus, in particlar, only
systems of linear inequalities have to be considered to decide about multistationarity.

Remark 7. Suppose the subnetwork defined by Ê consists of a single linkage class (i.e. � = 1). Clearly
Corollary 3 does not hold in this case. However the deficiency of the subnetwork is still one. To see
this, note that by Lemma 5 rank (Y Ia) = m− �− 1 = m− 2 in this case. And for the deficiency D one
obtains

D = m− �− s = m− 1− (m− 2) = 1.

3.4.1.2 Steady states for subnetworks defined by a stoichiometric generator

From Lemma 5 it follows that ker(Y Ia) ∩ IRr
≥0 is spanned by a single positive vector E, that is

ker(Y Ia)∩IRr
≥0 = α E, E ∈ IRr

>0, α > 0. Then the conditions v(k, a) = E λ and v(k, b) = E ν become

ki a
y
(L)
i = ni λ ki b

y
(L)
i = ni ν, i = 1, . . . , r,

where ni is the i-th component of E. Apply ln ()

ln ki + 〈y(L)i , ln a〉 = lnni + lnλ ln ki + 〈y(L)i , ln b〉 = lnni + ln ν, i = 1, . . . , r.

Subtracting equations in a from those in b one obtains (using, as before, μ := ln b
a ):

〈y(L)i , μ〉 = ln
ν

λ
, i = 1, . . . , r.

Using 1 = (1, . . . , 1)T , (3.8b) becomes

Y (L)T μ = ln
ν

λ
1, (3.37)

ν, λ > 0. Solvability of (3.37) can be established by means of linear algebra. Let μ̃ =
(
ln ν

λ , μ
)
and

transform (3.37) to [
−1 Y (L)T

]
μ̃ = 0. (3.38)

Any solution μ̃ �= 0 to (3.38) can be used to determine two vectors a, b ∈ IRn
>0 and k ∈ IRr

>0 with
Y Ia v(k, a) = Y Ia v(k, b) = 0. Note that the only requirement is that μ̃ �= 0 and not that ln ν

λ �= 0.
Thus, in particular, ln ν

λ = 0 and thus ν = λ is allowed. One obtains the following Lemma:
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Lemma 6. Consider equation (3.8b)

Y (L)T μ = ln
ν

λ
1,

with ν, λ > 0. Let μ̃ =
(
ln ν

λ , μ0
)
be a nonzero solution to[

−1 Y (L)T
]
μ̃ = 0.

Let α > 0 and a ∈ IRn
>0. Choose

k = diag
(
φ
(
a−1

))
(αE) (3.39a)

b = diag (eμ0) a. (3.39b)

Then Y Ia v(k, a) = Y Ia v(k, b) = 0.

Proof. Suppose the first component of μ̃ is nonzero. Then ln ν
λ = β, β ∈ IR \ (0). Let ν = eβ λ, λ > 0

and choose α = λ in (3.39a). In this case the desired result follows from Lemma 1.
Suppose the first component of μ̃ is zero. Then ln ν

λ = 0 and Y (L)T μ0 = 0 (as, by assumption μ̃ is a

solution to (3.38)). As a consequence, φ (eμ0) = eY
(L)T μ0 = 1. Consider the steady state equations

Y Ia v(k, a) = Y Ia diag (αE) diag
(
φ
(
a−1

))
φ (a)︸ ︷︷ ︸

=1

= Y Ia (αE) = 0

Y Ia v(k, b) = Y Ia diag (αE) diag
(
φ
(
a−1

))
φ (diag (eμ0) a)

= Y Ia diag (αE) diag
(
φ
(
a−1

))
diag (φ (a))︸ ︷︷ ︸

=Ir

φ (eμ0)

= Y Ia diag (αE) φ (eμ0)
= Y Ia diag (αE) 1
= Y Ia (αE) = 0.

�

Let ker ([−1 Y (L)T ]) =
[
M1
M2

]
. Then μ = M2 κ, κ a vector of appropriate dimension, is a representation

of all vectors that can satisfy (3.38) (i.e. all vectors μ ∈ IRn, with ∃α ∈ IR such that (α, μ)T is solution
to (3.38)). To determine a, b ∈ IRn

>0 and k ∈ IRn
>0 that satisfy the conservation relations as well (if

rank (Y Ia) < n, otherwise a ∈ IRn
>0 is free) Lemma 3 has to be considered. Thus one has to find

vectors v ∈ S and μ ∈ [M2] with sign (μ) = sign (v). If such a pair μ, v can exists, equation (3.33a)
from Theorem 3 and (3.39a), (3.39b) yield the desired a, b ∈ IRn

>0 and k ∈ IRr
>0. Note that by Lemma 6

the parameter α > 0 can be chosen independent of μ.

Remark 8. Note that ln ν
λ = 0 will always occur, if the subnetwork defined by a stoichiometric generator

is open with respect to certain species. If a species enters the system, then Y (L) contains the zero column.
Assume that only one species can enter the system. Then Y (L) = [ 0 Ỹ ], where Ỹ contains only nonzero
column vectors. Equation (3.37) becomes [

0
Ỹ T

]
μ = ln

ν

λ
E.

and ln ν
λ = 0 follows immediately.

As an example consider the following network involving a protein A, its phosphorylated form Ap,
a catalyst C and various combinations of these species (network N2 is structurally equivalent to a
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subnetwork of network N11 discussed in Section 5):

Ap
k3

0
k1

A
k2

A+C
k4

AC
k5

AC+C
k6

CAC
k7

k8 Ap C +C

Ap C
k9

Ap +C
k10

(N2)

Network N2 involves the species A, Ap, C, AC, C AC and ApC. Use x1 for the concentration of A,
x2 for the concentration of Ap, x3 for the concentration of C, x4 for the concentration of AC, x5 for
the concentration of C AC and x6 for the concentration of Ap C. The complexes are the zero complex
y1 = 0, A with y2 = e1, Ap with y3 = e2, A + C with y4 = e1 + e3, AC with y5 = e4, AC + C with
y6 = e4 + e3, C AC with y7 = e5, Ap C + C with y8 = e3 + e6, ApC with y9 = e6 and Ap + C with
y10 = e2 + e3. The columns of the 6× 10-matrix Y are:

Y =
[
0 e1 e2 e1 + e3 e4 e4 + e3 e5 e3 + e6 e6 e2 + e3

]
,

the columns of the 6× 10-matrix Y (L) are

Ŷ (L) =
[
0 e1 e2 e1 + e3 e4 e4 + e3 e5 e5 e6 e2 + e3

]
and the 10× 10-matrix Îa is given by

Îa = diag
(
I(1)a , I(2)a , I(3)a , I(2)a

)
with

Î(1)a =

⎡⎣ −1 1 1
1 −1 0
0 0 −1

⎤⎦
Î(2)a =

[ −1 1
1 −1

]

Î(3)a =

⎡⎣ −1 1 0
1 −1 −1
0 0 1

⎤⎦ .
The stoichiometric matrix is

N =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 −1 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 −1
0 0 0 −1 1 −1 1 1 1 −1
0 0 0 1 −1 −1 1 0 0 0
0 0 0 0 0 1 −1 −1 0 0
0 0 0 0 0 0 0 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
and the conservation relation is given by

W =
(
0, 0, 1, 1, 2, 1

)T
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The cone ker(Y Ia) ∩ IRr
≥0 is generated by the column vectors of

EN2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1
1 0 0 0 0
0 0 0 0 1
0 1 0 0 1
0 1 0 0 0
0 0 1 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 1 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The first for columns are trivial generators, while the fifth column vector is the only stoichiometric
generator of network N2, thus Ê = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0)T . The subnetwork defined by Ê is
displayed below:

Ap
k3

0
k1

A

A+C
k4

AC

AC +C
k6

CAC
k8 Ap C +C

Ap C
k9 Ap +C

(N3)

The matrix Y (L) of the subnetwork N3 is given by

Y (L) =
[
0 e2 e1 + e3 e3 + e4 e5 e6

]
Thus (3.37) is given by ⎡⎢⎢⎢⎢⎢⎢⎣

0
μ2

μ1 + μ3
μ3 + μ4
μ5
μ6

⎤⎥⎥⎥⎥⎥⎥⎦ = ln
ν

λ

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦
Obviously any solution must have ln ν

λ = 0. All solutions are given by

μ = κ

⎛⎜⎜⎜⎜⎜⎜⎝
1
0

−1
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
There are two orthants, where sign (μ) = sign (v), v ∈ [S] and μ as defined above:

δ = (1 , 0, −1, 1, 0, 0)T

and −δ. Using the generators of S∩IR6
δ all pairs of positive steady states and the corresponding vectors

of rate constants are can be parameterized by α1, . . . , α5 > 0 and κ ∈ IR, κ �= 0 (where, as usual,
S = [Y Ia], the stoichiometric subspace of the subnetwork defined by Ê):

a =
(

α1
eκ − 1

, α3, − α2
e−κ − 1

,
α2

eκ − 1
, α4, α5

)T

b =
(
eκα1
eκ − 1

, α3, − e−κα2
e−κ − 1

,
eκα2
eκ − 1

, α4, α5

)T

k =
(
1, α3−1, − (eκ − 1) (e−κ − 1)

α1 α2
, − (eκ − 1) (e−κ − 1)

α22
, α4

−1, α5−1
)T
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3.4.2 Extension of multistationarity to the overall network

If multistationarity can be established for a subnetwork, one is of course interested in extending those
solutions to the overall network. In this section conditions are presented that guarantee that (multiple)
steady states in a subnetwork can be extended to (multiple) steady states in the overall network. Recall
that the ODEs defined by a subnetwork can be obtained from those of the overall network by setting
certain rate constants to zero. To carry over a pair of steady states and a vector of rate constants from
a subnetwork to the overall network one therefore has to determine values for those rate constants that
are zero in the subnetwork.

Remark 9. All results given in this subsection and especially Theorem 4 stem from a cooperation with
D. Flockerzi and have been published in [9]. The proof of Theorem 4 is entirely D. Flockerzi’s work and
is given here only for the sake of completeness.

To begin with, consider a system of ODEs in the form ẋ = N v(k, x), with N ∈ IRn×r̂, x ∈ IRn

and v, k ∈ IRr̂ (using, as before, the symbol ˆ to denote quantities belonging to the overall network).

Recall that v(k, x) = diag (k)φ (x) = diag (φ (x)) k, where φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r̂

)T
. Let J ⊆

{1, . . . , r̂} be the set of reactions defining the subnetwork (if, for example, the subnetwork is defined
by a stoichiometric generator Ê of the overall network, then J = supp

(
Ê
)
). J can be used to split the

parameter vector: let k̂E , k̂c ∈ IRr̂
≥0 and collect all parameters belonging to reactions contained in the

subnetwork in k̂E (i.e. k̂E,i = ki for i ∈ supp (E) and k̂E,i = 0 otherwise) and the remaining ones in k̂c
(i.e. k̂c = k− k̂E). For example, for the subnetwork N3 of the overall network N2 one has J = { 1, 3, 4,
6, 8, 9 } and thus k̂E = (k1, 0, k3, k4, 0, k6, 0, k8, k9, 0)

T and k̂c = (0, k2, 0, 0, k5, 0, k7, 0, 0, k10)
T .

Since v is linear in k one obtains

ẋ = N v(k, x) = N v(k̂E , x) +N v(k̂c, x). (3.40)

Obtain vectors kE ∈ IRr
>0 and kc ∈ IRr̂−r

>0 by removing zero elements from k̂E , k̂c as

kE = (ki)i∈J and kc = (ki)i/∈J resp. .

For the subnetwork N3 of the overall network N2 one has kE = (k1, k3, k4, k6, k8, k9)
T and kc =

(k2, k5, k7, k10)
T . Let vE (kE , x) ∈ IRr and vc (kc, x) ∈ IRr̂−r be given by

vE (kE , x) :=
(
v(k̂E , x)

)
i∈J

= diagφE (x) kE ,

vc (kc, x) :=
(
v(k̂c, x)

)
i/∈J

= diagφc (x) kc .

Let Ni ∈ IRn denote the columns of N and define

NE = (Ni)i∈J and Nc = (Ni)i�∈J .

Then the ODE (3.40) can be rewritten as

ẋ = NE vE (kE , x) +Nc vc (kc, x) (3.41)

and the ODEs for the subnetwork defined by J are given by

ẋ = NE vE (kE , x) . (3.42)

For the subnetworkN3 of the overall networkN2 one has vE = (k1, k3 x2, k4 x1 x3, k6 x3 x4, k8 x5, k9 x3 x6)
T

and vc = (k2 x1, k5 x4, k7 x5, k10 x6)
T and the matrices

NE =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 −1 0 0 0
0 −1 0 0 0 1
0 0 −1 −1 1 1
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ and Nc =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 0
0 0 0 −1
0 1 1 −1
0 −1 1 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The ODEs defined by the overall network N2 and by the subnetwork N3 are (the terms on the right
hand side of the ODEs defined by the subnetwork are marked with a gray background):

ẋ = NE vE (kE , x) +Nc vc (kc, x)

=

k1 − k4 x1 x3
−k3 x2 + k9 x3 x6

−k4 x1 x3 − k6 x3 x4 + k8 x5 + k9 x3 x6
k4 x1 x3 − k6 x3 x4
k6 x3 x4 − k8 x5
k8 x5 − k9 x3 x6

−k2 x1 + k5 x4
−k10 x6

k5 x4 + k7 x5 − k10 x6
−k5 x4 + k7 x5

−k7 x5
k10 x6

Let ŝ denote rank (N) and s denote rank (NE). Observe that rank (N) need not equal rank (NE), that
is, in general rank (NE) ≤ rank (N) and thus s ≤ ŝ holds. Let W ∈ IR(n−ŝ)×n be an orthonormal
basis for the left kernel of N and let WE ∈ IR(n−s)×n with WT

E =
(
WT

add

WT

)
be an orthonormal basis

for the left kernel of NE (using Wadd to accommodate additional basis vectors, if s < ŝ; Wadd empty
if s = ŝ). Let SE be an orthonormal basis for im (NE) and let T = (SE , Wadd, W ) be an orthonormal
transformation with x = x(ξ, η, ρ) = T

(
ξ
η
ρ

)
and ξ = STE x, η = WT

add x, ρ = WT x. Then (3.40) reads

ξ̇ = STE NE vE (kE , x) + STE Nc vc (kc, x)

η̇ = WT
addNc vc (kc, x)

ρ̇ = 0.

(3.43)

Suppose a k∗E > 0 and steady states x∗1,2 > 0 for the subnetwork (3.42) defined by J have been
established, that is

NE vE
(
k∗E , x

∗
1,2

)
= 0

WT
E x∗1 = WT

E x∗2.

Let
(
ξ∗1,2, η

∗, ρ∗
)T = T T x∗1,2 and observe that

ξ̇ = STE NE vE
(
k∗E , x

(
ξ∗1,2, η

∗, ρ∗
))︸ ︷︷ ︸

=0

+STE Nc vc
(
kc, x

(
ξ∗1,2, η

∗, ρ∗
))

η̇ = WT
addNc vc

(
kc, x

(
ξ∗1,2, η

∗, ρ∗
))

ρ̇ = 0.

Fix k∗E > 0 and ρ∗, define k̂∗E as (
k̂∗E

)
i/∈J

= 0 and
(
k̂∗E

)
i∈J

= k∗E , (3.44)

so that k̂∗E is obtained from k∗E by a suitable padding with zeros and let k := k̂∗E + ε k̂c. For steady
states of (3.43) one needs to determine ξ, η and k̂c such that

STE NE vE (k∗E , x (ξ, η, ρ
∗)) + ε STE Nc vc (kc, x (ξ, η, ρ∗)) = 0

εWT
addNc vc (kc, x (ξ, η, ρ∗)) = 0.

Observe that the last equation is equivalent to

εWT
addNc diag (φc (x (ξ, η, ρ∗))) kc = 0.

With F (k, x) := Nv(k, x) and its Jacobian Fx := DxF (k, x) one can outline the following program:

Algorithm 3. (1) Compute STE Fx
(
k̂∗E , x

∗
1,2

)
(SE , Wadd) =:

(
A∗1,2, B

∗
1,2

)
,

ask for
regular A∗1,2 (3.45a)

and solve
A∗1,2X

∗
1,2 +B∗1,2 = 0 (3.45b)

for X∗1,2 = −[A∗1,2]−1B∗1,2.
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(2) Compute a positive κ0 with
G∗c κ0 = 0 (3.45c)

for

G∗c :=
[
WT

addNc diag (φc (x∗1))
WT

addNc diag (φc (x∗2))

]
. (3.45d)

and define k̂∗c ∈ IRr̂ by (
k̂∗c

)
i∈supp(E)

= 0 and
(
k̂∗c

)
i�∈supp(E)

= κ0. (3.45e)

(3) Compute WT
add Fx

(
k̂∗c , x

∗
1,2

)
(SE , Wadd) =:

(
C∗1,2, D

∗
1,2

)
and ask for

regular D∗1,2 := D∗1,2 + C∗1,2X
∗
1,2. (3.45f)

The following Theorem 4 shows that this program leads to a pair of positive steady states x̃1,2 of (3.40)
near x∗1,2 for k̂∗E + ε k̂∗c if ε > 0 is sufficiently small. To obtain values for x̃1,2, fix a sufficiently small ε
and solve N v(k̂∗E + ε k̂∗c , x̃1,2) = 0 for x̃1,2 near x∗1,2.

Theorem 4. Suppose the following conditions are fulfilled:

(i) There exist x∗1,2 > 0, k∗E > 0 with NE vE
(
k∗E , x

∗
1,2

)
= 0.

(ii) There exists a κ0 > 0 with G∗c κ0 = 0, cf. (3.45d).

(iii) Both A∗1 and A∗2 are regular, cf. (3.45a).

(iv) Both D∗1 and D∗2 are regular, cf. (3.45f).

Then there exist ε0 > 0 and δ0 > 0 such that

0 < ε < ε0 and |ρ− ρ∗| < δ0

imply the existence of different positive hyperbolic steady states

x1,2 (ρ, ε) = (SE , Wadd, W )

⎛⎝Ξ1,2 (ρ, ε)
H1,2 (ρ, ε)

ρ

⎞⎠
of (3.40) with

WT x1 (ρ, ε) = WT x2 (ρ, ε)

for the positive k(ε) = k̂∗E + ε k̂∗c – cf. (3.44) and (3.45e).

Proof. Apply the orthonormal transformation ξ = STE x, η =WT
add x, ρ = WT x to obtain

ξ̇ = STE N v(k̂∗E + ε k̂∗c , x)

= STE N v(k̂∗E , x) + ε STE N v(k̂∗c , x)

η̇ =WT
addN v(k̂∗E + ε k̂∗c , x) = εWT

addN v(k̂∗c , x)
˙̂η = 0.

For fixed x∗j , k
∗
E and regular A∗j (see assumption (i) and (iii)) the equation ξ̇ = 0 has a locally unique

solution ξj = Ξj
(
η, ρ, ε k̂∗c

)
near (η∗, ρ∗, 0) with A∗j Xj + B∗j = 0, Xj := ∂

∂ηΞj (η
∗, ρ∗, 0), by the

implicit function theorem. To find steady states with common ρ–components we need to solve

WT
addN v(k̂∗c , SE Ξ1

(
η, ρ, ε k̂∗c

)
+Wadd η +W ρ) = 0

WT
addN v(k̂c, SE Ξ2

(
η̃, ρ, ε k̂∗c

)
+Wadd η̃ +W ρ) = 0
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for
( η
η̃

)
=

(
H1(ρ, ε)
H2(ρ, ε)

)
near the solution (η∗, η∗, ρ∗, 0) (cf. assumption (ii) and (3.45e)). By assumption

(iv) and the implicit function theorem such functions H1 and H2 exist. Thus locally, there exist steady
states

ξ1 = Ξ1 (H1 (ρ, ε) , ρ, ε) =: Ξ1 (ρ, ε) , η = H1 (ρ, ε) , ρ
ξ2 = Ξ2 (H2 (ρ, ε) , ρ, ε) =: Ξ2 (ρ, ε) , η = H2 (ρ, ε) , ρ

of (3.43) for sufficiently small ε > 0. The corresponding positive steady states of (3.40) near x∗1,2 are
given by the x1,2 (ρ, ε) of the theorem. �

Remark 10. Note that Theorem 4 makes no use of the fact, that the subnetwork is defined by a
stoichiometric generator. Thus it can be applied to any subnetwork. The same holds of course for
Algorithm 3.

3.5 Resume: a program to decide about multistationarity

In this section the results of this chapter are combined to a program that can be applied to decide about
multistationarity. One has to distinguish two cases: (i) ν, λΛ (E) can be determined independent of
μ ∈ IRn (see Section 3.2.1) and (ii) ν, λ ∈ Λ (E) and μ ∈ IRn have to be determined together (see
Section 3.2.2). In the first case Algorithm 2 given in Section 3.3.1, in the second case Algorithm 4 given
below can be applied.

Algorithm 4.

(1) Assumptions:

(i) The sign of the elements of Qij the matrix Qv (μ), sign (Qij) can be determined by linear
inequalities (i.e. the conditions given in Lemma 2 hold).

(ii) Let s0 be the number of linear inequalities that determine the sign pattern of Q (μ).

(iii) Let V ∈ IRs0×n be the coefficient matrix of the inequalities that determine the sign pattern of
Q (μ), as defined in (3.21a).

(iv) Let β ∈ IRs0 be as defined in (3.21b).

(2) Determine all δ ∈ {−1, 0, 1}n with S ∩ IRn
δ �= ∅:

ΔS := {δ ∈ {−1, 0, 1}n |S ∩ IRn
δ �= ∅} (3.46)

(3) Determine all feasible signings σ ∈ {−1, 0, 1}s0 for Q (μ):

Σ :=

⎧⎨⎩σ ∈ {−1, 0, 1}n | [V β − diag (σ)
] ⎛⎝μ

s̄
s

⎞⎠ = 0, s̄ = 1, s > 0, has a solution

⎫⎬⎭ (3.47)

(4) (a) Determine all σ ∈ Σ such that Q (μ) is an L+ -matrix (e.g. using Theorem 1):

Σ+ :=
{
σ ∈ Σ|Q (μ) is an L+-matrix

}
(3.48)

(b) Determine all σ ∈ Σ such that Q (μ) is a sign-central matrix (e.g. using Theorem 2):

Σ0 := {σ ∈ Σ|Q (μ) is an sign-central matrix} (3.49)

(5) Determine all orthants δ ∈ ΔS that contain a feasible signing σ ∈ Σ+ (or, if Σ+ = ∅, σ ∈ Σ0).
That is, identify all orthants, with S ∩ IRn

δ �= ∅ that contain a solution to V μ+ β − diag (σ) s = 0,
s > 0:

P+,0 :=

⎧⎨⎩ (σ, δ) ∈ Σ+,0 ×Δ| [V diag (δ) β − diag (σ)
] ⎛⎝ξ

s̄
s

⎞⎠ = 0, ξ, s > 0, s̄ = 1

⎫⎬⎭ (3.50)
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If P+ �= ∅ then multistationarity is guaranteed. If P+ = ∅ and P0 �= ∅, then multistationarity is
guaranteed for a subnetwork. Observe that P0 �= ∅ means that Q (μ) is a sign-central matrix, thus
it is only guaranteed that Q (μ) has a nonnegative kernel vector. That is, some components of ν,
λ ∈ IRp

>0 might be zero. In this case one can still try to establish multistationarity for the overall
network using the results given in Section 3.4; see (vi) below.

(6) If P+ �= ∅ obtain a pair of steady states in the following way:

(i) Solve [
V diag (δ) β − diag (σ)

]︸ ︷︷ ︸
=:H

⎛⎝ξ
s̄
s

⎞⎠ = 0, ξ, s > 0, s̄ = 1

to obtain generators of ker (H) ∩ IRn+1+s0
>0 . Let the columns of M =

[
M1
m̄
M2

]
be generators.

Then μ = diag (δ) M1 κ, κ > 0 is a representation of all μ ∈ IRn
δ with sign (V μ+ β) = σ.

(ii) Fix κ̄ > 0 to obtain μ̄ = M1 κ̄.

(iii) Solve Q (μ̄)
(
ν
λ

)
= 0, ν, λ ∈ Λ (E) for ν, λ.

(iv) Choose any v ∈ S ∩ IRn
δ .

(v) Use (3.33a), (3.33b) and (3.33c) to obtain values for a, b, k (using μ̄ and ν, λ obtained
above).

(vi) If P+ = ∅ and P0 �= ∅ use the Algorithm 3 to try to extend multistationarity to the overall
network.

Remark 11. The condition P+ �= ∅ is necessary for multistationarity, the conditions P+ = ∅ and
P0 �= ∅ are necessary for multistationarity in a subnetwork (and can be extended to necessary conditions
for the overall network if combined with the conditions given in Algorithm 3). As a consequence P+ = ∅
and P0 = ∅ does not imply that multistationarity cannot occur in a biochemical reaction network.



Chapter 4

Multistationarity in the activation
of an MAPK(K)

Mitogen-activated protein kinase (MAPK) cascades are well studied systems in cell biology. The most
common form of an MAPK cascade is that of a three tiered cascade, as depicted in Fig. 4.1. Its build-
ing blocks are an MAPK, an MAPK kinase (MAPKK) and an MAPKK kinase (MAPKKK) together
with the respective mono- and double-phosphorylated forms (-P denoting single phosphorylation and
-PP double phosphorylation). Mono-phosphorylated MAPKKK catalyzes phosphorylation of MAPKK,
whose double-phosphorylated form in turn catalyzes phosphorylation of MAPK. E1 stands for a stimu-
lus that triggers the cascade, MAPKKK’ase, MAPKK’ase and E2 are phosphatases. (If the mammalian
ERK-cascade was considered, E1, for example, would be RAS, the MAPKKK Raf-1 or Mos and the
MAPK ERK-1 [57]).
Mathematical models describing the dynamics of an MAPK cascade have been known for some time
(see e.g. [31, 37] or [54] for a more general overview of quantitative models for signal transduction
networks in general, as well as [39] and the references therein). These models have been extensively
studied in the literature using numerical tools like bifurcation analysis. It is therefore known that
models of an MAPK cascade can exhibit all sorts of complex dynamical behaviour like bistability and
oscillations (see e.g. [4, 5] or [38, 39]). Only recently [45] showed that, surprisingly, bistability can even
occur on layer two or three of Fig. 4.1 alone, provided a distributive, multi-collision mechanism is used
for both, phosphorylation and dephosphorylation of the MAPK or the MAPKK [39, 45].
In principle, both phosphorylation and dephosphorylation could follow either a distributive or pro-
cessive mechanism (see Section 4.1 for details). One way to decide which mechanism is employed is
to experimentally verify multiple steady states on a single layer. This idea was already suggested in
[45, 50]. However, to safely discard different candidate mechanisms, a mathematical proof is re-
quired that these systems cannot exhibit multistationarity for any conceivable parameter vector. This
can be accomplished using CRNT, as shown in [10, 11, 12]. However, using the approach presented in
Chapter 3 will not only provide additional information (that is discussed in Chapter 6) but will also
lead to a better understanding of the phenomenon multistationarity itself.
This chapter is organised as follows: in Section 4.1 distributive and processive mechanisms are intro-
duced. In Section 4.2 and 4.3 the methods developed in Chapter 3 are applied to the reaction networks
presented in Section 4.1. In Section 4.4 the influence of the assumption that some species are not sub-
ject to a conservation relation on the existence of multiple steady states is examined, while Section 4.5
contains a brief discussion of the implications of the results obtained in Section 4.2 and 4.3 for model
discrimination. The chapter closes with a discussion of the results obtained in Chapter 3 in the light
of the results obtained for the activation of an MAPK(K).

4.1 Processive vs. distributive phosphorylation

In this section three candidate network structures for a single layer of the reaction scheme displayed
in Fig. 4.1 are discussed. Every scheme is a realization of the double-phosphorylation process sketched
in Fig. 4.2. Both phosphorylation and dephosphorylation can follow either a distributive or processive
mechanism. By a processive mechanism the kinase (phosphatase) carries out two phosphorylation or

37
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MAPKKK�PMAPKKK

E1

E2

MAPKK MAPKK�P MAPKK�PP

MAPK�P MAPK�PPMAPK

MAPK’ase MAPK’ase

MAPKK’ase MAPKK’ase

Figure 4.1: Scheme of an MAPK cascade (c.f. [37]). MAPK denotes the mitogen-activated protein
kinase, MAPKK the MAPK kinase and MPAKKK the MAPKK kinase, -P mono- and -PP double-
phosphorylation. E1 is a stimulus, MAPK ′ase, MAPKK ′ase and E2 are phosphatases.

dephosphorylation steps, before the final product is released. In a distributive mechanism, monophos-
phorylated intermediates are released before conversion to the final product occurs, after a second
binding of kinase (phosphatase) and intermediate. In the following scenarios, A is the MAPK, sub-
script p and pp denote single and double phosphorylation, E1 corresponds to MEK and E2 to the
phosphatase. The following networks involving different combinations of processive and distributive
mechanisms are analyzed:

• A distributive mechanism both for phosphorylation and dephosphorylation:

A+E1

k1

AE1
k2

k3 Ap +E1

k4

Ap E1
k5

k6 App +E1

App +E2

k7

App E2
k8

k9 Ap +E2

k10

Ap E2
k11

k12 A+E2

(N4)

• A processive mechanism for phosphorylation and a distributive mechanism for dephosphorylation:

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8 Ap +E2

k9

Ap E2
k10

k11 A+E2

(N5)
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AppApA

E2

E1

P PP

Figure 4.2: Scheme of activation of an MAPK (A). Enzyme E1 (e.g. the kinase MEK) double phos-
phorylates the MAPK A, enzyme E2 (a phosphatase) dephosphorylates both mono- and double- phos-
phorylated MAPK (i.e. Ap and App).

From a mathematical perspective this network is structurally equal to a network incorporating
a distributive mechanism for phosphorylation and a processive mechanism for dephosphorylation
(as the latter one would be the result of a mere change of names: A → App, E1 → E2 and
E2 → E1).

• A processive mechanism both for phosphorylation and dephosphorylation:

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8

Ap E2
k9

k10 A+E2

(N6)

The structural data and the ODEs for each network are given in Appendix A.

4.2 Positive solutions for the polynomial equations

In this Section the equation Y (L)T μ = ln E ν
E λ (see (3.8b) in Chapter 3) is derived and solved for N4,

N5 and N6.

Remark 12. From hereon, when analyzing the equation

Y (L)T μ = ln
E ν

E λ
,

the constraint ν, λ > 0 is considered instead of the constraint ν, λ ∈ Λ (E). This is done because the
constraint enhances ν, λ > 0 readability and because for all but one of the networks considered in the
remaining chapters Λ (E) is equal to the positive orthant. The only exception is network N10. For this
network however, it was possible to establish multistationarity by considering ν, λ > 0. Thus there was
no need to consider all of ν, λ ∈ Λ (E) (recall that Λ (E) is a union of cones, multistationarity was
established for one cone, thus it was not necessary to consider the remaining ones).

4.2.1 Positive solutions for N4

For this network the equation

Y (L)T μ = ln
E ν

E λ
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reads

μ1 + μ2 = ln
ν1 + ν5
λ1 + λ5

(4.1a)

μ3 = ln
ν1
λ1

(4.1b)

μ3 = ln
ν5
λ5

(4.1c)

μ2 + μ4 = ln
ν2 + ν6
λ2 + λ6

(4.1d)

μ5 = ln
ν2
λ2

(4.1e)

μ5 = ln
ν6
λ6

(4.1f)

μ6 + μ7 = ln
ν3 + ν6
λ3 + λ6

(4.1g)

μ8 = ln
ν3
λ3

(4.1h)

μ8 = ln
ν6
λ6

(4.1i)

μ4 + μ7 = ln
ν4 + ν5
λ4 + λ5

(4.1j)

μ9 = ln
ν4
λ4

(4.1k)

μ9 = ln
ν5
λ5
. (4.1l)

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν5
λ5
, ln

ν2
λ2

= ln
ν6
λ6
, ln

ν3
λ3

= ln
ν6
λ6
, ln

ν4
λ4

= ln
ν5
λ5

holds (note that this is equivalent to condition (3.11)). Thus one obtains the following polynomials (as
νi > 0 and λi > 0, i = 1, . . . , 6):

λ5 ν1 − λ1 ν5 = 0, λ6 ν2 − λ2 ν6 = 0
λ6 ν3 − λ3 ν6 = 0, λ5 ν4 − λ4 ν5 = 0.

Solve for ν1, ν2, ν5 and ν6 to obtain:

ν1 = λ1
ν4
λ4
, ν2 = λ2

ν3
λ3
, ν5 = λ5

ν4
λ4
, ν6 = λ6

ν3
λ3
.

This yields a representation of the vector ν in terms of λ1, . . . , λ6 and ν3 and ν4:

νT =
(
λ1

ν4
λ4
, λ2

ν3
λ3
, ν3, ν4, λ5

ν4
λ4
, λ6

ν3
λ3

)
. (4.4)

Thus it is possible to determine ν, λ ∈ IR6
>0 independent of μ ∈ IR9. Note that for ν as in (4.4), one

obtains

ln
ν1 + ν5
λ1 + λ5

= ln
ν1
λ1

= ln
ν5
λ5

= ln
ν4 + ν5
λ4 + λ5

= ln
ν4
λ4

and

ln
ν2 + ν6
λ2 + λ6

= ln
ν2
λ2

= ln
ν6
λ6

= ln
ν3 + ν6
λ3 + λ6

= ln
ν3
λ3
.
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And thus the following system of linear equations:

μ1 + μ2 = ln
ν4
λ4

μ3 = ln
ν4
λ4

μ2 + μ4 = ln
ν3
λ3

μ5 = ln
ν3
λ3

μ6 + μ7 = ln
ν3
λ3

μ8 = ln
ν3
λ3

μ4 + μ7 = ln
ν4
λ4

μ9 = ln
ν4
λ4

Solving for μ finally yields:

μ = μ7 (−1, 1, 0,−1, 0,−1, 1, 0, 0)′ + ln
ν3
λ3

(−1, 1, 0, 0, 1, 1, 0, 1, 0)′

+ ln
ν4
λ4

(2,−1, 1, 1, 0, 0, 0, 0, 1)′ .
(4.5)

If in (4.5) κ1 := ln ν3
λ3

and κ2 := ln ν4
λ4

are interpreted as free parameters μ is given by

μ = MN4

⎛⎝μ7
κ1
κ2

⎞⎠
where

MN4 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 2
1 1 −1
0 0 1

−1 0 1
0 1 0

−1 1 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.6a)

Consider the column space of MN4 : MN4 = [MN4 ]. From Chapter 3 it is known that any element
μ ∈ MN4 can be associated with the difference of two positive steady state solutions: if a satisfies
Y Ia v(a, k) = 0 and if μ ∈ MN4 , then b = diag (Exp (μ)) a satisfies Y Ia v(b, k) = 0. As discussed in
Section 3.1, any vector a ∈ IR9

>0 is a steady state solution for the vector of rate constants k defined in
(3.10a). For network N4 one obtains the following rate constants:

k1 =
λ1 + λ5
a1 a2

k2 =
λ1
a3

(4.7a)

k3 =
λ5
a3

k4 =
λ2 + λ6
a2 a4

(4.7b)

k5 =
λ2
a5

k6 =
λ6
a5

(4.7c)

k7 =
λ3 + λ6
a6 a7

k8 =
λ3
a8

(4.7d)

k9 =
λ6
a8

k10 =
λ4 + λ5
a4 a7

(4.7e)

k11 =
λ4
a9

k12 =
λ5
a9
. (4.7f)
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4.2.2 Positive solutions for N5

For this network the equation

Y (L)T μ = ln
E ν

E λ

reads

μ1 + μ2 = ln
ν1 + ν5
λ1 + λ5

(4.8a)

μ3 = ln
ν1
λ1

(4.8b)

μ3 = ln
ν2 + ν5
λ2 + λ5

(4.8c)

μ4 = ln
ν2
λ2

(4.8d)

μ4 = ln
ν5
λ5

(4.8e)

μ5 + μ6 = ln
ν3 + ν5
λ3 + λ5

(4.8f)

μ7 = ln
ν3
λ3

(4.8g)

μ7 = ln
ν5
λ5

(4.8h)

μ6 + μ8 = ln
ν4 + ν5
λ4 + λ5

(4.8i)

μ9 = ln
ν4
λ4

(4.8j)

μ9 = ln
ν5
λ5

(4.8k)

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν5
λ2 + λ5

, ln
ν2
λ2

= ln
ν5
λ5
, ln

ν3
λ3

= ln
ν5
λ5
, ln

ν4
λ4

= ln
ν5
λ5
.

One obtains

ν2 = λ2
ν5
λ5
, ν3 = λ3

ν5
λ5
, ν4 = λ4

ν5
λ5

and thus ln ν2+ν5
λ2+λ5

= ν5
λ5
. Therefore ν1 = λ1

ν5
λ5

and

ν =
ν5
λ5

λ,

λ ∈ IR5
>0 and ν5 > 0 free; thus, as for network N4, vectors ν and λ ∈ IR5

>0 can be determined
independent of μ ∈ IR8. Further note that

ln
ν1 + ν5
λ1 + λ5

= ln
ν3 + ν5
λ3 + λ5

= ln
ν4 + ν5
λ4 + λ5

= ln
ν5
λ5
.

That is, all terms on the right hand side of (4.8a) – (4.8k) equal

κ1 := ln
ν5
λ5
. (4.9)

Solving (4.8a) – (4.8k) for μ yields

μ = MN5

⎛⎝μ2
μ8
κ1

⎞⎠ (4.10a)
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where

MN5 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1
0 1 0
0 0 1
0 0 1
1 0 0

−1 0 1
0 0 1
1 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.10b)

Again, any element of the linear subspace MN5 = [MN5 ] can be interpreted as the difference of two
steady states: for any μ ∈MN5 , follows from Chapter 3 that b = diag (eμ) a, a ∈ IR9

>0, free, is a steady
state solution, if a is a steady state solution. Note that any vector a ∈ IR9

>0 is a steady state solution,
if the following k ∈ IR11

>0:

k1 =
λ1 + λ5
a1 a2

k2 =
λ1
a3

(4.11a)

k3 =
λ2 + λ5
a3

k4 =
λ2
a4

(4.11b)

k5 =
λ5
a4

k6 =
λ3 + λ5
a5 a6

(4.11c)

k7 =
λ3
a7

k8 =
λ5
a7

(4.11d)

k9 =
λ4 + λ5
a6 a8

k10 =
λ4
a9

(4.11e)

k11 =
λ5
a9
. (4.11f)

4.2.3 Positive solutions for N6

For this network the equation

Y (L)T μ = ln
E ν

E λ

reads

μ1 + μ2 = ln
ν1 + ν5
λ1 + λ5

(4.12a)

μ3 = ln
ν1
λ1

(4.12b)

μ3 = ln
ν2 + ν5
λ2 + λ5

(4.12c)

μ4 = ln
ν2
λ2

(4.12d)

μ4 = ln
ν5
λ5

(4.12e)

μ5 + μ6 = ln
ν3 + ν5
λ3 + λ5

(4.12f)

μ7 = ln
ν3
λ3

(4.12g)

μ7 = ln
ν4 + ν5
λ4 + λ5

(4.12h)

μ8 = ln
ν4
λ4

(4.12i)

μ8 = ln
ν5
λ5

(4.12j)
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A solution exists, if and only if

ln
ν1
λ1

= ln
ν2 + ν5
λ2 + λ5

, ln
ν2
λ2

= ln
ν5
λ5
, ln

ν3
λ3

=
ν4 + ν5
λ4 + λ5

, ln
ν4
λ4

= ln
ν5
λ5
.

One immediately obtains ν2 = λ2
ν5
λ5

and ν4 = λ4
ν5
λ5
. Note that this implies

ln
ν2 + ν5
λ2 + λ5

= ln
ν4 + ν5
λ4 + λ5

= ln
ν5
λ5
,

which in turn implies ln ν1
λ1

= ln ν3
λ3

= ln ν5
λ5
. Thus one obtains ν1 = λ1

ν5
λ5
, ν3 = λ3

ν5
λ5

and thus

ν =
ν5
λ5

λ,

λ ∈ IR5
>0 and ν5 > 0, free. That is, one can obtain ν, λ ∈ IR5

>0 independent of μ ∈ IR9. Note that all
terms on the right hand side of (4.12a) – (4.12j) are equal to

κ1 := ln
ν5
λ5
. (4.13)

Solving (4.12a) – (4.12j) for μ yields:

μ = MN6

⎛⎝μ2
μ6
κ1

⎞⎠ (4.14a)

where

MN6 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1
1 0 0
0 0 1
0 0 1
0 −1 1
0 1 0
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.14b)

As in the previous sections, any element of the linear subspace MN6 = [MN6 ] can be interpreted as
the difference of two steady states: for any μ ∈ MN6 , follows from Chapter 3 that b = diag (eμ) a,
a ∈ IR8

>0, free, is a steady state solution, if a is a steady state solution. Note that any vector a ∈ IR8
>0

is a steady state solution, if the following k ∈ IR10
>0:

k1 =
λ1 + λ5
a1 a2

k2 =
λ1
a3

(4.15a)

k3 =
λ2 + λ5
a3

k4 =
λ2
a4

(4.15b)

k5 =
λ5
a4

k6 =
λ3 + λ5
a5 a6

(4.15c)

k7 =
λ3
a7

k8 =
λ4 + λ5
a7

(4.15d)

k9 =
λ4
a8

k10 =
λ5
a8

(4.15e)

4.3 Positive solutions satisfying the conservation relations

Recall that for networks N4, N5 and N6 it is possible to determine ν and λ independent of μ. Thus
Algorithm 2 can be applied to decide about multistationarity. As a consequence of Theorem 3, the
existence of an orthant δ with Si∩IRn

δ �= ∅ andMi∩IRn
δ �= ∅ (i.e. with T �= ∅, T as defined in (3.32)) is

necessary and sufficient for multistationarity, i = N4, N5, N6. For network N4 14 orthants were found
with SN4 ∩ IRn

δ �= ∅ and MN4 ∩ IRn
δ �= ∅, while for network N5 and N6 no orthants were found. This

leads to the following conclusion:
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Fact 5. Only network N4 can admit multistationarity. That is, in particular, for N5 and N6 no
parameter vector exists, such that the corresponding ODEs exhibit multistationarity.

Using the algorithms presented in Appendix D all orthants with SN4 ∩ IR9
δ �= ∅ and MN4 ∩ IR9

δ �= ∅
have been determined:

δ1=(−1, −1, −1, 1, 1, 1, −1, 1, −1)T
δ2=(−1, 0, −1, 1, 1, 1, −1, 1, −1)T
δ3=(−1, 1, −1, −1, 1, 1, −1, 1, −1)T
δ4=(−1, 1, −1, −1, 1, 1, 0, 1, −1)T
δ5=(−1, 1, −1, −1, 1, 1, 1, 1, −1)T
δ6=(−1, 1, −1, 0, 1, 1, −1, 1, −1)T
δ7=(−1, 1, −1, 1, 1, 1, −1, 1, −1)T

(4.16)

Recall that if SN4 ∩ IR9
δ �= ∅ and MN4 ∩ IR9

δ �= ∅, then this holds for −δ as well; thus there are in fact
14 orthants where SN4 and MN4 are sign compatible.

4.3.1 Parameterizing Multistationarity for N4

AsMN4 is a linear subspace of IR9, (3.34a) and (3.34b) can be used to represent μ ∈ MN4 and v ∈ SN4

in the orthants given in (4.16). Thus vectors μδi and vδi have been determined using generators of
μ ∩ IR9

δi
and S ∩ IR9

δi
for each orthant IR9

δi
given by (4.16). Table 4.1 contains the μδi , i = 1, . . . , 7,

Table 4.2 the vδi , i = 1, . . . , 7. Using this data, a set (aδi , bδi , kδi) of steady states and rate constants
can be assembled for each orthant IR9

δi
.

Using Table 4.1 and 4.2 it is therefore possible to give analytical expressions for any pair of positive
steady states aδi , bδi and, for each pair, all parameter vectors kδi that ensure that the ODEs (A.1a)
– (A.1i) and the conservation relations (A.2a) – (A.2c) given in Appendix A.1.2 admit aδi and bδi as
steady state solutions.
As an example the parametrizations aδ5 , bδ5 and kδ51 , . . . , kδ512 are given. From Table 4.1 the cone
MN4 ∩ IR9

δ5
can be parametrized as μδ5 =

( − α1 − 2α2 − 2α3, α1 + 2α2 + α3,−α3,−α2 − α3, α1 +

α2, α1, α2, α1 + α2,−α3
)T . From Table 4.2 follows that v ∈ SN4 ∩ IR9

δ5
can be parametrized as vδ5 =( − β1, β2,−β2 − β4,−β3, β4, β1 + β2 + β3 + β5, β5, β6,−β5 − β6

)T . Inserting μδ5 in (3.33a) yields a
parametrization of aδ5 in terms of α1, α2, α3 and β1, . . . , β6, αi > 0, βi > 0:

aδ5 =
(− β1

−1 + e−α1−2α2−2α3
,

β2
−1 + eα1+2α2+α3

,
−β2 − β4
−1 + e−α3

− β3
−1 + e−α2−α3

,
β4

−1 + eα1+α2
,
β1 + β2 + β3 + β5

−1 + eα1

β5
−1 + eα2

,
β6

−1 + eα1+α2
,
−β5 − β6
−1 + e−α3

)T
(4.17a)

Using (4.17a) and μδ5 in (3.33b) yields the following parametrization of bδ5 :

bδ5 =
(
− β1 e

−α1−2α2−2α3

−1 + e−α1−2α2−2α3
,

β2 e
α1+2α2+α3

−1 + eα1+2α2+α3
,
(−β2 − β4) e−α3

−1 + e−α3

− β3 e
−α2−α3

−1 + e−α2−α3
,

β4 e
α1+α2

−1 + eα1+α2
,
(β1 + β2 + β3 + β5) eα1

−1 + eα1

β5 e
α2

−1 + eα2
,

β6 e
α1+α2

−1 + eα1+α2
,
(−β5 − β6) e−α3

−1 + e−α3

)T
(4.17b)

Using (4.17a) in (3.33c) yields a parametrization of kδ51 , . . . , kδ512 in terms of α1, α2, α3, β1, . . . , β6,
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αi ≥ 0, βi ≥ 0 and λ1, . . . , λ6, λi > 0:

kδ51 = − (−1 + e−α1−2α2−2α3) (−1 + eα1+2α2+α3) (λ1 + λ5)
β1 β2

(4.18a)

kδ52 =
(−1 + e−α3)λ1
−β2 − β4

(4.18b)

kδ53 =
(−1 + e−α3)λ5
−β2 − β4

(4.18c)

kδ54 = − (−1 + e−α2−α3) (−1 + eα1+2α2+α3) (λ2 + λ6)
β2 β3

(4.18d)

kδ55 =
(−1 + eα1+α2)λ2

β4
(4.18e)

kδ56 =
(−1 + eα1+α2)λ6

β4
(4.18f)

kδ57 =
(−1 + eα1) (−1 + eα2) (λ3 + λ6)

β5 (β1 + β2 + β3 + β5)
(4.18g)

kδ58 =
(−1 + eα1+α2)λ3

β6
(4.18h)

kδ59 =
(−1 + eα1+α2)λ6

β6
(4.18i)

kδ510 = − (−1 + eα2) (−1 + e−α2−α3) (λ4 + λ5)
β3 β5

(4.18j)

kδ511 =
(−1 + e−α3)λ4
−β5 − β6

(4.18k)

kδ512 =
(−1 + e−α3)λ5
−β5 − β6

(4.18l)

IR9
δi

pμδi Representation of μδi ∈ MN4 ∩ IR9
δi

IR9
δ1

3 μδ1 =
(− α1,−α2,−α1 − α2, α2 + α3, α3, α1 + 2α2 + 2α3,−α1 − 2α2 − α3, α3,−α1 − α2

)T
IR9

δ2
3 μδ2 =

(− α3, 0,−α3, α2, α2, 2α2 + α3,−α2 − α3, α2,−α3
)T

IR9
δ3

3 μδ3 =
(− 2α1 − α2 − α3, α1 + α2,−α1 − α3,−α1, α2, α2 + α3,−α3, α2,−α1 − α3

)T
IR9

δ4
3 μδ4 =

(− α1 − 2α3, α1 + α3,−α3,−α3, α1, α1, 0, α1,−α3
)T

IR9
δ5

3 μδ5 =
(− α1 − 2α2 − 2α3, α1 + 2α2 + α3,−α3,−α2 − α3, α1 + α2, α1, α2, α1 + α2,−α3

)T
IR9

δ6
3 μδ6 =

(− α1 − α3, α1,−α3, 0, α1, α1 + α3,−α3, α1,−α3
)T

IR9
δ7

3 μδ7 =
(− α1 − α3, α1,−α3, α2, α1 + α2, α1 + 2α2 + α3,−α2 − α3, α1 + α2,−α3

)T
Table 4.1: Representations of μδi ∈ MN4 in the orthants IR9

δi
that contain both, MN4 and SN4

(i = 1, . . . , 7, as defined in (4.16)).

4.4 An extension: open systems

Common to network N4 – N6 is that all concentrations are subject to at least one conservation relation.
But in reality, none of these reaction networks can be observed in isolation, as N4 – N6 each describe
a single layer of a signal transduction network that consists of several similar layers and E1 and E2

are subject to regulation from different layers. Thus, the assumption that the total concentration of
E1 and E2 is constant, is debatable and the question, whether or not conservation of moiety with
respect to enzymes E1 and E2 is necessary for multistationarity is natural – especially, if the focus is
on model discrimination. (If conservation of moiety with respect to enzymes E1 and E2 is necessary
for multistationarity, this phenomenon might be hard to observe experimentally).
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IR9
δi

pSδi Representation of vδi ∈ SN4 ∩ IR9
δi

IR9
δ1

6 vδ1 =
(− β1 − β3 − β4 − β5,−β1,−β2, β3, β1 + β2, β4,−β5, β5 + β6,−β6

)T
IR9

δ2
6 vδ2 =

(− β3 − β4 − β5, 0,−β2, β3, β2, β4,−β5, β5 + β6,−β6
)T

IR9
δ3

8 vδ3 =
(− β3 − β6, β4 + β7,−β1 − β4 − β7,−β5 − β8, β1, β6 + β7 + β8,

−β3 − β4 − β5, β2 + β3 + β4 + β5,−β2
)T

IR9
δ4

6 vδ4 =
(− β1, β2,−β2 − β4,−β3, β4, β1 + β2 + β3, 0, β6,−β6

)T
IR9

δ5
6 vδ5 =

(− β1, β2,−β2 − β4,−β3, β4, β1 + β2 + β3 + β5, β5, β6,−β5 − β6
)T

IR9
δ6

7 vδ6 =
(− β4 − β6, β5 + β7,−β2 − β5 − β7, 0, β2, β6 + β7,−β4 − β5, β3 + β4 + β5,−β3

)T
IR9

δ7
8 vδ7 =

(− β3 − β5 − β6, β4 + β7 + β8,−β1 − β4 − β7 − β8, β5 + β7, β1,

β6 + β8,−β3 − β4, β2 + β3 + β4,−β2
)T

Table 4.2: Representations of vδi ∈ SN4 ∩ IR9
δi

in orthants IR9
δi

that contain both, MN4 and SN4

(i = 1, . . . , 7, as defined in (4.16)).

To tackle this question the assumption that the system is open with respect to total concentrations of
E1 and/or E2 is considered, by introducing 0, the ‘zero’–complex In this Section the same strategy as
in Section 4.2 and 4.3 is used to establish multistationarity.
The following networks are analysed, where

0
κ1

E1,κ2
(N7)

for example, incorporates the fact that E1 is fed into the system with a constant rate κ1 and is
removed from the system with a rate that is proportional to its concentration (κ2 being the rate
constant). Thus, in this case, the ‘zero’–complex represents the effect of the other layers of the signal
transduction network on E1. In a similar way

0
κ3

E2,κ4
(N8)

and

E1

κ2

0κ1

κ3
E2κ4

(N9)

cover the fact that either E2 alone or E1 and E2 together are introduced to the system. In the
remainder of this Section the nine networks that can be composed by combining one network of N4 –
N6 with one network of N7 – N9 will be analysed with respect to multistationarity.
Adding one of the networks N7 – N9 to one of the networks N4 – N6 will affect the number of conserved
moieties in the combined network: in the case of network N7 or N8 only two conserved moieties exist:
total concentration Atot of A and E1tot of E1 for combinations with N8 and Atot and E2tot, the total
concentration of E2, for combinations with N7. For all combinations involving N9, only one conserved
moiety remains, Atot. Using the same steps as in Section 4.2, the equation Y (L)T μ = ln E ν

E λ was analysed
for each of the nine networks. As in Chapter 3, let p be the number of generators of ker(Y Ia) ∩ IRr

≥0.
As in Section 4.2, ν and λ ∈ IRp

>0 can be determined independent of μ ∈ IRn and M, as defined in
(3.31) is a linear subspace of IRn, for each network. Table 4.3 contains for each network a matrix M
whose image is M (i.e. M = [M ]). If multistationarity is possible, Table 4.3 also contains the orthant
where M∩ IRn

δ �= ∅ and Si ∩ IRn
δ �= ∅. In Appendix A.4 the equations Y (L)T μ = ln E ν

E λ are solved for
each network in Table 4.3.
Not very surprisingly, for all networks involving N5 and N6 multistationarity is excluded and for
networks N4+N7 and N4+N8 multistationarity is possible. Interestingly for network N4+N9 multista-
tionarity is impossible, even though the difference to N4 + N7 and N4 + N8 seems very small. This
result is obvious, however, if MN4+N9 and SN4+N9 are analysed: SN4+N9 is defined by

WT
N4+N9

x = 0 (4.19a)

with

WN4+N9 = ( 1, 0, 1, 1, 1, 1, 0, 1, 1 )T . (4.19b)
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Network Mi with [Mi] =Mi Sign compatible orthants δ multistationarity

N4 + N7 MT =
[
1, 0, 1, 0, 0,−1, 1, 0, 1
0, 0, 0, 1, 1, 2,−1, 1, 0

]
δT =

[ −1, 0,−1, 1, 1, 1,−1, 1,−1 ]
Yes

N4 + N8 MT =
[
2,−1, 1, 1, 0, 0, 0, 0, 1
−1, 1, 0, 0, 1, 1, 0, 1, 0

]
δT =

[ −1, 1,−1,−1, 1, 1, 0, 1,−1 ]
Yes

N4+N9 MT =
[
1, 0, 1, 1, 1, 1, 0, 1, 1

]
δ = ∅ No

N5 + N7 MT =
[
0, 0, 0, 0, 1,−1, 0, 1, 0
1, 0, 1, 1, 0, 1, 1, 0, 1

]
δ = ∅ No

N5+N8 MT =
[ −1, 1, 0, 0, 0, 0, 0, 0, 0

1, 0, 1, 1, 1, 0, 1, 1, 1

]
δ = ∅ No

N5+N9 MT =
[
1, 0, 1, 1, 1, 0, 1, 1, 1

]
δ = ∅ No

N6+N7 MT =
[
0, 0, 0, 0,−1, 1, 0, 0
1, 0, 1, 1, 1, 0, 1, 1

]
δ = ∅ No

N6+N8 MT =
[ −1, 1, 0, 0, 0, 0, 0, 0

1, 0, 1, 1, 1, 0, 1, 1

]
δ = ∅ No

N6+N9 MT =
[
1, 0, 1, 1, 1, 0, 1, 1

]
δ = ∅ No

Table 4.3: Solutions for all combinations of N4, N5 and N6 with N7, N8 and N9.

From Table 4.3 it follows that [WN4+N9 ] = MN4+N9 and thus MN4+N9 ⊥ SN4+N9 . Thus MN4+N9

and SN4+N9 cannot be sign compatible: recall that MN4+N9 and SN4+N9 are sign compatible, if and
only if ∃μ ∈MN4+N9 and ∃v ∈ SN4+N9 with sign (μ) = sign (v). In this case 〈μ, v〉 ≥ 0 must hold (and
equality holds iff μ = 0 and/or v = 0). Thus, as 〈μ, v〉 = 0, for all μ ∈ MN4+N9 , v ∈ SN4+N9 and μ,
v �= 0, μ and v cannot be sign compatible, and multistationarity is excluded by Corollary 2.

4.5 Model discrimination using steady state information

Up to this point it has been established that only network N4 can exhibit multistationarity. In this
section a method to use this result for model discrimination is discussed, based on Theorem 3. The-
orem 3 can on the one hand be used to discard N5 and N6, while on the other hand it can be used
to falsify N4, given the necessary experimental data. However, the results obtained in Section 4.4 can
explain, why this data might be hard to obtain.

Using Theorem 3 for model discrimination Already [45] have argued that the fact that among
N4, N5, N6 onlyN4 can exhibit multistationarity can be used for model discrimination: their suggestion
and a consequence of Section 4.3 is that if multistationarity was found experimentally for the activation
of an MAPK(K), the mechanism involved has to be the one represented by N4 (as the other hypotheses
cannot give rise to multistationarity). However, [45] use numerical tools to show multistationarity
for N4 and fail to show multistationarity for N5 and N6 using numerical tools as well. Thus their
conclusion is only valid because of the results obtained in Theorem 3: as for N5 and N6 no orthant
with Mj ∩ IRn

δ �= ∅ and Sj ∩ IRn
δ �= ∅, j = N5, N6 exists, it is guaranteed that multistationarity can be

excluded for these networks for any conceivable parameter vector. Using numerical tools alone,
this result cannot be obtained.
But even if multistationarity is verified experimentally, it is still possible to falsify N4 using Theorem 3:
to this end let p and q be two positive steady states for N4, with WT

N4
p = WT

N4
q. From Section 4.2.1

follows that the vector μ defined by p and q as μi = ln qi
pi
, i = 1, . . . , 9 is an element of the linear

subspace MN4 . From Theorem 3 follows that there exists a vector v ∈ SN4 with sign (v) = sign (μ).
Now suppose two steady states a and b have been obtained experimentally for N4 with WT

N4
a = WT

N4
b.

Then, as mentioned in [45] and discussed in [11, 12] neither phosphorylation nor dephosphorylation
nor both can be realized using a processive mechanism. However, the conclusion that in this case a
distributive mechanism is used for both, phosphorylation and dephosphorylation, as suggested in the
aforementioned references, is only valid if there exists a vector v ∈ SN4 with sign (v) = sign (μ) for
μ defined as μi = ln bi

ai
, i = 1, . . . , 9. If this was not the case, N4 would not be compatible with

experimental data and could thus also be discarded. A similar argument has been used to discard
hypotheses regarding catalytic mechanisms in [21, 22, 23].



4.5. MODEL DISCRIMINATION USING STEADY STATE INFORMATION 49

Consequences of Section 4.4 Section 4.4 implies that multistationarity might be hard to observe
experimentally: for multistationarity to occur, total concentration of either kinase E1 or phosphatase
E2 has to be constant, that is the system must be closed either with respect to the kinase or the
phosphatase.
Classically, signal transduction has been considered as a process driven by kinases, while phosphatases
just act as passive, housekeeping enzymes and most mathematical models are set up accordingly.
According to this paradigm total concentration ofE2 is constant and multistationarity is thus possible (if
the mechanism involved is the one described byN4). However, recent studies indicate that phosphatases
play a major role, and that they are tightly and actively regulated [2, 49]. This implies that the
system has to be open with respect to E2 as well, thus challenging the possibility of the existence of
multistationarity.
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Chapter 5

Multistationarity in cell cycle
regulation

In this chapter two network hypotheses regarding control of the transition from G1 to S phase in the
cell cycle of Saccharomyces cerevisiae are analysed. The key components and their proposed interaction
are displayed in Fig. 5.1. In a very simple form, the biochemical network consists of two regulators that

Figure 5.1: Network structure for the G1/S model. Arrows indicate biochemical reactions between
cell cycle regulators (boxes). Solid lines represent elementary reactions and dotted lines catalyzed
reactions (composite reactions). Kinetic parameters ki are displayed next to the arrows. Free Clb2-
CDK complexes have been omitted. Components in gray denote degradation products. An unspecified
external signal controls the activity of Cdc14p phosphatase. Clb2-CDK phosphorylates the inhibitor
Sic1p either in its unbound form (left, k19−21), or when it is bound to a second molecule of the kinase
complex (right, k10−12).

mutually inhibit each other. Cyclin-dependent kinase (CDK), when associated with the mitotic cyclin
Clb2p, promotes entry into mitosis through phosphorylation of its target proteins. Simultaneously, this
activity prevents the exit from mitosis and subsequent passage to the G1 phase of the cell cycle. The
competitive CDK inhibitor Sic1p is one component responsible for inactivating Clb2-CDK at the end
of mitosis. Mitotic kinase activity, however, can phosphorylate Sic1p, thus targeting the inhibitor for
rapid, proteasome-dependent degradation. The transition to a G1 state with high Sic1p concentration
and low Clb2-CDK activity therefore requires activation of the phosphatase Cdc14p and concomitant
stabilization of Sic1p [46].
Importantly, the transition between the cell cycle phases requires only transient Cdc14 activity as an
input (trigger) signal for the bi-stable switch. Hysteresis, which means that at least two stable steady-
state output signals of the system exist for an identical input signal, underlies many cellular switches
[63]. It depends on the system’s history, whether, for instance, low or high Sic1p concentration will
be established. For the G1/S system, a transient activation of the phosphatase Cdc14p should move

51
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the system from the mitotic branch of low Sic1p concentration to the upper branch representing a
G1 state with high Sic1p abundance and, consequently, low mitotic kinase activity. Any potentially
valid network hypothesis has to represent this qualitative behavior, that is the ODEs must admit two
stable positive steady states; one representing the G1- and one representing the S-phase. Thus the
ODEs derived from any valid network hypothesis have to admit multistationarity for some conceivable
parameter vector (recall that multistationarity in the sense of this work requires the existence of at
least two positive steady states).
Here, two similar network structures are considered. In one alternative, Clb2-CDK phosphorylates free
Sic1p (binary complex model, see network N10), whereas in the other alternative, the already bound
inhibitor is a substrate for a second kinase molecule (ternary complex model, see network N11): that is,
in networkN10 phosphorylated Sic1 is produced by the reaction Clb+Sic1 � Sic1·Clb→ Sic1P+Clb,
while in N11 phosphorylated Sic1 is produced by the reactions Clb · Sic1 + Clb � Clb · Sic1 · Clb →
Clb · Sic1P + Clb and Clb+ Sic1P � Clb · Sic1P . (Note that even though N10 contains the reaction
Clb + Sic1P � Clb · Sic1P as well, the source of Sic1P -production is the reaction Sic1 · Clb →
Clb+ Sic1P .) Both alternatives are biologically plausible, yet hard to distinguish experimentally.
Each network has n = 9 species and m = 17 complexes in r = 18 reactions. Note that the zero-complex
0 is associated with a nine dimensional zero vector y1 = (0, . . . , 0). It incorporates that each system is
open with respect to Sic1 and its phosphorylated form Sic1P : Sic1 can enter and leave the system,
Sic1P can leave the system (see Fig. 5.1).

(A) Binary complex model:
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(N10)

(B) Ternary complex model:
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The ternary complex network as defined above has deficiency δ = 5, the binary complex model has
deficiency δ = 4. Hence, the advanced deficiency algorithm has to be applied for its analysis. As it
turns out, the implementation in the Chemical Reaction Network Toolbox cannot decide about multi-
stationarity. The algorithm returns that the system may or may not have multiple steady states, as
nonlinear inequalities have to be considered in both cases. Thus, in a first step, the subnetworks defined
by the stoichiometric generators of N10 and N11 are analysed to decide about multistationarity. This is
described in Section 5.1. In Section 5.2 and 5.3 networks N10 and N11 are analysed using the methods
described in Chapter 3. This chapter closes with some concluding remarks in Section 5.4.

Remark 13. Note that even though the CRNT toolbox cannot decide about multistationarity as it
needs to solve nonlinear equations, the methods described in Chapter 3 can, by analysis of linear
inequalities.

5.1 Subnetwork analysis

The generators of ker(Y Ia) ∩ IR18
≥0 for network N10 and N11 are given in (5.1) and (5.2), respectively.

Visual inspection shows that E N10 contains six stoichiometric generators (columns 7–12), while E N11

contains five stoichiometric generators (columns 7–11). Figures 5.2 and 5.3 contain the subnetworks
defined by the stoichiometric generators of network N10, while Figures 5.4 and 5.5 depict those of
network N11. Visual inspection of the subnetworks confirms that each linkage class contains exactly
one terminal strong linkage class. Thus, by Fact 4, the Deficiency One Algorithm is applicable. Using
the CRNT toolbox [29] one can establish that for network N10 no subnetwork admits multistationarity,
while for network N11 the subnetworks corresponding to generators E9, E10 and E11 (c.f. (5.2) and
Figure 5.5) can have multiple steady states. In contrast, it is guaranteed that those networks defined
by E7 and E8 cannot admit multistationarity. Thus, by analyzing the subnetworks defined by stoichio-
metric generators one can establish that multistationarity is possible for network N11, while this is still
unclear for network N10. To decide about multistationarity for network N10 the methods described in
Chapter 3 are applied in Section 5.2 (for completeness, these methods are also applied to network N11

in Section 5.3).

E N10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 1 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)
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E N11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)
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E7 = (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T
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E8 = (1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

[Sic1P]
k3 [0]

k1
[Sic1]

k2

[Sic1 ·Clb]
k4

k9

[Clb] + [Sic1]
k5

k6

[Clb · Sic1]
k7

k8

[Clb]

[Clb] + [Sic1P]
k10

[Clb · Sic1P]
k11

k12

[Sic1P] + [Cdc14]
k13

[Sic1P ·Cdc14]
k14

k15 [Sic1] + [Cdc14]

[Clb · Sic1P] + [Cdc14]
k16

[Clb · Sic1P ·Cdc14]
k17

k18 [Clb · Sic1] + [Cdc14]

E9 = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0)T
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Figure 5.2: Subnetworks corresponding to stoichiometric generators E7 - E9 for the binary complex
model. Subnetworks are denoted in black, while gray color indicates reactions not used.
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E10 = (0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1)T
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E11 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0)T
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Figure 5.3: Subnetworks corresponding to stoichiometric generators E10 – E12 for the binary complex
model. Subnetworks are denoted in black, while gray color indicates reactions not used.
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E7 = (1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T
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Figure 5.4: Subnetworks corresponding to stoichiometric generators E7 and E8 for the ternary complex
model. Subnetworks are denoted in black, while gray color indicates reactions not used.
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E9 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0)T
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Figure 5.5: Subnetworks corresponding to the stoichiometric generators E9 – E11 for the ternary
complex model. Subnetworks are denoted in black, while gray color indicates reactions not used.
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5.2 Analysis of the complete network N10

As described in Section 5.1, analysis of the subnetworks of N10 defined by stoichiometric generators
using CRNT established that multistationarity is excluded for all subnetworks. As multistationarity is
still possible for the overall network, this is analysed using the methods described in Chapter 3. For
network N10 it was not possible to determine ν, λ ∈ IR12

>0 independent of μ ∈ IR9. (Note that this is no
guarantee, that no such solution exists.) Thus the equation

Y (L)T μ = ln
E λ

E ν

is considered in the following form:[
E − diag

(
eY

(L)T μ
)
E
](

ν
λ

)
,

(
ν
λ

)
> 0.

Using an unimodular matrix U ∈ IR18×18 with U E =
[

I11 v
07×11 07×1

]
, where ker (E) = span

((
v

−1
))

,

one obtains the following system of equations

U
[
E − diag

(
eY

(L)T μ
)
E
]

︸ ︷︷ ︸
=:H(μ)

(
ν
λ

)
= 0,

(
ν
λ

)
> 0,

where H(μ) is given at the end of this Section on page 67. Note that the nonzero elements of rows 14,
17 and 18 of H(μ) always have the same sign, for every μ. Thus, positive ν, λ only exists for those
values of μ, where rows 14, 17 and 18 of H(μ) are identical to zero, thus μ must satisfy

μ9 = μ1 + μ3 (5.3a)
μ7 = μ2 + μ6 (5.3b)
μ8 = μ5 + μ6 (5.3c)

Note that (5.3a), (5.3b) and (5.3c) are the only restrictions on the μi. Thus μ can be represented as
(using new variables κ ∈ IR6):

μ = MN10 κ, (5.4a)

where

M N10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 1
0 0 0 0 1 1
1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
κ. (5.4b)

Apart from h12,23 = −1 + eμ4 − eμ8 + eμ9 the signs of all nonzero elements of H(μ) can be determined
by linear inequalities in the μi. By subtracting column 23 from column 20 one obtains a matrix H̃ ,
where the signs of all elements can be determined by linear inequalities. Note that this corresponds to

a change of variables
(
ν
λ

)
= T

(
ν̃

λ̃

)
where

T =
[
e1 . . . e22 −e23 + e20 e24

]
Thus

H (μ) T
(
ν̃

λ̃

)
= 0, T

(
ν̃

λ̃

)
> 0,
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where T
(
ν̃

λ̃

)
> 0 is equivalent to ν, λ > 0 and

λ8 − λ11 > 0. (5.5)

Note that this condition can easily be included by adding a new variable s0 > 0. Then one has to
determine positive solutions to [

H (μ) T 024×1
eT20 − eT23 −1

]
︸ ︷︷ ︸

=:H̃(μ)

⎛⎝ ν
λ
s0

⎞⎠ = 0

The matrix H̃ (μ) is given at the end of this section on page 68. Note that equations (5.3a) – (5.3c) have
been incorporated H̃ (μ). Further note that each of row 1, 2, 4, 5, 6, 9, 10 contains exactly two nonzero
entries, thus they are equal to

νi − e〈y
(L)
j , μ〉 λi = 0,

for some linear form 〈y(L)j , μ〉. Further note that rows 13–18 are independent of the νi, i = 1, . . . , 12.
Thus it is straightforward to obtain

ν1 = eμ1 λ1 (5.6a)

ν2 = eμ1+μ3 λ2 (5.6b)
ν4 = eμ5 λ4 (5.6c)

ν5 = eμ2+μ6 λ5 (5.6d)

ν6 = eμ5+μ6 λ6 (5.6e)

ν9 = eμ2+μ6 λ9 (5.6f)
ν10 = eμ5 λ10 (5.6g)

Further note that, if μ satisfies (5.3a) – (5.3c), then λ2, λ5 and λ6 only occur in row 2, 5 and 6,
respectively. That is, λ2, λ5 and λ6 are only involved in equations (5.6b), (5.6d) and (5.6e). Thus λ2,
λ5 and λ6 can be chosen freely in IR>0. Therefore it remains to determine x =

(
ν3, ν7, ν8, ν11, ν12, λ1,

λ3, λ4, λ7, λ8, λ9, λ10, λ11, λ12, s0
)T . This amounts to solving a system of equations defined by row

3, 7, 8, 11–19 and columns 3, 7, 8, 11, 12, 13, 15, 16, 19–26 of matrix H̃ (μ). The resulting submatrix
Q (μ) is given on page 69 at the end of this Section. Using the unimodular transformation matrix

TT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 1 0 0 1 0 0 0
1 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.7)

one obtains the much simpler matrix Qs (μ) := TT Q (μ), displayed on page 69. Using

q1 = −eμ1+μ3 + eμ2+μ6 (5.8a)

q2 = −eμ1+μ3 + eμ5 (5.8b)

q3 = −eμ1+μ3 + eμ5+μ6 (5.8c)
q4 = −1 + eμ1 (5.8d)
q5 = −1 + eμ5 (5.8e)

q6 = −eμ2+μ3 + eμ5 (5.8f)
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Qs (μ) can be represented as:

Qs (μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 −1 0 0 0 0 0 0 −1 0
0 1 0 1 0 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 −1 q1 q2 1 q3 0
0 0 0 1 1 0 0 0 0 0 0 0 −1 −1 0
0 1 1 1 0 q4 0 0 −1 −1 0 q5 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0 1 0 0
1 1 0 1 1 0 −1 0 −1 0 0 0 −1 −1 0
0 0 0 1 1 0 0 q6 0 0 0 q6 −1 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.9)

Thus any feasible inequality system

[
V − diag (σ)

] (
κ
s

)
= 0, s > 0 (5.10)

with σ ∈ {−1, 0, 1}6 and

V :=

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 −1 0 0 1
−1 0 −1 0 1 0
−1 0 −1 0 1 1
1 0 0 0 0 0
0 0 0 0 1 0
0 −1 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.11)

defines a feasible signing for Qs (μ). No signing was found such that Qs (μ) is an L+-matrix. However,
Qs (μ) is a sign-central matrix for some signings. Thus the results of Section 3.2.2 and 3.4 can be
applied.
Note that all μ as defined in (5.4a) are contained in the linear subspace MN10 = [MN10 ]. Thus,
with Fact 3 in mind, all orthants with SN10 ∩ IR9

δ �= ∅ were determined. Of those all orthants with
MN10 ∩ IR9

δ �= ∅ and (5.10) is feasible for some σ have been determined. That is, all orthants, where

[
diag (δ) −MN10 0

0 V − diag (σ)

] ⎛⎝ξ
κ
s

⎞⎠ = 0, ξ, s > 0 (5.12)

is feasible. Finally all signings, where (5.10) is feasible for some orthant and Q (μ) is a sign-central
matrix were determined. The orthants are given in (5.13a):

δ1 =(−1, −1, 1, −1, 1, −1, −1, 1, −1)T
δ2 =(−1, −1, 1, −1, 1, −1, −1, 1, 1)T

δ3 =(−1, −1, 1, −1, 1, 0, −1, 1, −1)T
δ4 =(−1, −1, 1, −1, 1, 0, −1, 1, 1)T

δ5 =(−1, −1, 1, −1, 1, 1, −1, 1, −1)T
δ6 =(−1, −1, 1, −1, 1, 1, −1, 1, 1)T

δ7 =(−1, −1, 1, 1, 1, −1, −1, 1, −1)T
δ8 =(−1, −1, 1, 1, 1, 0, −1, 1, −1)T
δ9 =(−1, −1, 1, 1, 1, 1, −1, 1, −1)T
δ10=(−1, 0, 1, −1, 1, −1, −1, 1, −1)T
δ11=(−1, 0, 1, −1, 1, −1, −1, 1, 1)T

δ12=(−1, 0, 1, 1, 1, −1, −1, 1, −1)T
δ13=(−1, 1, 1, −1, 1, −1, −1, 1, −1)T
δ14=(−1, 1, 1, −1, 1, −1, −1, 1, 1)T

δ15=(−1, 1, 1, −1, 1, −1, 1, 1, 1)T

δ16=(−1, 1, 1, 1, 1, −1, −1, 1, −1)T

(5.13a)
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the signings in (5.13b):

σ1=(−1, 1, 1, −1, 1, 0)T

σ2=(−1, 0, −1, −1, 1, 0)T

σ3=(−1, 1, −1, −1, 1, 0)T

σ4=(−1, 1, 0, −1, 1, 0)T

σ5=(−1, 0, 1, −1, 1, 0)T

(5.13b)

Note that if (5.10) is feasible for (δ, σ), then it is also feasible for (−δ,−σ). Thus there are in fact
32 orthants and five signings. Further note, that not all signings need to hold in every orthant. It is
only guaranteed that in every orthant some signing holds. Recall that a sign-central matrix has the
property that every matrix with the same sign pattern has a nonnegative nullvector. A nonnegative
nullvector yields a nonnegative parameter vector, where some rate constants are zero. In some cases
it is possible to derive values for these rate constants using the ideas discussed in Section 3.4. This is
the strategy pursued in the remainder of this section. Further analysis of these signings reveals that
Qs (μ) contains sub-matrices that are L+-matrices. Obviously, by an appropriate filling with zeros,
a positive nullvector of a submatrix yields a nonnegative nullvector of the overall matrix. Thus, for
each submatrix that is an L+-matrix, one obtains a nullvector of Qs (μ), with known zero pattern.
To see this, let I+ ⊆ 1, . . . , 15 contain the indices of those columns of Q (μ) that form an L+-matrix
and let Q̄ := Qs (μ) [I+] be the corresponding submatrix (after a removal of zero rows, if necessary).
Recall that an L+-matrix has a positive nullvector, thus let x be a vector of appropriate dimension
with Q̄ x = 0. As Q̄ is an L+ matrix supp (x) = I+ follows. Let x̂ ∈ IR15

≥0 with x̂i = xi, if i ∈ I+
and x̂i = 0, otherwise. Clearly Qs (μ) x̂ = 0 and supp (x̂) = I+, thus the zero pattern of x̂ is known.
Table 5.1 contains, for each signing, the column indices that form L+-matrices, after a removal of zero

Column indices σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

{3, 6, 8, 10, 11, 12, 15} + + + + + +
{3, 6, 10, 11, 12, 15} + + + + + +

{6, 8, 11, 12} + + + + + +
{6, 11, 12} + + + + + +
{6, 8, 12} + + + +
{6, 12} + + + +

Table 5.1: Signings and column indices that are L+-matrices

rows, were necessary. In total, there are six different sub-matrices that are L+-matrices. Consider, for
example, σ1 = (−1, 1, 1, −1, 1, 0)T . Here the following sub-matrices are L+-matrices (note that for
each matrix all zero rows have been removed):

Q (μ) [3, 6, 8, 10, 11, 12, 15] =

⎡⎢⎢⎣
1 0 0 −1 −1 1 0
1 −1 0 −1 0 1 0
1 0 0 −1 0 0 0
0 0 0 1 0 0 −1

⎤⎥⎥⎦

Q (μ) [3, 6, 10, 11, 12, 15] =

⎡⎢⎢⎣
1 0 −1 −1 1 0
1 −1 −1 0 1 0
1 0 −1 0 0 0
0 0 1 0 0 −1

⎤⎥⎥⎦
Q (μ) [6, 8, 11, 12] =

[
0 0 −1 1

−1 0 0 1

]
Q (μ) [6, 11, 12] =

[
0 −1 1

−1 0 1

]
For the signing σ2 = (−1, 0, −1, −1, 1, 0) the following sub-matrices are L+-matrices:

Q (μ) [6, 8, 12] =
[ −1 0 1

]
Q (μ) [6, 12] =

[ −1 1
]

To obtain multistationarity, consider, for example, signing σ1. There exists a vector x with Qs (μ) x = 0,
with supp (x) = { 3, 6, 8, 10, 11, 12, 15 }, no matter what values the qi take. Recall that x =

(
ν3,
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ν7, ν8, ν11, ν12, λ1, λ3, λ4, λ7, λ8, λ9, λ10, λ11, λ12, s0
)T and that λ2, λ5 and λ6 are free. Thus one

obtains
λi �= 0, νi �= 0, i = 1, 2, 4, 5, 6, 8, 9, 10.

Recall that k = diag
(
φ
(
a−1

))
E λ. Using this definition one obtains for k:

k =
(
λ1 + λ8 + λ10,

λ1
a1
,
λ8
a2
,
λ2
a9
,
λ2 + λ8 + λ9 + λ10

a1 a3
, 0, 0, 0,

λ8 + λ9 + λ10
a9

,

λ4 + λ10
a2 a3

,
λ4
a5
,
λ10
a5

,
λ5 + λ9
a2 a6

,
λ5
a7
,
λ9
a7
,

λ6
a5 a6

,
λ6
a8
, 0

)T
.

Thus ki = 0, i = 6, 7, 8, 18. To find values for these ki, the procedure described in Section 3.4 is applied.
To this end it is necessary to find a positive vector v with

Gc v = 0

Gc =
[
WT

addNc φ (a)
WT

addNc φ (b) ,

]
where b = diag (eμ) a, with μ = M N10 κ and WT

add = (0, 0, 0, 1, 0, 0, 0, 0, 0). Then

Gc =
[

a1 a3 −a4 −a4 a8
a1 a3 e

μ1+μ3 −eμ4 a4 −eμ4 a4 eμ5+μ6 a8

]
.

Solutions to Gc v = 0 are defined by

a1 a3 v1 − a4 v2 − a4 v3 + a8 v4 = 0

a1 a3 e
μ1+μ3 v1 − a4 e

μ4 v2 − a4 e
μ4 v3 + a8 e

μ5+μ6 v4 = 0

The first equation is equivalent to

a4 (v2 + v3) = a1 a3 v1 + a8 v4.

Inserting in the second equation yields

a1 a3 (eμ1+μ3 − eμ4) v1 + a8 (−eμ4 + eμ5+μ6) v4 = 0.

The last equation has a positive solution, if and only if either

eμ1+μ3 − eμ4 > 0 and eμ5+μ6 − eμ4 < 0 (5.14a)

or

eμ1+μ3 − eμ4 < 0 and eμ5+μ6 − eμ4 > 0. (5.14b)

Note that (5.14a) and (5.14b) are equivalent to the linear inequalities

μ1 + μ3 − μ4 > 0 and −μ4 + μ5 + μ6 < 0 (5.15a)

or

μ1 + μ3 − μ4 < 0 and −μ4 + μ5 + μ6 > 0. (5.15b)

Thus multistationarity can be extended to the overall network, if μ satisfies the inequalities defined
by the signing σ1 together with these additional constraints. For the other sub-matrices given in
Table 5.1 it is possible to show that multistationarity can be extended to the overall network, if (5.15a)
and (5.15b) hold. There exists exactly one signing such that (5.15a) and (5.15b) hold in some of the
orthants given in (5.13a):

σ1=(−1, 1, 1, −1, 1, 0.)
′

(5.16)
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σ1 holds in the following orthants:

δ1 =(−1, −1, 1, −1, 1, −1, −1, 1, −1)T
δ2 =(−1, −1, 1, −1, 1, 1, −1, 1, −1)T
δ3 =(−1, −1, 1, 1, 1, −1, −1, 1, −1)T
δ4 =(−1, −1, 1, 1, 1, 1, −1, 1, −1)T
δ5 =(−1, 1, 1, −1, 1, −1, −1, 1, −1)T
δ6 =(−1, 1, 1, 1, 1, −1, −1, 1, −1)T
δ7 = (1, −1, −1, −1, −1, 1, 1, −1, 1)T

δ8 = (1, −1, −1, 1, −1, 1, 1, −1, 1)T

δ9 = (1, 1, −1, −1, −1, −1, 1, −1, 1)T

δ10= (1, 1, −1, −1, −1, 1, 1, −1, 1)T

δ11= (1, 1, −1, 1, −1, −1, 1, −1, 1)T

δ12= (1, 1, −1, 1, −1, 1, 1, −1, 1)T

(5.17)

Consider δ5 = (−1, 1, 1, −1, 1, −1, −1, 1, −1)T . To determine μ, the following equations are solved
for nonnegative ξ, s and unconstraint κ:⎡⎣diag (δ) −M 09×8

08×9

[
V
Vadd

]
− diag ((σ1, −1, 1))

⎤⎦ ⎛⎝ξ
κ
s

⎞⎠ = 0,

with V as in (5.11) and

Vadd =
[
1 0 1 −1 0 0
0 0 0 −1 1 1

]
. (5.18)

A solution for κ is given by

κ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −2 −1 −1 −2
1 0 0 0 0
0 1 1 1 1
0 −1 0 0 0
1 1 1 1 1

−1 −1 0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ α, α ∈ IR5
>0. (5.19)

Choose αi = 1 to obtain μ̄ = (−6, 1, 4, −1, 5, −4, −3, 1, −2) and thus

Q (μ̄) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 − 1
e 0 0 0 0 0 0 − 1

e 0
0 1 0 1 0 0 0 0 − 1

e 0 0 0 − 1
e 0 0

0 0 1 0 0 0 0 0 0 − 1
e2

1
e3 − 1

e2 − 1
e2 + e5 e − 1

e2 + e 0
0 0 0 1 1 0 0 0 0 0 0 0 −e −e 0
0 1 1 1 0 −1 + 1

e6 0 0 −1 −1 0 −1 + e5 0 0 0
0 0 1 0 0 0 0 0 0 −e 0 0 e 0 0
1 1 0 1 1 0 − 1

e2 0 − 1
e2 0 0 0 −e −e 0

0 0 0 1 1 0 0 0 0 0 0 0 −e5 −e5 0
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The cone ker (Q (μ̄)) ∩ IR15

≥0 is generated by

ET =

⎡⎢⎣ 0 0 e 0 0 − −1+e
−1+ 1

e6
0 0 0 1 e (1 + e+ e2) 0 0 0 1

0 0 0 0 0 − −1+e5
−1+ 1

e6
0 0 0 0 e (1 + e+ e2 + e3 + e4 + e5 + e6) 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎤⎥⎦ .
Choose, for example,

x = E

⎛⎝1
1
1

⎞⎠
=

(
0, 0, e, 0, 0, − −1 + e

−1 + 1
e6

− −1 + e5

−1 + 1
e6

, 0, 1, 0, 1,

e (1 + e+ e2) + e (1 + e+ e2 + e3 + e4 + e5 + e6), 1, 0, 0, 1
)T

.
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Thus one obtains

λ1 = − −1 + e

−1 + 1
e6

− −1 + e5

−1 + 1
e6

λ4 = 1,
λ8 = 1,

λ9 = e (1 + e+ e2) + e (1 + e+ e2 + e3 + e4 + e5 + e6),
λ10 = 1.

Recall that λ2, λ5, λ6 are free, thus choose λ2 = λ5 = λ6 = 1 to obtain

k̂∗E =
(
2− −1 + e

−1 + 1
e6

− −1 + e5

−1 + 1
e6

,
e6 (2 + e+ e2 + e3 + e4)

a1 (1 + e+ e2 + e3 + e4 + e5)
,
1
a2
,
1
a9
,

3 + 2 e+ 2 e2 + 2 e3 + e4 + e5 + e6 + e7

a1 a3
, 0, 0, 0,

2 + 2 e+ 2 e2 + 2 e3 + e4 + e5 + e6 + e7

a9
,

2
a2 a3

,
1
a5
,
1
a5
,
1 + 2 e+ 2 e2 + 2 e3 + e4 + e5 + e6 + e7

a2 a6
,
1
a7
,

e (2 + 2 e+ 2 e2 + e3 + e4 + e5 + e6)
a7

,
1

a5 a6
,
1
a8
, 0

)T
.

Using v ∈ S ∩ IR9
δ5
, v =

(−1, 1, 2, −4, 2, −2, −2, 4, −4)T one obtains

x1=( e6

−1+e6 ,
1

−1+e ,
2

−1+e4 ,
4 e
−1+e ,

2
−1+e5 ,

2 e4

−1+e4 ,
2 e3

−1+e3 ,
4

−1+e ,
4 e2

−1+e2 )
T

x2=( 1
−1+e6 ,

e
−1+e ,

2 e4

−1+e4 ,
4

−1+e ,
2 e5

−1+e5 ,
2

−1+e4 ,
2

−1+e3 ,
4 e
−1+e ,

4
−1+e2 )

T

and

Gc =

[
2 e6

1−e4−e6+e10 − 4 e
−1+e − 4 e

−1+e
4

−1+e
2 e4

1−e4−e6+e10 − 4
−1+e − 4

−1+e
4 e
−1+e

]
.

For the nullspace of Gc one obtains

ker (Gc) =

[
2 (−1+e) (1+e)3 (1+2 e2+2 e4+e6)

e5 1 + 1
e + e 0 1

0 −1 1 0

]

Choosing

κ0 =
(2 (−1 + e) (1 + e)3 (1 + 2 e2 + 2 e4 + e6)

e5
,
1
e
+ e, 1, 1

)T
one obtains for k̂c:

k̂c =
(
0, 0, 0, 0, 0,

2 (−1 + e) (1 + e)3 (1 + 2 e2 + 2 e4 + e6)
e5

,

1
e
+ e, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

)T
Using k(ε) = k̂∗E + ε k̂c as parameter vector and x1 as initial value for a numerical continuation with,
for example, c1 (total concentration of Cdc14) as a bifurcation parameter one obtains results displayed
in Fig. 5.6.



66 CHAPTER 5. MULTISTATIONARITY IN CELL CYCLE REGULATION

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

c1

x1

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP

LPLP
LPLPLPLP

4 4.5 5 5.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

c1

x1

LP

LPLP
LP

�=10�7

�=10�1

�=1
�=5
�=15
�=19
�=19.1

Figure 5.6: Numerical Continuation of x1 using c1 (total concentration of Cdc14) as bifurcation pa-
rameter. Parameter vector k(ε) = k∗ + ε kc, as given in the text. For ε ∈ [0, 19] the system shows
multistationarity.
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5.3 Analysis of the complete network N11

In Section 5.1 it has been established that multistationarity is possible for three subnetworks ofN11. For
the sake of completeness the overall network is analysed using the methods established in Chapter 3.
As for network N10, it was not possible for network N11 to determine ν, λ ∈ IR11

>0 independent of
μ ∈ IR9. Thus the equation

Y (L)T μ = ln
E λ

E ν
is considered in the following form:[

E − diag
(
eY

(L)T μ
)
E
](

ν
λ

)
,

(
ν
λ

)
> 0.

Using an unimodular matrix U ∈ IR18×18 with U E =
[

I11
07×11

]
one obtains the following system of

equations

U
[
E − diag

(
eY

(L)T μ
)
E
]

︸ ︷︷ ︸
=:H(μ)

(
ν
λ

)
= 0,

(
ν
λ

)
> 0,

where H(μ) is given at the end of this Section on page 73. Note that the nonzero elements of rows 16
– 18 of H(μ) always have the same sign, for every μ. Thus, positive ν, λ only exists for those values of
μ, where rows 16 – 18 of H(μ) are identical to zero, that is, for μ that satisfy

μ9 = μ3 + μ4 (5.20a)
μ7 = μ2 + μ6 (5.20b)
μ8 = μ5 + μ6. (5.20c)

Note that (5.20a), (5.20b) and (5.20c) are the only restriction on μ ∈ IR9. Thus μ can be represented
as (using new variables κ ∈ IR6):

μ =MN11 (5.21a)

where

MN11 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 1
0 0 0 0 1 1
0 0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.21b)

Note that each of rows 1, 2, 4, 5, 6, 8, 9, 10, 11 contains exactly two entries, thus they are equal to

νi − e〈y
(L)
j , μ〉 λi = 0,

for some linear form 〈y(L)j , μ〉. Further note that rows 12–18 are independent of the νi, i = 1, . . . , 11.
Thus it is straightforward to obtain

ν1 = eμ1 λ1 (5.22a)
ν2 = eμ4 λ2 (5.22b)
ν4 = eμ9 λ4 (5.22c)
ν5 = eμ7 λ5 (5.22d)
ν6 = eμ8 λ6 (5.22e)
ν8 = eμ4 λ8 (5.22f)
ν9 = eμ5 λ9 (5.22g)
ν10 = eμ7 λ10 (5.22h)
ν11 = eμ8 λ11. (5.22i)
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Thus it remains to determine ν3, ν7, λ1, . . . , λ11. This corresponds to a system of equations that
involves rows 3, 7 and 12 – 15 and columns 3, 7 and 12 – 22 of H(μ). Note that λ4, λ5 and λ6 do not
occur in these equations anymore, thus the corresponding columns of H(μ) can be left out. Then the
following system of equations remains:

Q(μ) λ̃ = 0, λ̃ > 0,

where Q(μ) = H(μ)[{3, 7, 12, 13, 14, 15}, {12, 13, 14, 18, 19, 20, 21, 22}] and λ̃ =
(
ν3, ν7, λ1, λ2, λ3, λ7,

λ8, λ9, λ10, λ11
)T . Q (μ) is of the form

Q(μ) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 −1 q1 0 q1 q1 q2
0 1 0 0 0 −1 0 −q1 q3 −q2
0 0 q4 0 0 q5 q6 q5 −q3 q2
0 0 0 0 0 q7 0 q1 −q3 q2
0 0 0 q8 0 q9 q8 q9 q9 q2
0 0 0 0 q10 −q1 0 −q1 −q1 −q2

⎤⎥⎥⎥⎥⎥⎥⎦ (5.23)

with

q1 = eμ3+μ4 − eμ5 , q2 = eμ3+μ4 − eμ5+μ6 , q3 = −eμ3+μ4 + eμ2+μ6 ,

q4 = −1 + eμ1 , q5 = −1 + eμ3+μ4 , q6 = −1 + eμ4 ,

q7 = −eμ2 + eμ3+μ4 , q8 = −eμ1+μ3 + eμ4 , q9 = −eμ1+μ3 + eμ3+μ4 ,

q10 = −eμ2+μ3 + eμ5 .

Thus any feasible inequality system

[
V − diag (σ)

] (
κ
s

)
= 0, s > 0

with σ ∈ {−1, 0, 1}10 and

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 −1 1
0 0 −1 −1 1 0
0 1 −1 −1 0 1
0 0 −1 −1 1 1
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

−1 0 −1 1 0 0
−1 0 0 1 0 0
0 −1 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.24)

defines a feasible signing for Q (μ). Following Algorithm 4, first ΔSN11 , the set of all orthants δ ∈
{−1, 0, 1}9 with SN11 ∩IR9

δ �= ∅ has been obtained. Then the set Δ+ =
{
δ ∈ {−1, 0, 1}9|MN11 ∩IR9

δ �= ∅
and ∃σ ∈ {−1, 0, 1}10 such that Q (μ) is an L+-matrix

}
has been obtained. As ΔSN11 ∩ Δ+ �= ∅,

multistationarity has been established by Algorithm 4. The elements of ΔSN11 ∩Δ+ are

δ1=(−1, 0, 1, −1, 1, −1, −1, 1, 0)T

δ2=(−1, 1, 1, −1, 1, −1, −1, 1, 0)T

δ3=(−1, 1, 1, −1, 1, −1, −1, 1, 1)T

δ4=(−1, 1, 1, −1, 1, −1, 1, −1, 1)T

δ5=(−1, 1, 1, −1, 1, −1, 1, 1, 1)T

δ6=(−1, 1, 1, 1, 1, −1, 1, −1, 1)T

(5.25)
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All signings such that Q (μ) is an L+ in one of the orthants given in (5.25), are

σ1 =(−1, −1, −1, −1, 0, −1, 0, −1, 1, −1)T
σ2 =(−1, −1, −1, −1, 0, −1, −1, −1, 1, −1)T
σ3 =(−1, −1, −1, −1, 1, −1, −1, −1, 1, −1)T
σ4 =(−1, −1, −1, −1, 1, −1, 0, −1, 1, −1)T
σ5 =(−1, 0, −1, −1, 1, −1, −1, −1, 1, −1)T
σ6 =(−1, 0, −1, −1, 1, −1, 0, −1, 1, −1)T
σ7 =(−1, 1, −1, −1, 1, −1, −1, −1, 0, −1)T
σ8 =(−1, 1, −1, −1, 1, −1, −1, −1, 1, −1)T
σ9 =(−1, 1, −1, −1, 1, −1, 0, −1, 0, −1)T
σ10=(−1, 1, −1, −1, 1, −1, 0, −1, 1, −1)T
σ11=(−1, 1, 0, −1, 1, −1, −1, −1, 0, −1)T
σ12=(−1, 1, 0, −1, 1, −1, −1, −1, 1, −1)T
σ13=(−1, 1, −1, −1, 1, 1, −1, −1, 1, −1)T
σ14=(−1, 1, 0, −1, 1, 1, −1, −1, 1, −1)T

(5.26)

Table 5.2 shows, for which orthant δ as in (5.25) and which signing σ as in (5.26), the system

[
diag (δ) −MN11 010×10
09×9 V − diag (σ)

] ⎛⎝ξ
κ
s

⎞⎠ , ξ, s > 0

is feasible.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14

δ1 +
δ2 +
δ3 + + + + + + + +
δ4 + + + +
δ5 + + + + + + + + + +
δ6 + +

Table 5.2: Orthants and sign conditions for the ternary complex model
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5.4 Conclusions

In this chapter two equally plausible hypotheses describing the G1/S transition in Saccharomyces
cerevisiae have been analysed. For both network structures multistationarity has been established,
however, there is a difference: in contrast to the ternary complex model, where individual subunits
can establish the desired switch–like behavior, the integrity of the binary complex model needs to be
preserved for this function. This has important consequences for the robustness of the two models.
Robustness, often, is defined as the resistance of qualitative network behavior to perturbations, for
instance, in network structure or parameter values [60]. Clearly, the ternary model is more robust in this
sense than the binary model, although capturing this effect quantitatively is difficult. Previously, it has
been proposed that robustness can also serve as a measure of plausibility for biological network models
because, in fluctuating environments, robustness of functions should have been key for evolutionary
selection [47]. In this regard, subnetwork analysis could be used for model discrimination—the ternary
complex mechanism would be considered as the more plausible one.



Chapter 6

Robustness of Multistationarity

A variety of biochemical reaction networks give rise to qualitative properties that are robust with respect
to certain parameter variations (see [42, 48] and [60] and the references therein). Nowadays robustness
is often considered as an inherent principle of cellular functions (and, of course, of the biochemical
reaction networks that implement this functionality). However, robustness never comes alone. It is
almost always accompanied by ‘fragility’ with respect to variations of different parameter sets: in [59],
for example, it has been shown that the existence of cyclic trajectories is robust to large variations in
one group of parameters, whereas small variations in a second, different group of parameters lead to a
destruction of this qualitative property. This ‘robust yet fragile’ nature has been observed frequently
both in biochemical and in man-made networks like the Internet [19, 20].
In this chapter robustness of multistationarity in the Activation of an MAPK(K) and in a variety of other
signal transduction motifs is analysed. For the Activation of an MAPK(K) robustness (and fragility)
of multistationarity with respect to variations in the rate constants is examined in Section 6.1. For a
variety of signal transduction motifs, which are the building blocks of many signal transduction networks
robustness (and fragility) of multistationarity with respect to fluctuations in the total concentrations
is examined in Section 6.2.

6.1 Robustness against variations in the rate constants

Multistationarity in the activation of an MAPK is a qualitative property with a robust yet fragile nature.
This is a direct consequence of the results presented in Chapter 4, in particular of the definition of k,
the parameter vector, as given in (4.7a) – (4.7f). Even for a specific steady state a the ki are not unique,
as the vector λ ∈ IR6

>0 can still be chosen freely. Thus, a specific pair of steady states is compatible
with an infinite set of parameter values.
Multistationarity is robust with respect to variations in the ki, as long as the ki satisfy the equations
(4.7a) – (4.7f) for positive λi. Note that for a fixed vector a (4.7a) – (4.7f) are linear. In this case
the right hand side of the equations defines a pointed polyhedral cone in IR12

≥0. The generators of this
‘parameter cone’ can be obtained from the generators of ker(Y Ia)∩ IR12

≥0 via the linear transformation

P = diag
(
φ
(
a−1

))
E, (6.1)

where E is a matrix composed of the generators of ker(Y Ia)∩ IR12
≥0. For a given vector a the vector of

rate constants is given by
k = P λ, λ ∈ IR6

>0. (6.2)

Thus one can conclude that the property multistationarity is robust with respect to variations of k
within the ‘parameter cone’ P . Moreover, as long as k is in the interior of P , the values of the steady
state pair a, b are not affected. To make explicit the robust nature a random set of 197 parameter
vectors was created and simulations for each of these vectors were performed using the initial conditions
given in Table 6.11. The results are displayed in Fig. 6.1 (for the initial condition x(1)0 in the upper half
and for the initial condition x

(2)
0 in the lower half). The figure shows the temporal evolution of x1(t)

1Tables and Figures in this chapter are reprinted from [65] with permission from Elsevier
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x
(1)
0 x

(2)
0 xup0

x10 1.4047 4.1339 1.0199
x20 0.12618 2.1585 0.11185
x30 0.41462 0.54691 0.38576
x40 0.84691 0.91462 0.89271
x50 2.3169 0.15236 2.3601
x60 0.73726 0.70497 1.058
x70 0.013662 0.74596 0.0096985
x80 3.9701 1.4605 4.0441
x90 0.27818 2.0555 0.20815

Table 6.1: Initial conditions for the dynamic simulations in Fig. 6.1.

and x6(t). In in the upper half all trajectories converge to x(1) and in the lower half all trajectories
converge to x(2), the stable steady states obtained for k∗. Table 6.2 contains the stable steady states
x(1) and x(2) and the unstable steady state x∗ obtained for k∗. Changing λ (and thus changing k within
P ) does not change the steady states of the ODEs displayed in (A.1a) – (A.1i).

x(1) x∗ x(2)

x1 1.3199 1.7047 4.6339
x2 0.41185 0.42618 1.1585
x3 0.085761 0.11462 0.84691
x4 0.89271 0.84691 0.11462
x5 2.3601 2.3169 0.85236
x6 1.058 0.73726 0.0049676
x7 0.0096985 0.013662 0.74596
x8 4.0441 3.9701 1.4605
x9 0.20815 0.27818 2.0555

Table 6.2: Lower stable steady state x(1), unstable steady state x∗ and upper stable steady state x(2)

(x∗ and x(2) have been published in [11]).

The fragility of multistationarity Multistationarity is fragile with respect to variations of k per-
pendicular to P (or, more precise, to variations of k in the orthogonal complement of the subspace of
IR12 that contains P ). To demonstrate this, the parameter vector was perturbed in the following way:

k = k∗ + ε u⊥,

where
u⊥ = (−1, 1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1)T .

Note that 〈u⊥, Ei〉 = 0, i = 1, . . . , 6, thus changing k∗ along u⊥ corresponds to changes transver-
sal to P . To illustrate this, a bifurcation analysis was performed using ε as bifurcation parameter
(the bifurcation was performed using Matcont, see e.g. [1]). The result is displayed in Fig. 6.2. This
analysis established upper and lower bifurcation parameters (at ε ≈ 0.0017 and ε ≈ −0.1993, respec-
tively). Visual inspection alone shows that ε can vary only in a very small interval, without losing
multistationarity. The parameter vectors kupε (corresponding to ε ≈ 0.0017) and klowε (corresponding to
ε ≈ −0.1993) are displayed in Table 6.3, as well. Dynamic simulations displayed in Fig. 6.3 confirm that
multistationarity vanishes, once ε is outside the interval (−0.1993, 0.0017). As long as the parameter
vector is ‘sufficiently close’ to P , the system retains multistationarity (albeit for different steady states).
If the parameter vector is ‘far’ from P multistationarity is no longer exhibited. Fig. 6.3 shows the effect
of changing ε on x1(t). In the upper half ε varies from 0 to −0.25 and the initial condition x(2)0 is used.
As long as ε > −0.1993 the trajectories reach a steady state that is close to x(2) (i.e. the trajectories
converge to the upper branch of the steady state solutions displayed in Fig. 6.2). In the lower half ε
varies from 0 to 0.0017 and the initial condition xup0 is used. As long as ε < 0.0017 the trajectories
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Figure 6.1: Temporal evolution of x1(t) and x6(t) for a set of randomly generated parameter vectors,
using the initial condition x

(1)
0 . The dashed red line indicates the temporal evolution obtained for the

reference parameter vector k∗, the delimiting trajectories correspond to parameter sets labeled ‘upper’
and ‘lower’.

reach a steady state that is close to x(1) (i.e. the trajectories converge to the lower branch of the steady
state solutions displayed in Fig. 6.2). (Note that when integrating the ODEs using matlab r©’s ode15s
the bifurcation occurs somewhere between ε = 0.0018 and ε = 0.0019, whereas the bifurcation software
Matcont locates the bifurcation at ε = 0.0017.)

Quantification of robustness To quantify ‘robustness’ of multistationarity (or lack thereof) the
parameter sets corresponding to those trajectories marked green in Fig. 6.1 were used to approximate
the parameter range where multistationarity can occur. (This is, of course a poor approximation. But
it is sufficient to back the argument). For each parameter an elasticity coefficient was defined that
measures the difference between the upper and the lower value of the parameter in relation to the
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Figure 6.3: Dynamic simulation ‘close’ to bifurcation points for ε ≈ −0.1993 and ε ≈ 0.0017. The
bifurcation occurs between the temporal evolution displayed in green.

‘nominal’ value k∗i :

ηi :=
kupi − klowi

k∗i
(6.3)
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k∗ kup klow kupε klowε

k1 10.9293 8.3595 12.6521 10.9275 11.1285
k2 34.6381 30.44 46.1592 34.6399 34.4389
k3 34.6381 22.5474 34.0373 34.6399 34.4389
k4 21.9991 31.4783 14.6527 21.9973 22.1983
k5 1.7135 1.3566 1.604 1.7153 1.5143
k6 1.7135 3.5471 0.67864 1.7153 1.5143
k7 788.272 1211.7563 727.2734 788.2703 788.4713
k8 1 1.0042 1.4491 1.0017 0.80077
k9 1 2.0701 0.39605 1.0017 0.80077
k10 686.2147 430.6848 647.1921 686.2129 686.4139
k11 14.2718 8.6237 12.8949 14.2736 14.0726
k12 14.2718 9.2901 14.0243 14.2736 14.0726

Table 6.3: Reference parameter vector k∗ (as given in [11]), parameter vectors kup and klow obtained
by random variations λ, with

∑
i λi = λ∗0 and parameter vectors kupε and klowε obtained by varying k

along ε u⊥.

Here kup corresponds to the upper delimiting trajectory in the upper left part of Fig. 6.1 and klow to
the lower delimiting trajectory in the upper left part of Fig. 6.1. Both parameter vectors are given in
Table 6.3. Using kupε and klowε in formula (6.3), the elasticities for perturbations along u⊥ have been
determined as well (see Table 6.4, second colum). The results are displayed in Fig. 6.4: the elasticities
corresponding to variations within P as empty bars and those corresponding to variations along u⊥

as filled bars. This figure nicely reflects the robust yet fragile nature of multistationarity: on the one
hand, each ki can vary by large amounts, if variation occurs within the parameter cone P . On the other
hand, if the parameter cone P is left (e.g. by adding ε u⊥), then, for relatively small variations of the
ki, multistationarity is lost. This is best illustrated using k7. From Table 6.3 it follows that k7 can vary
between 727.2734 and 1211.7563 if variation occurs within P (i.e. k7 can vary by at least 60% of its
nominal value k∗7 = 788.272 and multistationarity is retained). If k7 is varied along u⊥, then again by
Table 6.3 it can vary between 788.2703 and 788.4713 (i.e. by at most 0.025% relative to k∗7 = 788.272)
without losing multistationarity.

kup
i −klowi

k∗i

kup
εi
−klowεi

k∗i

η1 -0.39276 -0.018391
η2 -0.45381 0.0058029
η3 -0.33171 0.0058029
η4 0.76483 -0.0091367
η5 -0.14438 0.1173
η6 1.674 0.1173
η7 0.61461 -0.00025499
η8 -0.4449 0.20093
η9 1.6741 0.20093
η10 -0.31551 -0.00029291
η11 -0.29927 0.014084
η12 -0.33172 0.014084

Table 6.4: Elasticities obtained for a random sample of parameter vectors (column one) and for variation
along u⊥ (column two).

A note on quantifying robustness When quantifying ‘robustness’, some care has to be exercised:
as P is a pointed polyhedral cone, it is in principle possible to obtain deviations from k∗ that are
arbitrarily large without losing multistationarity. To see this, consider two vectors k̃up, k̃low and the
vector k∗. Let k̃up = λ0 k

∗ and k̃low = 1
λ0
k∗, where λ0 � 1. As P is a cone and k∗ ∈ P , any

positive scalar multiple of k∗ is in the cone as well. Thus the system will exhibit multistationarity for
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Figure 6.4: Robustness vs. fragility of multistationarity for the activation of an MAPK. Empty bars:
Elasticities obtained for a random sample of parameters contained in the parameter cone P . Filled bars
Elasticities obtained for a set of parameters created along εu⊥.

k̃up = λ0 k
∗ and k̃low = 1

λ0
k∗ and the elasticity coefficients will be η̃i =

λo k
∗
i− 1

λ0
k∗i

k∗i
= λ0 − 1

λ0
≈ λ0

(using k̃low, k̃up and k∗ in formula (6.3)).
However such an η̃i is not meaningful, as k̃up and k̃low correspond to a mere scaling of time that does not
change the qualitative dynamic behaviour of the system, hence it is ‘obvious’ that the system retains
multistationarity: to see this, let k = λ0 k̃ and recall that the ODEs derived from any biochemical
reaction network endowed with mass action kinetics are linear in the vector of rate constants k:

ẋ = Y Ia diag (k) φ (x) = Y Ia diag (φ (x)) k.

Thus using k = λ0 k̃ yields
ẋ = λ0 Y Ia diag (φ (x)) k̃.

Clearly this corresponds to a scaling of time t with λ0. To circumvent this scaling of time and thus to
exclude this trivial robustness, these parameter deviations have to be ruled out. To do this, note that
if k∗ ∈ P , then there exists a λ∗ ∈ IR6

>0, such that k∗ = Pλ∗. Then λ0 k
∗ = λ0 P λ∗ = P (λ0 λ∗) (i.e.

multiplying k∗ by λ0 is equivalent to multiplying λ∗ by λ0). Thus, to deal with the effect of time scaling
we consider only λi contained in the affine linear subspace 〈1, λ〉 = λ0 for a fixed value λ0. Elements of
this subspace are given by λ = λ0 (λ1, . . . , λ5, 1−

∑5
i=1 λi), λi ∈ [0, 1], i = 1, . . . , 5. Then λ0 is fixed

as λ∗0 = 23.8207, the value calculated for k∗, as given in Table 6.3 (using e.g. the steady state x∗ from
Table 6.2, the vector λ can be calculated as λ = λ∗0 (0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667)).
To demonstrate the effect of λ0, Fig. 6.1 contains the trajectories of x1(t) obtained using 100λ∗0.
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6.2 Robustness against concentration fluctuations for different
signal transduction motifs

In [53] a variety of small reaction networks called motifs that can be found as subnetworks in many
signal transduction networks is presented and analysed. Among them are network N4 described in
Section 4 and N12, N13 and N14 given below. Here ∗ is used to denote the activated form of protein A
and Ei denotes activating or deactivating enzymes.

• Autocatalytic activation:

A+ E1

k1

AE1
k2

k3
A∗ + E1

A+A∗
k4

AA∗
k5

k6
A∗ +A∗

A∗ + E2

k7

A∗E2
k8

k9
A+ E2

(N12)

• Distributive activation by enzyme E1 and distributive deactivation by two different enzymes E2

and E3:

A+ E1

k1

AE1
k2

k3
A∗ + E1

k4

A∗ E1
k5

k6
A∗∗ + E1

A∗∗ + E3

k7

A∗∗ E3
k8

k9
A∗ + E3

A∗ + E2

k10

A∗ E2
k11

k12
A+ E2

(N13)

• Autocatalytic activation and distributive deactivation by two different enzymes E2 and E3:

A+ E1

k1

AE1
k2

k3
A∗ + E1

A∗ + E3

k4

A∗E3
k5

k6
A+ E3

2A∗
k7

A∗ A∗
k8

k9
A∗∗ +A∗

k10

A∗A∗∗
k11

k12

2A∗∗

A∗∗ + E2

k13

A∗∗E2
k14

k15
A∗ + E2

(N14)

Network N4, N12, N13 and N14 were the only networks considered in [53] that showed multistationarity.
While in Section 6.1 robustness against variations in the ki has been analysed, in this section robustness
against variations in total concentrations is compared among networks N4, N12, N13 and N14. This
is based on the results of Section 3. In Section 6.2.1 the steady state equations are analysed in the
way described in Section 3 and in Section 6.2.2 robustness against variations in total concentrations is
compared.

6.2.1 Analysis of the steady state equations

6.2.1.1 Network N12

The equations

Y (L)T μ = ln
E ν

E λ
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for this network are

μ1 + μ2 = ln
ν1 + ν4
λ1 + λ4

(6.4a)

μ3 = ln
ν1
λ1

(6.4b)

μ3 = ln
ν4
λ4

(6.4c)

μ1 + μ4 = ln
ν2 + ν5
λ2 + λ5

(6.4d)

μ5 = ln
ν2
λ2

(6.4e)

μ5 = ln
ν5
λ5

(6.4f)

μ4 + μ6 = ln
ν3 + ν4 + ν5
λ3 + λ4 + λ5

(6.4g)

μ7 = ln
ν3
λ3

(6.4h)

μ7 = ln
ν4 + ν5
λ4 + λ5

(6.4i)

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν4
λ4
, ln

ν2
λ2

= ln
ν5
λ5
, ln

ν3
λ3

= ln
ν4 + ν5
λ4 + λ5

.

Thus one obtains ν1 = λ1
ν4
λ4
, ν2 = λ2

ν5
λ5

and ν3 = λ3
ν4+ν5
λ4+λ5

and thus

ν =
(
λ1

ν4
λ4
, λ2

ν5
λ5
, λ3

ν4 + ν5
λ4 + λ5

, ν4, ν5

)
, (6.5)

with λ ∈ IR5
>0 and ν4, ν5 > 0. Using ν as above, one obtains

ln
ν1 + ν4
λ1 + λ4

= ln
ν4
λ4
, ln

ν2 + ν5
λ2 + λ5

= ln
ν5
λ5
, ln

ν3 + ν4 + ν5
λ3 + λ4 + λ5

= ln
ν4 + ν5
λ4 + λ5

.

Using the definitions

κ1 := ln
ν4
λ4

(6.6a)

κ2 := ln
ν5
λ5

(6.6b)

κ3 :=
ν4 + ν5
λ4 + λ5

(6.6c)

and solving for μ, one obtains

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
−1 1 0 0
0 1 0 0

−1 0 1 0
0 0 1 0
1 0 −1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:MN12

⎛⎜⎜⎝
μ1
κ1
κ2
κ3

⎞⎟⎟⎠ . (6.7)

If the κi are considered as free variables, (6.7) defines a linear subspace of IR7. Note that in this case
ν4, ν5, λ4 and λ5 are determined by (6.6a) – (6.6c): from (6.6a) follows ν4 = λ4 e

κ1 and from (6.6b)
ν5 = λ5 e

κ2 . Inserting in (6.6c) and solving for λ5 yields

λ5 = λ4
eκ1 − eκ3

eκ3 − eκ2
. (6.8a)
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Note that λ5 > 0, if one of the following conditions holds

κ1 > κ3 > κ2 (6.8b)
κ1 < κ3 < κ2. (6.8c)

Note that (6.7) together with either (6.8b) or (6.8c) is a parametrization of positive steady states in the
following sense: suppose (i) the κi are chosen such that either (6.8b) or (6.8c) holds, (ii) λ5 is chosen
such that (6.8a) holds and (iii) the remaining λi are assigned some positive values. Further suppose
the vector a is a steady state. Then, by Lemma 1, b = diag (Exp (μ)) a is a steady state as well.
To ensure that a is indeed a steady state apply again (3.10a) to obtain:

k1 =
λ1 + λ4
a1 a2

k2 =
λ1
a3

k3 =
λ4
a3

(6.9a)

k4 =
λ2 + λ5
a1 a4

k5 =
λ2
a5

k6 =
λ5
a5

(6.9b)

k7 =
λ3 + λ4 + λ5

a4 a6
k8 =

λ3
a7

k9 =
λ4 + λ5
a7

(6.9c)

To find pairs of steady states that satisfy the conservation relations for the same ci, Lemma 3 is used.
To this end, let κ := (μ2, κ1, κ2, κ3)

T and MN12 :=
{
μ ∈ IR7 |μ = MN12 κ and either κ1 > κ3 > κ2 or

κ1 < κ3 < κ2
}
, with MN12 as in (6.7). Further let SN12 be the stoichiometric subspace for N12. Using

Algorithm 2, it is straightforward to establish that there are two orthants with MN12 ∩ IR7
δ �= ∅ and

SN12 ∩ IR7
δ �= ∅:

δ1= (1, −1, 1, −1, −1, 1, −1)T
δ2=(−1, 1, −1, 1, 1, −1, 1)T (6.10)

However, δ1 = −δ2, thus these orthants give rise to the same pair of steady states (see Section 3.3) and
only one of them need to be considered. Thus multistationarity has been established by Theorem 3.
To obtain a pair of steady states, consider δ1. All μ ∈ MN12 ∩ IR7

δ1
are given by

μ1 = α1 + α2 (6.11a)
μ2 = −α1 (6.11b)
μ3 = α2 (6.11c)
μ4 = −α1 − α2 − α3 − α4 (6.11d)
μ5 = −α3 − α4 (6.11e)
μ6 = α1 + α2 + α4 (6.11f)
μ7 = −α3, (6.11g)

for αi > 0, i = 1, 2, 3. The κi, i = 1, 2, 3 can, of course, be expressed in terms of the αi:

κ =

⎛⎜⎜⎝
−α1
α2

−α3 − α4
−α3

⎞⎟⎟⎠ . (6.12a)

Thus one obtains the following expression for λ5:

λ5 = λ4
(eα2 − e−α3)

e−α3 − e−α3−α4
. (6.12b)

All v ∈ SN12 ∩ IR7
δ1

are given by

v1 = β1 + β5 + 2 β6 (6.13a)
v2 = −β2 − 2 β3 − β4 (6.13b)
v3 = β2 + 2 β3 + β4 (6.13c)
v4 = −β4 − β5 (6.13d)
v5 = −β3 − β6 (6.13e)
v6 = β1 + β2 (6.13f)
v7 = −β1 − β2, (6.13g)
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for βi > 0, i = 1, . . . , 6. As described in Section 3.3, it is possible to state a and b using the generators
of MN12 ∩ IR7

δ and SN12 ∩ IR7
δ in (3.30a). This leads to the following formulas for the steady state a

a1 =
β1 + β5 + 2 β6
−1 + eα1+α2

a2 =
−β2 − 2 β3 − β4
−1 + e−α1

(6.14a)

a3 =
β2 + 2 β3 + β4
−1 + eα2

a4 =
−β4 − β5

−1 + e−α1−α2−α3−α4
(6.14b)

a5 =
−β3 − β6

−1 + e−α3−α4
a6 =

β1 + β2
−1 + eα1+α2+α4

(6.14c)

a7 =
−β1 − β2
−1 + e−α3

(6.14d)

and the steady state b

b1 =
(β1 + β5 + 2 β6) eα1+α2

−1 + eα1+α2
b2 =

(−β2 − 2 β3 − β4) e−α1

−1 + e−α1
(6.15a)

b3 =
(β2 + 2 β3 + β4) eα2

−1 + eα2
b4 =

(−β4 − β5) e−α1−α2−α3−α4

−1 + e−α1−α2−α3−α4
(6.15b)

b5 =
(−β3 − β6) e−α3−α4

−1 + e−α3−α4
b6 =

(β1 + β2) eα1+α2+α4

−1 + eα1+α2+α4
(6.15c)

b7 =
(−β1 − β2) e−α3

−1 + e−α3
. (6.15d)

6.2.1.2 Network N13

The equations

Y (L)T μ = ln
E ν

E λ

for this network are

μ1 + μ2 = ln
ν1 + ν5
λ1 + λ5

μ3 = ln
ν1
λ1

μ3 = ln
ν5
λ5

μ2 + μ4 = ln
ν2 + ν6
λ2 + λ6

μ5 = ln
ν2
λ2

μ5 = ln
ν6
λ6

μ6 + μ7 = ln
ν3 + ν6
λ3 + λ6

μ8 = ln
ν3
λ3

μ8 = ln
ν6
λ6

μ4 + μ9 = ln
ν4 + ν5
λ4 + λ5

μ10 = ln
ν4
λ4

μ10 = ln
ν5
λ5

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν5
λ5
, ln

ν2
λ2

= ln
ν6
λ6
, ln

ν3
λ3

= ln
ν6
λ6
, ln

ν4
λ4

= ln
ν5
λ5
.
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Thus one obtains

ν =
(
λ1

ν5
λ5
, λ2

ν6
λ6
, λ3

ν6
λ6
, λ4

ν5
λ5
, ν5, ν6

)T

, (6.16)

with λ ∈ IR6
>0 and ν5, ν6 > 0, free. Note that using ν as above, one obtains

ln
ν1 + ν5
λ1 + λ5

= ln
ν4 + ν5
λ4 + λ5

= ln
ν5
λ5

and

ln
ν2 + ν6
λ2 + λ6

= ln
ν3 + ν6
λ3 + λ6

= ln
ν6
λ6
.

Using κ1 := ln ν5
λ5

and κ2 := ln ν6
λ6

and solving for μ, one finally obtains

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
1 0 0 0
0 0 1 0

−1 0 0 1
0 0 0 1
0 1 0 0
0 −1 0 1
0 0 0 1
1 0 1 −1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:MN13

⎛⎜⎜⎝
μ2
μ6
κ1
κ2

⎞⎟⎟⎠ (6.17)

Let MN13 = [MN13 ] and observe that MN13 ∩ IR10
δ �= ∅ and SN13 ∩ IR10

δ �= ∅ holds in the orthant δ1:

δ1=(−1, 1, −1, −1, 1, 1, −1, 1, 1, −1)T (6.18)

Thus multistationarity has been established by Theorem 3. Using generators of MN13 ∩ IR10
δ and

SN13 ∩ IR10
δ a parametrization of all pairs of steady states a, b that satisfy WT b = WT a is obtained:

a1 = −β7−β8
−1+e−α1−α3−2α4 , a2 = β4+β9

−1+eα1+α3+α4 ,

a3 = −β3−β4−β9
−1+e−α4 , a4 = −β1−β2

−1+e−α3−α4 ,

a5 = β3
−1+eα1 , a6 = β2+β5+β7+β9

−1+eα1+α2 ,

a7 = −β1−β4−β6−β8
−1+e−α2 , a8 = β1+β4+β6+β8

−1+eα1 ,

a9 = β5+β6
−1+eα3 a10 = −β5−β6

−1+e−α4 .

(6.19a)

b1 = (−β7−β8) e
−α1−α3−2α4

−1+e−α1−α3−2α4 , b2 = (β4+β9) e
α1+α3+α4

−1+eα1+α3+α4 ,

b3 = (−β3−β4−β9) e
−α4

−1+e−α4 , b4 = (−β1−β2) e
−α3−α4

−1+e−α3−α4 ,

b5 = β3 e
α1

−1+eα1 , b6 = (β2+β5+β7+β9) e
α1+α2

−1+eα1+α2 ,

b7 = (−β1−β4−β6−β8) e
−α2

−1+e−α2 , b8 = (β1+β4+β6+β8) e
α1

−1+eα1 ,

b9 = (β5+β6) e
α3

−1+eα3 , b10 = (−β5−β6) e
−α4

−1+e−α4 .

(6.19b)

Using the ai given in (6.19a) one obtains a parametrization of the rate constants that ensure that
a = (ai) and b = (bi), i = 1, . . . , 10 are steady states. Note that here λ1 > 0, . . . , λ6 > 0 can be can be
chosen freely.

k1 = λ1+λ5
a1 a2

k2 = λ1
a3
, k3 = λ5

a3
,

k4 = λ2+λ6
a2 a4

, k5 = λ2
a5
, k6 = λ6

a5
,

k7 = λ3+λ6
a6 a7

, k8 = λ3
a8
, k9 = λ6

a8
,

k10 = λ4+λ5
a4 a9

, k11 = λ4
a4 a9

, k12 = λ5
a10

(6.20a)
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6.2.1.3 Network N14

The equations

Y (L)T μ = ln
E ν

E λ

for this network are

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

μ3 = ln
ν1
λ1

μ3 = ln
ν6
λ6

μ4 + μ5 = ln
ν2 + ν6
λ2 + λ6

μ6 = ln
ν2
λ2

μ6 = ln
ν6
λ6

2μ4 = ln
ν3 + ν7
λ3 + λ7

μ7 = ln
ν3
λ3

μ7 = ln
ν7
λ7

μ4 + μ8 = ln
ν4 + ν8
λ4 + λ8

μ9 = ln
ν4
λ4

μ9 = ln
ν8
λ8

μ10 + μ8 = ln
ν5 + ν7 + ν8
λ5 + λ7 + λ8

μ11 = ln
ν5
λ5

μ11 = ln
ν7 + ν8
λ7 + λ8

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν6
λ6
, ln

ν2
λ2

= ln
ν6
λ6
, ln

ν3
λ3

= ln
ν7
λ7
, ln

ν4
λ4

= ln
ν8
λ8
, ln

ν5
λ5

= ln
ν7 + ν8
λ7 + λ8

.

Thus one obtains ν1 = λ1
ν6
λ6
, ν2 = λ2

ν6
λ6
, ν3 = λ3

ν7
λ7
, ν4 = λ4

ν8
λ8

and ν5 = λ5
ν7+ν8
λ7+λ8

. Thus one finally
obtains

ν =
(
λ1

ν6
λ6
, λ2

ν6
λ6
, λ3

ν7
λ7
, λ4

ν8
λ8
, λ5

ν7 + ν8
λ7 + λ8

, ν6, ν7, ν8

)T

.

Note that using ν as above, one obtains

ln
ν1 + ν6
λ1 + λ6

= ln
ν2 + ν6
λ2 + λ6

= ln
ν6
λ6
,

ln
ν3 + ν7
λ3 + λ7

= ln
ν7
λ7
,

ln
ν4 + ν8
λ4 + λ8

= ln
ν8
λ8
,

and

ln
ν5 + ν7 + ν8
λ5 + λ7 + λ8

= ln
ν7 + ν8
λ7 + λ8

.
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Using

κ1 := ln
ν6
λ6

(6.21a)

κ2 := ln
ν7
λ7

(6.21b)

κ3 := ln
ν8
λ8

(6.21c)

κ4 := ln
ν7 + ν8
λ7 + λ8

(6.21d)

and solving for μ, one obtains

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1

2 0 0
0 1 − 1

2 0 0
0 1 0 0 0
0 0 1 0 0
0 0 − 1

2 1 0
0 0 0 1 0
0 0 1

2 −1 1
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:MN14

⎛⎜⎜⎜⎜⎝
μ2
κ1
κ2
κ3
κ4

⎞⎟⎟⎟⎟⎠ (6.22)

If the κi are considered as free variables, (6.22) defines a linear subspace of IR11. Note that in this
case ν7, ν8, λ7 and λ8 are determined by (6.21b) – (6.21d): from (6.21b) follows ν7 = λ7 e

κ2 and from
(6.21c) ν8 = λ8 e

κ3 . Inserting in (6.21d) and solving for λ8 yields

λ8 =
eκ4 − eκ2

eκ3 − eκ4
λ7 (6.23)

Thus λ8 > 0, if the κi have to satisfy either one of the relations

κ3 > κ4 > κ2 (6.24a)
κ3 < κ4 < κ2 (6.24b)

Let κ := (μ2, κ1, κ2, κ3, κ4)
T and MN14 :=

{
μ ∈ IR11 |μ = MN14 κ and either κ3 > κ4 > κ2 or

κ3 < κ4 < κ2
}
. Observe that SN14 ∩ IR11

δ �= ∅ andMN14 ∩ IR11
δ �= ∅ hold for δ1 and −δ1 as given below:

δ1=(−1, 1, −1, −1, 1, −1, −1, 1, 1, −1, 1)T (6.25)

The pairs of steady states that satisfy the conservation relations are given by:

a1 = −β1−β8−2β9
−1+e−α1−α3 , a2 = β10+2 β11+β2

−1+eα1 ,

a3 = −β10−2β11−β2
−1+e−α3 , a4 = −β12−2β13−β3

−1+e 1
2 (−2 α2−2α3)

,

a5 = β14+2 β15+β4

−1+e−α3+1
2 (2 α2+2α3)

, a6 = −β14−2β15−β4
−1+e−α3 ,

a7 = −β5−β6−β7
−1+e−2 α2−2 α3 , a8 = β10+β12+β14+2β7+β8

−1+e 1
2 (2 α2+2α3)+α4+α5

,

a9 = β11+β13+β15+β6+β9
−1+eα4+α5 , a10 = −β1−β2−β3−β4−2 β5

−1+e 1
2 (−2 α2−2α3)−α5

,

a11 = β1+β2+β3+β4+2β5
−1+eα4 .

(6.26a)

b1 = (−β1−β8−2 β9) e
−α1−α3

−1+e−α1−α3 , b2 = (β10+2β11+β2) e
α1

−1+eα1 ,

b3 = (−β10−2β11−β2) e
−α3

−1+e−α3 , b4 = (−β12−2β13−β3) e
1
2 (−2 α2−2 α3)

−1+e 1
2 (−2 α2−2 α3)

,

b5 = (β14+2β15+β4) e
−α3+ 1

2 (2 α2+2α3)

−1+e−α3+ 1
2 (2 α2+2α3)

, b6 = (−β14−2β15−β4) e
−α3

−1+e−α3 ,

b7 = (−β5−β6−β7) e
−2 α2−2α3

−1+e−2 α2−2 α3 , b8 = (β10+β12+β14+2 β7+β8) e
1
2 (2 α2+2α3)+α4+α5

−1+e 1
2 (2 α2+2α3)+α4+α5

,

b9 = (β11+β13+β15+β6+β9) e
α4+α5

−1+eα4+α5 , b10 = (−β1−β2−β3−β4−2β5) e
1
2 (−2α2−2α3)−α5

−1+e 1
2 (−2 α2−2 α3)−α5

,

b11 = (β1+β2+β3+β4+2 β5) e
α4

−1+eα4 .

(6.26b)
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Using the ai given in (6.19a) one obtains a parametrization of rate constants that ensure that a = (ai)
and b = (bi), i = 1, . . . , 11 from (6.26a) and (6.26b) are steady states. Note that λi > 0, i = 1, . . . , 7
can be chosen freely, but λ8 must satisfy (6.23). To this end a parametrization of the κi associated
with μ ∈ SN14 ∩ IR11

δ1
is obtained:

κ =

⎛⎜⎜⎜⎜⎝
α1
−α3

−2α2 − 2α3
α4 + α5
α4

⎞⎟⎟⎟⎟⎠ . (6.27a)

Then one obtains the following expression for λ8:

λ8 = λ7
−e−2α2−2α3 + eα4

−eα4 + eα4+α5
. (6.27b)

The rate constants are then given by

k1 = λ1+λ6
a1 a2

, k2 = λ1
a3
, k3 = λ6

a3
,

k4 = λ2+λ6
a4 a5

, k5 = λ2
a6
, k6 = λ6

a6
,

k7 = λ3+λ7
a42 , k8 = λ3

a7
, k9 = λ7

a7
,

k10 = λ4+λ8
a4 a8

, k11 = λ4
a9
, k12 = λ8

a9
,

k13 = λ5+λ7+λ8
a8 a10

, k14 = λ5
a11

, k15 = λ7+λ8
a11

.

(6.28a)

6.2.2 Comparing robustness against concentration fluctuations

In this section the robustness of multistationarity with respect to variations in AT , the total concentra-
tion of protein A is analysed. This is done to asses the usability of N4, N12, N13 and N14 as a switching
device. Since concentrations typically fluctuate, a useful switch should maintain bistability over a wide
range of concentrations. To this end, the following steps have been performed:

(1) For each of the parametrizations of steady state pairs obtained for N4, N12, N13 and N14 in
Section 6.2.1, the vectors α and β were chosen randomly (for each network approximately 1000
vectors α and β were created). Thus one obtains a set of 1000 steady state pairs for each network:(
a
(j)
i , b

(j)
i

)
, i = 1, . . . , 1000, j = N4, N12, N13, N14.

(2) Using parametrizations of the rate constants, a vector of rate constants was obtained for each
pair of steady states: k

(j)
i , i = 1, . . . , 1000, j = N4, N12, N13, N14. Thus one obtains triplets

τ
(j)
i :=

(
a
(j)
i , b

(j)
i , k

(j)
i

)
, i = 1, . . . , 1000, j = N4, N12, N13, N14 for which networks N4, N12, N13

and N14 show multistationarity (with a(j)i , b(j)i as steady states and k(j)i as vector of rate constants).

(3) For every network and every triplet τ (j)i , a numerical continuation of steady states was performed,
using AT as bifurcation parameter. Bistability was confirmed numerically for each τ (j)i .

(4) Lower and upper turning point A(j)
low,i and A

(j)
up,i of the numerical continuation were determined

(see Fig. 6.5, where turning points are labeled LP, limit point). Using A(j)
low,i and A

(j)
up,i, for each

τ
(j)
i , the relative range of bistability was determined as

Δ(j)
AT,i

=
|A(j)

up,i −A
(j)
low,i|

A
(j)
low,i+A

(j)
up,i

2

. (6.29)

(5) Finally Δ̄(j)
AT

, the mean of all Δ(j)
AT,i

was calculated for each network.

The mean Δ̄(j)
AT

can be interpreted as the average range of total concentration AT , where bistability
is possible. That is, in the average over all realisations of a particular network, where bistability was
confirmed (represented by the triplets τ (j)i ) the relative difference between upper and lower bifurcation
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Figure 6.5: Numerical continuation forN4 using AT (total concentration of A) as bifurcation parameter.
Here the value of x1 (concentration of A) is plotted against AT .

point is given by Δ̄(j)
AT

. The significance of this number is based on the following idea: if a certain
network is designed to be a switch, and optimised against noise, its total concentration AT should be
approximately in the centre of the bistability region, that is close to cb =

A1
T+A

2
T

2 . If this is the case,

then AT can in the average vary by at most ± Δ̄
(j)
AT

2 without leaving the bistability range. Thus the Δ̄(j)
AT

seem to be well suited to asses the robustness of the switch-like behaviour against fluctuations of protein
concentration. The values of Δ̄(j)

AT
for N4, N12, N13 and N14 are given in Table 6.5, while Figure 6.6

contains the distribution of the Δ(j)
AT,i

for each network. Apart from network N13, all networks have

N4 N12 N13 N14

Δ̄(j)
AT

0.2562 0.2708 0.0786 0.2773

Table 6.5: Mean values Δ̄(j)
AT

an average value of ≈ 25 % for Δ̄(j)
AT

. Network N13 shows a much lower value (≈ 8 %, see Table 6.5).
Note that in case of N13, a single distributive double-step activation mechanism is responsible for
multistationarity. In the other cases either two double-step activation mechanisms (for network N4) or
an explicit autocatalytic activation (for networks N12 and N14) are responsible for multistationarity.
These results thus suggest that, as a mechanism to cause multistationarity, an autocatalytic activation
is stronger (i.e. more robust to concentration fluctuations) than a distributive activation, since one of
the earlier leads to similar ranges of Δ̄(j)

AT
as two of the latter.
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Figure 6.6: Distribution of Δ(j)
AT,i

for N12, N4, N13, and N14.



Chapter 7

Multistationarity and Beyond

While in the previous chapters biochemical reaction networks have been analysed with respect to
the qualitative phenomenon multistationarity, the topic of this chapter is a different qualitative phe-
nomenon: the occurrence of limit cycles. As it turns out, for some biochemical reaction networks it
is possible to determine analytically points in state space (’critical states’) and in parameter space
(’critical parameters’), where the Jacobian has a zero eigenvalue. Thus it is, for example, possible
to determine critical points (states and parameters), where necessary conditions for saddle node bi-
furcations and certain bifurcations of codimension one (e.g. Takens-Bogdanov type bifurcations) are
satisfied. The occurrence of a Takens-Bogdanov bifurcation can lead to limit cycles, while the only
qualitative behaviour associated with saddle-node bifurcations is multistationarity.
This chapter is organized as follows: in Section 7.1 the Jacobian of f(x, k) := Y Ia v(k, x) is analyzed
with respect to zero eigenvalues and necessary and sufficient conditions for the existence of a saddle-
node bifurcation are given. In Section 7.2 the results are applied to network N4 for the activation of
an MAPK, where the Takens-Bogdanov type bifurcation is used to determine states and parameters,
where the ODEs defined by N4 exhibit limit cycles.

7.1 The Jacobian matrix

Let J (x, k) denote the Jacobian matrix of f(x, k) := Y Ia diag (k) φ (x) as defined in Chapter 2, that
is J (x, k) := Dx f (x, k). The structure of f(x, k) leads to a special form of J (x, k) [35]:

J (x, k) = N diag (k) diag (φ (x)) Y (L)T diag
(
1
x

)
, (7.1)

for x > 0 where 1
x is shorthand for

(
1
x1
, . . . , 1

xn

)T
. In the remainder of this chapter the following

assumption regarding J (x, k) is made:

Assumption 3. The image of J (x, k) is equal to the image of the matrix N , that is im (J (x, k)) =
im (N).

Note that the set of networks that satisfy Assumption 3 is neither empty nor academic, as it includes,
for example, N4, N5 and N6.

7.1.1 Zero eigenvalues of the Jacobian

The following notation will be used: as usual, let S = [Y Ia] and let S ∈ IRn×s, W ∈ IRn×(n−s) be two
matrices whose columns are orthonormal bases for im (Y Ia) and im (Y Ia)

⊥, respectively, with [61]:

S = [S] = im (J (x, k)) ,

S⊥ := [W ] = im (N)⊥ = ker
(
NT

)
.

Then x can be written as
x = ξ (y, z) = S y +W z

91
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with y = ST x ∈ IRs, z = WT x ∈ IRn−s. In the new coordinates y and z the system of ODEs
ẋ = f (x, k) reads

ẏ = ST ẋ = ST f (ξ (y, z) , k) =: g(y, z, k),

ż = WT ẋ = 0
(7.2)

showing the invariance of the subspace im (Y Ia). Consider the reduced system

ẏ = g (y, z, k) = g (y, ν) (7.3)

with ν = (z, k) as parameter vector. The Jacobian Dy g is then given by

Dy g(y, z, k) = ST Dx f (ξ (y, z) , k) S (7.4)

As im (N) is invariant under the flow of ẋ = f (x, k), as the equation ż = 0 in (7.2) shows, Dx f(x, k)
always has n− s eigenvalues λ0 = 0. Values of y, z and k where Dy g(y, z, k) has a zero eigenvalue are
thus candidates for bifurcation points.
The following lemma, based on the fundamental result im (A)⊥ = ker

(
AT

)
for any (m× n)–matrix A

and Fredholm’s Alternative [61], will be used to link zero eigenvalues of Dy g(y, z, k) to zero eigenvalues
of J (ξ (y, z) , k). As for example in [64], an eigenvalue λ is called defective, if its algebraic multiplicity
malg(λ) is greater than its geometric multiplicity mgeo(λ) (i.e. if the multiplicity of λ as a root of the
characteristic polynomial is greater than the number of linear independent eigenvectors corresponding
to λ). Recall

Fact 6. λ0 = 0 is a defective eigenvalue of a matrix A ∈ IRn×n iff there exists an x �= 0 with
x ∈ im (A) ∩ ker (A).

Fact 7. λ0 = 0 is a defective eigenvalue of a matrix A ∈ IRn×n of order r iff there exists a nontrivial
x – w.l.o.g. 0 �= x ∈ im

(
AT

)
– with

Aj x �= 0, j = 0, 1, . . . , r and Ar+1 x = 0.

Such an x will be called principal vector of order r and principal vector of maximal order r,
if, in addition, x /∈ im (A) holds.

Lemma 7. Let A ∈ IRn×n be a matrix of rank s < n. Let S and W be orthonormal bases for im (A)
and ker

(
AT

)
, respectively, and let V be a basis for ker (A). Consider the matrix B1 := ST AS ∈ IRs×s.

1. λ0 = 0 is an eigenvalue of B1 iff λ0 = 0 is a defective eigenvalue of A.

2. λ0 = 0 is a defective eigenvalue of A iff Γ = WTV is singular.

3. If x is a principal vector of order r for A then any y with Sy = Ax is a principal vector of order
r − 1 for B1 – note that y is to be taken as y = STAx ∈ im

(
BT
1

)
.

4. If y is a principal vector of order r for B1 then any x with Sy = Ax is a principal vector of order
r + 1 for A – note that x can be taken to be x# = A#S y ∈ im

(
AT

)
with the Moore–Penrose

inverse A# of A.

5. λ0 = 0 is an algebraically simple eigenvalue of B1 if and only if λ0 = 0 is a defective eigenvalue
of A with malg(λ0) = mgeo(λ0) + 1.

6. λ0 = 0 is an algebraically simple eigenvalue of B1 if and only if B1 has one–dimensional left and
right nullspace [βT ] and [b], respectively, with βT b �= 0.

Proof. Apply the orthonormal transformation matrix φ = (S,W ) ∈ IRn×n to obtain B = φT Aφ with

B =
[
ST AS ST AW

0 0

]
=

[
B1 B2

0 0

]
. (7.5)

Note that one has
A = φB φT = S B1 S

T + S B2W
T (7.6)

and thus
AiS = SBi

1. (7.7)
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ad(1) If λ0 is a defective eigenvalue of A then there exists by Fact 6 a nontrivial v0 ∈ im (A) ∩ ker (A)
so that WT v0 = 0 and v0 = Av1 = S z for suitable nonzero v1 and z. Thus by (7.6) 0 = Av0 =
S B1 S

T v0+0 = S B1z (as ST S = Is). As S is of full rank, B1 z = 0 follows. Vice versa, suppose
that there exists ζ ∈ IRs with B1 ζ = 0, ζ �= 0. Define v := S ζ ∈ im (A). Then WT v = 0 and,
again by (7.6), Av = S B1 S

T v + 0 = S B1 ζ = 0. Thus v ∈ ker (A) so that λ0 is a defective
eigenvalue of A by Fact 6.

ad(2) If λ0 is a defective eigenvalue ofA then we employ Fact 7. Choose a nontrivial x with y := Ax �= 0
and Ay = A2 x = 0. Since y belongs to ker (A) it can be written as y = V z with a nonzero z.
Since y belongs to im (A) it is orthogonal to [W ] = ker

(
AT

)
. Hence Γy = WT V z = 0 for a

nonzero z. Vice versa, if z is a nullvector of Γ = WT V then V z ∈ [V ] = ker (A) , V z �= 0, and
V z is orthogonal to [W ] = im (A)⊥. Hence the nonzero V z belongs to ker (A) and im (A).

ad(3) If x is given as in 3) the element ξ := Ax can be written as ξ = S y with ST ξ = ST Ax =
ST S y = y. Because of (7.7) we have S Bi

1 y = Ai S y = Ai+1 x. Hence y is a principal vector of
order r − 1 for B1 (as S has full column rank).

ad(4) If y is given as in 4) the element η := S y can be written as η = Ax. Because of (7.7) we have –
as above – SBi

1 y = Ai+1 x so that x (e.g. x = x#) is a principal vector of order r + 1 for A.

ad(5) Assume λ0 is a multiple eigenvalue of B1 with two linearly independent nullvectors y1 and y2.
Each yj generates a corresponding principal vector xj of order 1 for A. Since the xj are necessarily
linearly independent, A has 0 with malg(λ0) > mgeo(λ0) + 1. Assume now that λ0 is a defective
eigenvalue of B1 of order r ≥ 1. By 4), λ0 is a defective eigenvalue of A of order r + 1 ≥ 2.
Thereby we have shown ⇐ of 5).
For ⇒ we refer to 3) stating that a principal vector of order 2 for A yields a principal vector of
order 1 for B1. In case λ0 = 0 is a non-defective eigenvalue of A we recall 1) stating that λ0 is
not an eigenvalue of B1 at all.

ad(6) Note that the statement in 6) is a particular case of the one in 2). The equation B1 y = b is
solvable for y iff zT B1 = 0 implies zT b = 0. Since the left nullspace of B1 is spanned by βT , the
equivalence in 6) follows.

�

The following Corollary uses Lemma 7 to establish a link between right (left) principal vectors of A
and right (left) nullvectors of B.

Corollary 5. If B has an algebraically simple eigenvalue λ0 = 0 or, equivalently, if A has λ0 as a
defective eigenvalue with malg(λ0) = mgeo(λ0) + 1, one has the following:
A principal right nullvector a of A yields a right nullvector b of B if b = ST Aa is chosen (with
Aa = S b).
A principal left nullvector αT of A yields a left nullvector βT of B if βT = αT S is chosen (with
αT A = βT ST A).
Vice versa: Nullvectors b and βT of B give rise to corresponding principal vectors a and αT of A of
maximal order 1 via Aa = S b and αT A = βT ST A respectively, that is a = A# S b ∈ im

(
AT

)
and

α = S β ∈ im
(
AT

)
.

Proof. Consult Lemma 7 for right eigenvectors and principal vectors. Turn to left eigenvectors and
principal vectors.
If βT B = 0 for a nonzero βT then αT := βT ST (satisfying αT S = βT ) is nonzero. The equalities
αT = βT ST and αT A = βT ST A imply αT A �= 0 as ST A has full row–rank (proof by contradiction).
Furthermore one deduces αT A2 = βT ST AS ST A = βT B ST A = 0.
Vice versa, given a left principal vector αT �= 0 with αT A �= 0 and αT A2 = 0 we take the nonzero
αT S = βT (with αT = βT ST + σT with σ ∈ ker

(
AT

)
) and verify βT B = βT ST AS = αT AS = 0 (as

AT α ∈ ker
(
AT

)
= [S]⊥). �

As discussed above, Lemma 7 and Corollary 5 establish a link between spectral properties of the
Jacobian A =J (ξ (y, z) , k) and the Jacobian B = Dy g (y, z, k) of the reduced system (7.3).
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7.1.2 Saddle-node bifurcations

In this section the focus is on saddle-node bifurcations. The following well-known theorem gives nec-
essary and sufficient conditions for a saddle-node bifurcation of the system ẏ = g (y, z, k) as defined
in (7.3). Let μ be the component of the parameter vector ν = (z, k) that will be used as bifurcation
parameter.

Theorem 5 (see e.g, [51], p. 330 and [7], p. 497). Suppose (y0, ν0) is a zero of g and suppose that
the s× s matrix Dy g(y0, ν0) has an algebraically simple eigenvalue λ0 = 0 with right eigenvector b and
left eigenvector βT . Furthermore suppose that the following conditions are satisfied:

βT Dμ g(y0, ν0) �= 0, βT
[
D2

y g(y0, ν0)(b, b)
] �= 0. (7.8)

Then there is a smooth curve of zeroes of g passing through (y0, ν0). Depending on the signs of the
expressions in (7.8), there are no or two zeroes near y0 for μ �= μ0 whereas the other components of ν0
remain fixed.

In the remainder of this section it is examined, when conditions (7.8) are satisfied for the system (7.3)
in terms of the Jacobian J (ξ (y, z) , k). First note:

(N1) From Lemma 5 follows that Dy g(y0, ν0) has an algebraically simple eigenvalue λ0 = 0 if and only
if J (ξ (y, z) , k) has λ0 as a defective eigenvalue with malg(λ0) = mgeo(λ0) + 1.

Now, if Dy g(y0, ν0) has an algebraically simple eigenvalue λ0 = 0, observe the following:

(N2) Ad βT Dμ g(y0, μ0) �= 0: if μ is any rate constant ki, then

Dμ g(y0, μ0) = ST Dki f(x, k) = ST N diag (φ(x0)) ei

and therefore
βTDμ g(y0, μ0) = φi (x0)βTST N ei �= 0

for at least one i (as φi(x0) > 0 and [S] = im (N)).

(N3) Ad βT
[
D2

y g(y0, ν0)(b, b)
] �= 0: From Lemma 7 and Corollary 5 follows

βT
[
D2

y g(y0, z0, k0)(b, b)
] �= 0⇔ αT

[
D2

x f(ξ(y0, z0), k0)(Aa,Aa)
] �= 0 (7.9)

with A := J (ξ (y, z) , k), left and right principal vectors αT and a of J (ξ (y, z) , k). To see this,
note that Aa = S b, thus the evaluation of D2

y g at (b, b) and of D2
x f at (Aa,Aa) amounts to the

same. Since αT S = βT (or equivalently αT = βT ST + [WT ]) and since – by the particular form
of f – D2

x f(ξ(y0, z0), k0)(Aa,Aa) ⊂ im (N) the equivalence (7.9) holds true.

As consequence of this discussion the following fact concerning the originally given system (2.4), (2.5)
holds:

Fact 8. The system (2.4), (2.5) has a saddle-node bifurcation at (x0, k0) (within the plane WT x =
WT x0 =: c) if the following conditions are satisfied:

(a) λ0 = 0 is a defective eigenvalue of J(x0, k0) with malg(λ0) = mgeo(λ0) + 1.

(b) αT
[
D2

x f(x0, k0)(Aa,Aa)
] �= 0 is satisfied for left and right principal vectors wT

0 and v0 of J(x0, k0).

Proof. By the present assumptions, Dy g (y0, z0, k0) has λ0 = 0 as a simple eigenvalue at y0 =
ST x0, z0 = WTx0 and k0. By assumption (a) and Note (N2) from above the condition βT Dμ g(y0, μ0) �=
0 is satisfied for at least one choice of μ = ki. Combined with Note (N3) and the assumption (b), all
conditions of Theorem 5 are satisfied and the reduced system (7.3) has thus a saddle-node bifurcation
at y0 = ST x0, z0 = WTx0 and k0. As system (7.3) is on {x : WTx = WTx0 = z0} equivalent to the
original system (2.4), this has a saddle-node bifurcation at (x0, k0) as well. �



7.2. APPLICATION TO A DOUBLE-PHOSPHORYLATION MECHANISM 95

7.2 Application to a double-phosphorylation mechanism

In this section the consequences of Fact 8 for network N4 are determined. As in Section 4.2.1, let E ∈
IR9×6 be a set of generators for the pointed polyhedral cone ker(Y Ia) ∩ IR9

≥0. Then, as in Section 3.1,
the following relation must hold for a solution (x0, k0) to Y Ia v(k0, x0) = 0 (with x0 > 0, k0 > 0):

diag (k0) φ (x0) = E λ (7.10)

for some positive λ ∈ IR6 . By (7.1) and (7.10) the Jacobian J (x0, k0) evaluated at this zero state
is thus N diag (E λ) Y (L)T diag

(
x−10

)
. One has to determine nonzero vectors v with J (x0, k0) v = 0.

With γ := diag
(
x−10

)
v one is thus looking for γ’s with

J (λ) γ = 0, J (λ) := N diag (E λ) Y (L)T .

Thus diag (E λ)Y (L)Tγ ∈ ker (N) and therefore Y (L)T γ = diag
(
(E λ)−1

)
E α, for some α ∈ IR6. This

leads to the following set of equations (note the similarity to (4.1a)–(4.1l)):

γ1 + γ2 =
α1 + α5
λ1 + λ5

, γ3 =
α1
λ1
, γ3 =

α5
λ5

(7.11a)

γ2 + γ4 =
α2 + α6
λ2 + λ6

, γ5 =
α2
λ2
, γ5 =

α6
λ6

(7.11b)

γ6 + γ7 =
α3 + α6
λ3 + λ6

, γ8 =
α3
λ3
, γ8 =

α6
λ6

(7.11c)

γ4 + γ7 =
α4 + α5
λ4 + λ5

, γ9 =
α4
λ4
, γ9 =

α5
λ5

(7.11d)

The system (7.11a) – (7.11d) is solvable, if

α1
λ1

=
α5
λ5

=
α1 + α5
λ1 + λ5

=
α4
λ4

=
α4 + α5
λ4 + λ5

=: κ1

and
α2
λ2

=
α6
λ6

=
α2 + α6
λ2 + λ6

=
α3
λ3

=
α4 + α5
λ4 + λ5

=: κ2.

Using κ1 and κ2 and solving for γ yields:

γ = γ1
(
1, −1, 0, 1, 0, 1, −1, 0, 0)T

+ κ1
(
0, 1, 1, −1, 0, −2, 2, 0, 1)T

+ κ2
(
0, 0, 0, 1, 1, 2, −1, 1, 0)T .

(7.12)

Note that γ as defined in (7.12) is equivalent to μ as in (4.5): both define the same linear subspace
M N4 . Denote this by

γ = MN4

⎡⎣γ1κ1
κ2

⎤⎦ ,
with MN4 as in (4.6a). Now the right null space of J(x0, k0) can be represented as [V (x0)] =
[diag (x0) MN4 ] with V (x0) given by

V (x0) = diag (x0) MN4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x10 0 0
−x20 0 x20
0 0 x30
x40 x40 −x40
0 x50 0
x60 2 x60 −2 x60
−x70 −x70 2 x70
0 x80 0
0 0 x90

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.13)

Since J(x0, k0) ∈ IR9×9 has a 3–dimensional nullspace and thus a 6–dimensional range and since, by
(7.1), the range of J(x0, k0) belongs to im (N), Assumption 3 is satisfied for N4.
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7.2.1 Zero eigenvalues

To check whether J(x0, k0) has λ0 = 0 has a defective eigenvalue consider the matrix Γ in Lemma 7,
now given by Γ (x0) = WT V (x0). It can be obtained as

Γ (x0) =

2
4

−x20 x50 x20 + x30

−x70 −x70 + x80 2x70 + x90

x10 + x40 + x60 x40 + x50 + 2x60 + x80 x30 − x40 − 2x60 + x90

3
5 . (7.14)

Γ(x0) is singular if and only if
Γ (x0) π0 = WT V (x0) π0 = 0 (7.15)

has a nontrivial solution π0 ∈ IR3. Note that

Γ (x0) π0 = WT diag (x0) MN4 π0 = WT diag (MN4 π0) x0

and that [W ] is the orthogonal complement of the stoichiometric subspace SN4 , that is WT S = 0,
where S ∈ IR9×6 is an orthonormal basis for SN4 . To obtain x0, the following observation is useful: if
u ∈ IR9 is a solution to WT u = 0, then ũ = diag

(
1

M π

)
u satisfies WT diag (M π) ũ = 0 (for nonzero

π ∈ IR3). The following results establish parametrizations of points where Γ (x0) is singular:

Corollary 6. Points x0 ∈ IR9 where Γ (x0) is singular are given by

x0 =
S ρ0

MN4 π0
, (7.16a)

with (MN4 π0)i �= 0, i = 1, . . . , 9. Right Eigenvectors γ0 of J (x, λ) with WT γ0 = 0 are given by

γ0 = S ρ0 (7.16b)

Proof. x0 = S ρ0
MN4 π0

follows from the previous discussion. Recall that by (7.12) γ0 = diag (x0) MN4 π0

and thus γ0 = diag
(

S ρ0
MN4 π0

)
MN4 π0 = S ρ0. Note that WT γ0 = 0 by [W ] = S⊥N4

. �

For biochemical reaction networks only positive x0 are of interest. To obtain those, the condition

WT diag (MN4 π0) x0 = 0

must hold for positive x0. The following Corollary can be established:

Corollary 7. The equation
WT diag (MN4 π0) x0 = 0

has a positive solution x0 ∈ IR9
>0 (for some π0 ∈ IR3), if and only if an orthant δ of IR9 exists, where

(i) SN4 ∩ IR9
δ �= ∅

(ii) MN4 ∩ IR9
δ �= ∅.

In this case collect generators of SN4 ∩ IR9
δ and MN4 ∩ IR9

δ in Eδ
SN4

and Eδ
MN4

. Then

x0 =
Eδ
SN4

β

Eδ
MN4

α
, (7.17)

for α, β > 0 of appropriate dimension and
(
Eδ
MN4

α
)
i
�= 0, i = 1, . . . , 9.

Note that a different representation of x0 exists for each orthant, whereMδ
(N4)

∩IR9
δ �= ∅ and SN4

∩IR9
δ �=

∅. For network N4, 14 such orthants exist (see Section 4.3.1, in particular (4.16) and Table 4.1 for
representations of MN4 ∩ IR9

δi
and Table 4.2 representations of SN4 ∩ IR9

δi
).

From Table 4.1 and Table 4.2 follows, that, for example for δ1, all solutions x0 to (7.2.1) can be obtained
as:

xδ10 =
( β1 + β3 + β4 + β5

α1
,
β1
α2

,
β2

α1 + α2
,

β3
α2 + α3

,
β1 + β2
α3

,

β4
α1 + 2 (α2 + α3)

,
β5

α1 + 2α2 + α3
,
β5 + β6
α3

,
β6

α1 + α2

)T
.

(7.18)

Finally one obtains the following Corollary:
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Corollary 8. Given a positive zero (x0, k0) of Y Ia v(k0, x0) = 0, the Jacobian Dμ g(y0, ν0) has the
eigenvalue λ0 = 0 with mgeo(λ0) = 1, if and only if x0 can be parametrized as in (7.17) for some
orthant δ. For a x0 as in (7.17) to be a component of a zero of Y Ia v(k0, x0) = 0, the vector of rate
constants k0 needs to be of the form (see (3.10a)):

k0 = diag
(
φ
(
x−10

))
E λ. (7.19)

Remark 14. Equation (7.16a) and equation (7.19) give an explicit representation of the manifold
of potential critical points (in the sense of the Jacobian Dμ g(y0, ν0) having a geometrically simple
eigenvalue 0). The eigenvalue λ0 = 0 will have algebraic multiplicity 1 too, iff part (6) of Lemma 7
holds true, i.e. if the one–dimensional left nullspace [βT ] is not orthogonal to the right nullspace spanned
by ST V ρ:

1
|β| |ST V ρ| β

T ST V ρ �= 0 . (7.20)

In case the additional hypotheses (7.8) of Theorem 5 are satisfied, saddle-node bifurcations do occur in
the reduced system (7.3) and hence in the full system (2.4).
By Fact 8, these bifurcation conditions can be checked with the right eigenvector V ρ of J and the left
principal vector αT of J satisfying αT = βT ST . �

7.2.2 Saddle-node bifurcations

To illustrate the consequences of Fact 8 and Remark 14, the positive steady states for N4 obtained in
[11] were analyzed. To this end, the parameter vector

k =
(
10.929273, 34.638118, 34.638118, 21.999084, 1.7135134, 1.7135134, 788.27203,

1, 1, 686.21469, 14.271831, 14.271831
)T
.

(7.21)

and the steady state

x(1) =
(
1.7047107, 0.42617769, 0.11461683, 0.84691022, 2.3169421, 0.73726101, 1.3662e− 2,

3.9701114, 0.27817813
)T

were used. Numerical continuation of x(1) using the rate constant k1 as bifurcation parameter revealed
the existence of two positive limit points (c.f. Fig. 7.1): ξ1 at k(1)1 = 10.78047065415938 and ξ2 at
k
(2)
1 = 16.92069563203855:

ξ1 =

⎡⎢⎢⎣
1.5081503832748009e+00
4.1794279971945869e−01
9.8087786724483220e−02
8.7282751801919412e−01
2.3417060335560578e+00
8.9735230240123864e−01
1.1345163975775674e−02
4.0125446673591174e+00
2.3806169866510707e−01

⎤⎥⎥⎦ , ξ2 =
⎡⎢⎢⎣

3.2452663058283555e+00
6.7851703331421120e−01
5.3783000287414795e−01
3.7684592311080473e−01
1.6413895838116406e+00
4.9527633841469319e−02
1.4408058946641877e−01
2.8125430464816645e+00
1.3053278940519168e+00

⎤⎥⎥⎦
Evaluated at each of these points, rank(Γ (ξi)) = 2 (as expected). Corresponding kernel vectors ρ1 and
ρ2 are:

ρ1 =
[

+1.1303636028285451e+00
−8.0163523743329912e−02
+1.2792783092819293e+00

]
, ρ2 =

[
+3.5343229854352359e−01
−5.0805188443278348e−01
+8.8274223950851360e−01

]
The observation rank(Γ (ξi)) = 2 implies that Ai := J

(
ξi, k

(i)
)
has λ0 as a defective eigenvalue. (The

saddle-node bifurcation occurs at (ξi, k(i)), where k(i) = k as (7.21), apart from k
(i)
1 , which is the

value of the bifurcation parameter given above.) Thus Dy g (y, ν) has λ0 as an eigenvalue of geometric
multiplicity 1 (Corollary 8). To show that malg = 1 as well, we use Remark 14 and (7.20): left and
right eigenvectors β1 and b1 of ST A1 S and β2 and b2 of ST A2 S are

β1 =

⎡⎣ −4.1964341933838814e−02
−2.5294006493730586e−01
−1.2501904579758152e−01
−3.0246504922821843e−01
−3.8819920238340994e−01
+8.2246387702299073e−01

⎤⎦ , b1 =
⎡⎣ −7.2991592453109961e−04

+1.7089171544296726e−02
−5.3917073343408051e−01
+1.2651324391400867e−01
−6.8437325239016328e−02
+8.2964635795940922e−01

⎤⎦

β2 =

⎡⎣ −4.2053043375917150e−02
−2.5397520447083777e−01
−1.2652496096167992e−01
−3.2740827851964677e−01
−3.8987406404680935e−01
+8.1149344091673992e−01

⎤⎦ , b2 =
⎡⎣ −4.2053043375917150e−02
−2.5397520447083777e−01
−1.2652496096167992e−01
−3.2740827851964677e−01
−3.8987406404680935e−01
+8.1149344091673992e−01

⎤⎦
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It is straightforward to verify that βT1 b1 �= 0 and βT2 b2 �= 0. Thus malg(λ0) = mgeo(λ0) = 1 for λ0 as
an eigenvalue of ST Ai S (and thus malg(λ0) = mgeo(λ0) + 1 for λ0 as an eigenvalue of Ai). To check
hypothesis (b) of Fact 8 note that D2

y f (x, k) (v, v) evaluated at v ∈ IR9 is given by

D2
y f (x, k) (v, v) =

(
2 v1 v2, 0, 0, 2 v2 v4, 0, 0, 2 v6 v7,

0, 0, 2 v4 v7, 0, 0
)T
.

Using this equation together with αi = S βi and J
(
ξi, k

(i)
)
ai = S bi in (7.9), it is straightforward to

establish that condition (b) is satisfied for (ξ1, k(1)) and (ξ1, k(2)).
To see the consequences of Corollary 8, choose ρ0 ∈ IR6

>0 and π0 ∈ IR3
>0 and verify numerically that

a saddle-node bifurcation occurs at the corresponding pair (x(a), k0) (with x(a) as in (7.16a) and k0 as in
(7.19)): choose, for example, x(a) = (6, 1, 1, 1, 1, 1, 1, 3, 1)T and k0 = (13 , 1, 1, 2, 1, 1, 2,

1
3 ,

1
3 , 2, 1, 1)

T .
Numerical continuation of x(a) using rate constant k1 as bifurcation parameter confirms a saddle-node
bifurcation at x(a) (see Fig. 7.2, where x3 is plotted against k1).
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Figure 7.1: Continuation of x(1) using k1. The figure shows x3, the third component of the state vector.
Along the continuation two positive saddle-node points have been identified (ξ1 and ξ2).
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Figure 7.2: Continuation of x(a), using rate constant k1 as bifurcation parameter. The figure shows x3,
the third component of the state vector. The starting point of the continuation x(a) can be identified
as saddle-node point.

7.2.3 Bifurcations of higher codimension: Bogdanov-Takens

The ideas discussed in the previous section can be used to determine points where bifurcations of higher
codimension can occur. For bifurcations of Bogdanov-Takens type the Jacobian of the reduced system
must have a Jordan block of the form [ 0 1

0 0 ], see e.g. [51, p. 456] or [43, p. 272]).
From Lemma 7 follows that this is the case, iff the Jacobian of the original system has a zero eigenvalue
with algebraic multiplicity three and geometric multiplicity one, that is, the following vectors must



7.2. APPLICATION TO A DOUBLE-PHOSPHORYLATION MECHANISM 99

exist:

J (x, k) γ0 = 0
J (x, k) γ1 = γ0

J (x, k) γ2 = γ1

These are equivalent to the condition

J (x, k) γ0 = 0, WT γ0 = 0 and WT γ1 = 0. (7.22)

From Section 7.2.1 it is known that the first condition is equivalent to Γ (x0) π0 = 0 (in this case
γ0 = diag (x0) MN4 π0). For the remaining conditions recall the special form of the Jacobian

J (λ, x0) = J (λ) diag
(

1
x0

)
with J (λ) = N diag (E λ) Y (L)T

Using Corollary 6 one obtains x0 = S ρ0
MN4 π0

and γ0 = S ρ0. Thus a solution γ1 to

J (λ) diag
(

1
x0

)
γ1 = S ρ0 (7.23)

with WT γ1 = 0 and λ > 0 is required. By definition of J (λ)

[S]⊥ ⊆ [J (λ)]⊥,

thus (7.23) has a solution. Using v := diag
(

1
x0

)
γ1 one obtains the equations

J (λ) v = S ρ0 (7.24a)

WT diag (x0) v = 0 (7.24b)

Using the transformation matrix

U (λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
λ5

0 − λ1
λ5 (λ1+λ5)

0 − 1
λ2+λ6

− 1
λ6

0 − 1
λ6

1
λ4+λ5

0 0 0 0 1
λ2+λ6

1
λ6

0 1
λ6

− 1
λ4+λ5− 1

λ5
0 − 1

λ5
0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
λ4+λ5

0 0 0 0 0 1
λ6

0 1
λ6

0
0 0 0 0 0 0 0 1

λ3+λ6
0

0 1
λ2+λ6

1
λ2+λ6

0 1
λ2+λ6

0 0 0 0
1
λ6

0 1
λ6

1
λ6

1
λ6

1
λ6

0 1
λ6

1
λ6

0 0 0 0 0 0 1
λ3+λ6

1
λ3+λ6

1
λ3+λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
one obtains for (7.24a) [

I6 K̃
03×6 03×3

]
v = U S ρ0,

where

ker (J (λ)) =
[−K̃
I3

]
=MN4 π1.

Thus one obtains
γ1 = diag (x0) [U (λ) S ρ0 +MN4 π1] . (7.25)

Note that U (λ) is invertible for λi > 0, as det (U (λ)) = 1
λ5 (λ1+λ5) (λ4+λ5)λ6

2 (λ2+λ6)
2 (λ3+λ6)

2 . Thus
multiplication with U (λ) is justified. Condition (7.24b) now becomes

WT diag (x0) U (λ) S ρ0 +WT diag (x0) MN4 π = 0,

that is one has to find ρ0 ∈ IR6 and π1 ∈ IR3 such that

Q(x0, λ) ρ0 + Γ (x0) π1 = 0, (7.26)
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where Γ (x0) as in (7.14) and
Q(x0, λ) := WT diag (x0) U (λ) S. (7.27)

Recall that x0 depends on π0 ∈ IR3, ρ0 ∈ IR6 via (7.16a). Equation (7.26) has the following form⎡⎣qT10
qT3

⎤⎦ ρ0 +
⎡⎣gT1gT2
gT3

⎤⎦π1 = 0, (7.28)

where qTi = (qi,1, . . . , qi,6) and gTi = (gi1 , gi2 , gi3) are vectors of rational functions of ρ0i , i = 1, 2, 3,
π0i , i = 1, . . . , 6 and λi, i = 1, . . . , 6. Solve in a first step gT2 π1 = 0 to obtain a solution for π1:

π1 =

⎡⎣ 1 0
0 1
c1 c2

⎤⎦ (
π11

π12

)
,

with c1,2 rational functions of ρ0i , i = 1, 2, 3 and π0i , i = 1, . . . , 6 and π11,2 ∈ IR. The resulting system
is ⎡⎣qT10

qT3

⎤⎦ ρ0 +

⎡⎣g̃T10
g̃T3

⎤⎦ (
π11

π12

)
= 0,

with ⎡⎣g̃T10
g̃T3

⎤⎦ :=

⎡⎣gT1gT2
gT3

⎤⎦ ⎡⎣ 1 0
0 1
c1 c2

⎤⎦ (
π11

π12

)
.

That is [
g̃T1 qT1
g̃T3 qT3

] ⎛⎝π11

π12

ρ0

⎞⎠ = 0.

Multiplication with an invertible matrix, yields[
1 g0 q̃T1
0 0 q̃T3

] ⎛⎝π11

π12

ρ0

⎞⎠ = 0.

Thus q̃T3 ρ0 = 0 must hold. Note that q̃T3 ρ0 = 0 is a lengthy rational functional of the 15 unknowns ρ0i ,
i = 1, . . . , 6, the π0i , i = 1, . . . , 3 and the λi, i = 1, . . . , 6 that fills several rows. If one is interested in
positive x0, the analysis described above is required for each δ whereMN4 ∩IR9

δ �= ∅ and SN4 ∩IR9
δ �= ∅:

in this case xδ0 =
Eδ
SN4

ρ0

Eδ
MN4

π0
from (7.17) and γδ0 = Eδ

S ρ0 have to be used. Note that in this case one has

to look for positive π0 and ρ and arbitrary π11,2 .
To demonstrate the usefulness of this approach, consider π0i = 1, i = 1, . . . , 3, ρ0i = 1, i = 2, . . . 6 and
λi = 1, i = 1, . . . , 5. The resulting rational function in ρ01 and λ6 is given by:

ρ01 = − 1908+2937 λ6+977 λ6
2+40 ρ01

2 (24+36 λ6+11 λ6
2)+8 ρ01 (417+686 λ6+231 λ6

2)

4λ6 (72+57 λ6+10 ρ01
2 (4+3 λ6)+8 ρ01 (23+15 λ6))

(7.29a)

Solving for λ6 as a function of ρ01 one obtains (as one root):

λ6 =
−2937−5776 ρ01−2176 ρ01

2−160 ρ01
3−√(1169505+5047104 ρ01+7668736 ρ01

2+4912832 ρ01
3+1449216 ρ01

4+235520 ρ01
5+25600 ρ01

6)

2 (977+2076 ρ01+920 ρ01
2+120 ρ01

3)

(7.29b)
For ρ01 ∈ (−5, 5) equation (7.29b) is plotted in Fig. 7.3. For example, in the interval (−0.721918, −0.634033)
one obtains positive values of λ6. Choosing ρ01 = −0.7 yields λ6 = 0.363018 and

x0 =
(
2.3, −0.7, 1

2
,
1
2
, 0.3,

1
5
,
1
4
, 2,

1
2

)T

(7.30a)

and thus

k0 = (−1.24224, 2, 2, −3.89434, 3.33333, 1.21006, 27.2604, 0.5, 0.181509, 16, 2, 2)T . (7.30b)
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Figure 7.3: Plot of (7.29b) for ρ11 ∈ (−5, 5)

Using this data for a numerical continuation with respect to the conserved moieties, one finds that
at (x0, k0) indeed a Takens-Bogdanov bifurcation occurs (that is sufficient conditions for a Takens-
Bogdanov bifurcations are satisfied as well; see Figure 7.4, where (x0, k0) are used as initial point of the
continuation. The numerical continuation software Matcont finds a Takens-Bogdanov bifurcation after
one step.). Note that the bifurcation diagram depicted in Fig. 7.4 is quite involved: in the c1-c3 plane

6.25 6.3 6.35 6.4
0.09

0.095

0.1

0.105

c
3

c 1

BT

BT

GH

Figure 7.4: Continuation of (x0, k0) as given in (7.30a) and (7.30b)with respect c1 (total concentration
of E1) and c3 (total concentration of A)

the Takens-Bogdanov bifurcation at (0.1,6.3) is followed by another Takens-Bogdanov bifurcation at
(0.098678,6.2938) and a Generalized-Hopf bifurcation at (0.09455,6.2859). To gather further numerical
evidence for the Takens-Bogdanov bifurcation an initial point in the parameter region where sustained
oscillations occur was chosen:
Figure 7.5 shows the numerical integration of the ODES x0, k0 as given above and c1 = 0.099603388.
Fig. 7.5 suggest a limit cycle with period T = 0.4. Using this cycle as an initial point for a numerical
continuation of limit cycles in Matcont, the bifurcation diagram depicted in Fig. 7.6 was obtained.
Here two bifurcations of limit cycles occur: a limit point of cycles (LPC) or fold bifurcation of cycles
(see e.g. [43, p. 149]) at (c1, c3) = (0.099225, 6.3101) and at (c1, c3) = (0.09852, 6.3099). The second
fold bifurcation of cycles is immediately followed by a neutral saddle (of limit cycles labeled NS) at
(c1, c3) = (0.098457, 6.3099).
Note that for obtaining Fig. 7.6 the continuation of limit cycles was performed using c1 and c3 as
bifurcation parameters.

Remark 15. For the numerical analysis used to obtain Fig. 7.5 and Fig. 7.6 each ODE was scaled by
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a factor s = 100. This corresponds to a time scale t := s τ . Then x(t) = x(s τ) and x
′
:= d

d τ x(s τ) =
d
d t x(s τ)

d
d τ t = s ẋ(t) = s Y Ia v(k, x(t)).

Remark 16. Equation (7.29a) has been obtained using generators of MN4 ∩ R9
δ1

and SN4 ∩ IR9
δ1

for
δ1 as in (4.16). Obtaining negative values for ρ01 is justified in this case, as generators of a cone are
a basis for the linear subspace that contains the cone, in this case MN4 . The idea was to try to find
solutions to (7.29a) with as many positive components as possible.
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Figure 7.5: Numerical integration starting at x1 using k0
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Figure 7.6: Continuation of limit cycles starting with the limit cycle shown in Fig. 7.5



Chapter 8

Conclusions

In this thesis multistationarity in (bio)chemical reaction networks with mass action kinetics is analysed.
As variables typically describe concentrations of chemical species, only positive steady state solutions
are of interest. In general one therefore has to look for positive solutions to a system of polynomial
equations with unknown coefficients. In its most general form, these equations are given by (see
Chapter 2):

Y Ia v(k, x) = 0

WT x = c.

From these it is possible to derive a system of nonlinear equations with known coefficients:

Y (L)T μ = ln
E ν

E λ
.

Vectors μ and ν > 0,λ > 0, that are solutions to these equations, define, in general, a parameterization
of pairs of steady states a, b with Y Ia v(k, a) = Y Ia v(k, b) = 0 (Lemma 1, Chapter 3). That is,
one has established an infinite set of positive solutions to the polynomial equations Y Ia v(k, x) = 0.
But, in general, these solutions do not satisfy the conservation relationsWT a = WT b. Once solutions
μ ∈ IRn and ν, λ ∈ IRp

>0 to the nonlinear equation Y (L)T μ = ln E ν
E λ have been established, one has

to find a vector v ∈ S with sign (v) = sign (μ) (Lemma 3, Theorem 3) in order to find solutions with
WT a = WT b (Lemma 3, Theorem 3).
Note that in special cases Theorem 3 contains in fact necessary and sufficient conditions for multi-
stationarity in a given (bio)chemical reaction network. This is the case, if vectors ν, λ ∈ IRn

>0 can
be determined independently of vector μ (as is, for example the case for the networks discussed in
Chapter 4 and 6). In this case one obtains an explicit representation of μ: μ ∈ M, a linear subspace
of IRn. Thus one can test all orthants δ of IRn for S ∩ IRn

δ �= ∅ and M ∩ IRn
δ �= ∅. If a δ can be

established with S∩IRn
δ �= ∅ andM∩IRn

δ �= ∅, then multistationarity is established. If no δ exists, then
multistationarity is excluded by Theorem 3. However, if vectors ν > 0 and λ > 0 cannot be determined
independently of vector μ (as, for example, for the networks discussed in Section 5), then Theorem 3
gives only sufficient conditions for multistationarity: if, for a given μ, one can establish a v ∈ S with
sign (μ) = sign (v), then multistationarity is established, if no such v ∈ S can be established, there is
no guarantee that there does not exist a different μ that satisfies this condition.
The usefulness of the methodology developed in Chapter 3 has been demonstrated by applying it
to (bio)chemical reaction networks from signal transduction in Chapter 4 and cell cycle control in
Chapter 5. Of particular interest in a systems biology oriented context is the potential application for
model discrimination (as discussed in Chapter 4.5 and 5.1) and as an explanation for robustness (as
discussed in Chapter 6). Note that both is possible, if vectors ν > 0 and λ > 0 can be determined
independently of vector μ. In this case it is furthermore possible to determine potential bifurcation
points analytically (as discussed in Chapter 7). Thus, this thesis closes with one question for further
research: which structural properties of a (bio)chemical reaction network allow to determine vectors ν,
λ ∈ IRp

>0 can be independently of vector μ?
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Appendix A

Models for the activation of an
MAPK(K)

A.1 Distributive mechanism for phosphorylation and dephos-
phorylation

A.1.1 Species and complexes of network N4

Species xi Complex yi
A x1 A+ E1 y1
E1 x2 AE1 y2
AE1 x3 Ap + E1 y3
Ap x4 ApE1 y4

Ap E1 x5 App + E1 y5
App x6 App + E2 y6
E2 x7 App E2 y7

App E2 x8 Ap + E2 y8
Ap E2 x9 ApE2 y9

A+ E2 y10

A.1.2 Ordinary differential equations

ẋ1 = −k1 x1 x2 + k2 x3 + k12 x9 (A.1a)
ẋ2 = −k1 x1 x2 + (k2 + k3)x3 − k4 x2 x4 + (k5 + k6)x5 (A.1b)
ẋ3 = k1 x1 x2 + (−k2 − k3)x3 (A.1c)
ẋ4 = k3 x3 − k4 x2 x4 + k5 x5 + k9 x8 − k10 x4 x7 + k11 x9 (A.1d)
ẋ5 = k4 x2 x4 + (−k5 − k6)x5 (A.1e)
ẋ6 = k6 x5 − k7 x6 x7 + k8 x8 (A.1f)
ẋ7 = −k7 x6 x7 + (k8 + k9)x8 − k10 x4 x7 + (k11 + k12)x9 (A.1g)
ẋ8 = k7 x6 x7 + (−k8 − k9)x8 (A.1h)
ẋ9 = k10 x4 x7 + (−k11 − k12)x9 (A.1i)

x2 + x3 + x5 = c1 (A.2a)
x7 + x8 + x9 = c2 (A.2b)

x1 + x3 + x4 + x5 + x6 + x8 + x9 = c3 (A.2c)

105
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A.1.3 Structural data

The ordinary differential equations (A.1a) – (A.1i) can be written as

ẋ = Y Ia diag (k) φ (x) (A.3a)

using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.3b)

Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.3c)

and the monomial vector

φ (x) = (x1 x2, x3, x3, x2 x4, x5, x5, x6 x7, x8, x8, x4 x7, x9, x9 )
′ (A.3d)

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)′
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.3e)

The conservation relations (A.2a) – (A.2c) can be written as

WT x = c (A.4a)

using the matrix

WT =

⎡⎣ 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1
1 0 1 1 1 1 0 1 1

⎤⎦ (A.4b)

and the vector c = ( c1, c2, c3 )
T .



A.2. PROCESSIVE PHOSPHORYLATION AND DISTRIBUTIVE DEPHOSPHORYLATION 107

A.2 A processive mechanism for phosphorylation and a dis-
tributive mechanism for dephosphorylation

A.2.1 Species and complexes of network N5

Species xi Complex yi
A x1 A+ E1 y1
E1 x2 AE1 y2
AE1 x3 Ap E1 y3
ApE1 x4 App + E1 y4
App x5 App + E2 y5
E2 x6 App E2 y6

AppE2 x7 Ap + E2 y7
Ap x8 Ap E2 y8

ApE2 x9 A+ E2 y9

A.2.2 Ordinary differential equations

ẋ1 = −k1 x1 x2 + k2 x3 + k11 x9 (A.5a)
ẋ2 = −k1 x1 x2 + k2 x3 + k5 x4 (A.5b)
ẋ3 = k1 x1 x2 + (−k2 − k3)x3 + k4 x4 (A.5c)
ẋ4 = k3 x3 + (−k4 − k5)x4 (A.5d)
ẋ5 = k5 x4 − k6 x5 x6 + k7 x7 (A.5e)
ẋ6 = −k6 x5 x6 + (k7 + k8)x7 − k9 x6 x8 + (k10 + k11)x9 (A.5f)
ẋ7 = k6 x5 x6 + (−k7 − k8)x7 (A.5g)
ẋ8 = k8 x7 − k9 x6 x8 + k10 x9 (A.5h)
ẋ9 = k9 x6 x8 + (−k10 − k11)x9 (A.5i)

x2 + x3 + x4 = c1 (A.6a)
x6 + x7 + x9 = c2 (A.6b)

x1 + x3 + x4 + x5 + x7 + x8 + x9 = c3 (A.6c)

A.2.3 Structural data

The ordinary differential equations (A.9a) – (A.9h) can be written as

ẋ = Y Ia diag (k) φ (x) (A.7a)
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using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.7b)

Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.7c)

and the monomial vector

φ (x) = (x1 x2, x3, x3, x4, x4, x5 x6, x7, x7, x6 x8, x9, x9 )
. (A.7d)

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)′
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.7e)

The conservation relations (A.10a) – (A.10c) can be written as

WT x = c (A.8a)

using the matrix

WT =

⎡⎣ 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1
1 0 1 1 1 0 1 1 1

⎤⎦ (A.8b)

and the vector c = ( c1, c2, c3 )
T .
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A.3 Processive mechanism for phosphorylation and dephos-
phorylation

A.3.1 Species and complexes of network N6

Species xi Complex yi
A x1 A+ E1 y1
E1 x2 AE1 y2
AE1 x3 Ap E1 y3
ApE1 x4 App + E1 y4
App x5 App + E2 y5
E2 x6 App E2 y6

AppE2 x7 Ap E2 y7
ApE2 x8 A+ E2 y8

A.3.2 Ordinary differential equations

ẋ1 = −k1 x1 x2 + k2 x3 + k10 x8 (A.9a)
ẋ2 = −k1 x1 x2 + k2 x3 + k5 x4 (A.9b)
ẋ3 = k1 x1 x2 − (k2 + k3)x3 + k4 x4 (A.9c)
ẋ4 = k3 x3 − (k4 + k5)x4 (A.9d)
ẋ5 = k5 x4 − k6 x5 x6 + k7 x7 (A.9e)
ẋ6 = −k6 x5 x6 + k7 x7 + k10 x8 (A.9f)
ẋ7 = k6 x5 x6 − (k7 + k8)x7 + k9 x8 (A.9g)
ẋ8 = k8 x7 − (k9 + k10)x8 (A.9h)

x2 + x3 + x4 = c1 (A.10a)
x6 + x7 + x8 = c2 (A.10b)

x1 + x3 + x4 + x5 + x7 + x8 = c3 (A.10c)

A.3.3 Structural data

The ordinary differential equations (A.9a) – (A.9h) can be written as

ẋ = Y Ia diag (k) φ (x) (A.11a)

using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.11b)

Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.11c)
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and the monomial vector

φ (x) = (x1 x2, x3, x3, x4, x4, x5 x6, x7, x7, x8, x8 )
′ (A.11d)

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)′
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.11e)

The conservation relations (A.10a) – (A.10c) can be written as

WT x = c (A.12a)

using the matrix

WT =

⎡⎣ 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1
1 0 1 1 1 0 1 1

⎤⎦ (A.12b)

and the vector c = ( c1, c2, c3 )
T .

A.4 Open systems

A.4.1 Network N4+ N7

The network is given by

A+E1

k1

AE1
k2

k3 Ap +E1

k4

Ap E1
k5

k6 App +E1

App +E2

k7

App E2
k8

k9 Ap +E2

k10

Ap E2
k11

k12 A+E2

E1

k13

0
k14

(N15)

For network N15 the equation

Y (L)T μ = ln
E ν

E λ
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reads

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

(A.13)

μ3 = ln
ν1
λ1

(A.14)

μ3 = ln
ν6
λ6

(A.15)

μ2 + μ4 = ln
ν2 + ν7
λ2 + λ7

(A.16)

μ5 = ln
ν2
λ2

(A.17)

μ5 = ln
ν7
λ7

(A.18)

μ6 + μ7 = ln
ν3 + ν7
λ3 + λ7

(A.19)

μ8 = ln
ν3
λ3

(A.20)

μ8 = ln
ν7
λ7

(A.21)

μ4 + μ7 = ln
ν4 + ν6
λ4 + λ6

(A.22)

μ9 = ln
ν4
λ4

(A.23)

μ9 = ln
ν6
λ6

(A.24)

0 = ln
ν5
λ5

(A.25)

μ2 = ln
ν5
λ5
. (A.26)

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν6
λ6

ln
ν2
λ2

= ln
ν7
λ7

ln
ν3
λ3

= ln
ν7
λ7

ln
ν4
λ4

= ln
ν6
λ6

ν5 = λ5.

That is, if

ν =
(
λ1

ν6
λ6
, λ2

ν7
λ7
, λ3

ν7
λ7
, λ4

ν6
λ6
, λ5, ν6, ν7

)T

,

with λ ∈ IR7
>0 and ν6, ν7 > 0 free. Note that it is possible to determine ν and λ ∈ IR7

>0 independent
of μ ∈ IR9. Using ν as above, one obtains

ln
ν1 + ν6
λ1 + λ6

= ln
ν4 + ν4
λ4 + λ6

= ln
ν6
λ6

and
ln

ν2 + ν7
λ2 + λ7

= ln
ν3 + ν7
λ3 + λ7

= ln
ν7
λ7
.

Using κ1 := ln ν6
λ6

and κ2 := ln ν7
λ7

in the right hand side of (A.13) – (A.26) and solving for μ yields

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
1 0
0 1
0 1

−1 2
1 −1
0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
κ1
κ2

)
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A.4.2 Network N4+ N8

The network is given by

A+E1

k1

AE1
k2

k3 Ap +E1

k4

Ap E1
k5

k6 App +E1

App +E2

k7

App E2
k8

k9 Ap +E2

k10

Ap E2
k11

k12 A+E2

E2

k13

0
k14

(N16)

For network N16 the equation

Y (L)T μ = ln
E ν

E λ

reads

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

μ3 = ln
ν1
λ1

μ3 = ln
ν6
λ6

μ2 + μ4 = ln
ν2 + ν7
λ2 + λ7

μ5 = ln
ν2
λ2

μ5 = ln
ν7
λ7

μ6 + μ7 = ln
ν3 + ν7
λ3 + λ7

μ8 = ln
ν3
λ3

μ8 = ln
ν7
λ7

μ4 + μ7 = ln
ν4 + ν6
λ4 + λ6

μ9 = ln
ν4
λ4

μ9 = ln
ν6
λ6

0 = ln
ν5
λ5

μ7 = ln
ν5
λ5

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν6
λ6

ln
ν2
λ2

= ln
ν7
λ7

ln
ν3
λ3

= ln
ν7
λ7

ln
ν4
λ4

= ln
ν6
λ6

ν5 = λ5

That is, if

ν =
(
λ1

ν6
λ6
, λ2

ν7
λ7
, λ3

ν7
λ7
, λ4

ν6
λ6
, λ5, ν6, ν7

)T

,

with λ ∈ IR7
>0 and ν6, ν7 > 0 free. (Note that ν as given above is equal to the vector ν obtained for

network N15 in Section A.4.1). As network N15 it is possible to determine ν and λ ∈ IR7
>0 independent

of μ ∈ IR9. Using ν as above, one obtains

ln
ν1 + ν6
λ1 + λ6

= ln
ν4 + ν6
λ4 + λ6

= ln
ν6
λ6
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and

ln
ν2 + ν7
λ2 + λ7

= ln
ν3 + ν7
λ3 + λ7

= ln
ν7
λ7
.

Using κ1 := ln ν6
λ6

and κ2 := ln ν7
λ7

in the right hand side of (A.13) – (A.26) and solving for μ yields

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 1
1 0
1 0
0 1
0 1
0 0
0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
κ1
κ2

)

A.4.3 Network N4+ N9

The network is given by

A+E1

k1

AE1
k2

k3 Ap +E1

k4

Ap E1
k5

k6 App +E1

App +E2

k7

App E2
k8

k9 Ap +E2

k10

Ap E2
k11

k12 A+E2

E1

k13

0
k14

k15

E2
k16

(N17)

For network N17 the equation

Y (L)T μ = ln
E ν

E λ
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reads

μ1 + μ2 = ln
ν1 + ν7
λ1 + λ7

μ3 = ln
ν1
λ1

μ3 = ln
ν7
λ7

μ2 + μ4 = ln
ν2 + ν8
λ2 + λ8

μ5 = ln
ν2
λ2

μ5 = ln
ν8
λ8

μ6 + μ7 = ln
ν3 + ν8
λ3 + λ8

μ8 = ln
ν3
λ3

μ8 = ln
ν8
λ8

μ4 + μ7 = ln
ν4 + ν7
λ4 + λ7

μ9 = ln
ν4
λ4

μ9 = ln
ν7
λ7

μ2 = ln
ν5
λ5

0 = ln
ν5
λ5

0 = ln
ν6
λ6

μ7 = ln
ν6
λ6

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν7
λ7

ln
ν2
λ2

= ln
ν8
λ8

ln
ν3
λ3

= ln
ν8
λ8

ln
ν4
λ4

= ln
ν7
λ7

ν5 = λ5 ν6 = λ6.

Thus one obtains

ν1 = λ1
ν7
λ7

ν2 = λ2
ν8
λ8

ν3 = λ3
ν8
λ8

ν4 = λ4
ν8
λ8
.

Note that μ2 = 0 and μ7 = 0 and thus μ4 = ln ν2+ν8
λ2+λ8

and μ4 = ln ν4+ν7
λ4+λ7

follows. Thus one finally
obtains ν7

λ7
= ν8

λ8
and therefore

ν =
(
λ1

ν8
λ8
, λ2

ν8
λ8
, λ3

ν8
λ8
, λ4

ν8
λ8
, λ5, λ6, λ7

ν8
λ8
, ν8

)T

,

with λ ∈ IR8
>0, ν8 > 0, free. As network N15 it is possible to determine ν and λ ∈ IR8

>0 independent of
μ ∈ IR9. Using ν as above, one obtains

ln
ν1 + ν7
λ1 + λ7

= ln
ν2 + ν8
λ2 + λ8

= ln
ν3 + ν8
λ3 + λ8

= ln
ν4 + ν7
λ4 + λ7

= ln
ν8
λ8

Using κ1 := ln ν8
λ8

and solving for μ yields

μ =
[
1, 0, 1, 1, 1, 1, 0, 1, 1

]T
κ1
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A.4.4 Network N5+ N7

The network is given by

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8 Ap +E2

k9

Ap E2
k10

k11 A+E2

E1

k12

0
k13

(N18)

For network N18 the equation

Y (L)T μ = ln
E ν

E λ
reads

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

μ3 = ln
ν1
λ1

μ3 = ln
ν2 + ν6
λ2 + λ6

μ4 = ln
ν2
λ2

μ4 = ln
ν6
λ6

μ5 + μ6 = ln
ν3 + ν6
λ3 + λ6

μ7 = ln
ν3
λ3

μ7 = ln
ν6
λ6

μ6 + μ8 = ln
ν4 + ν6
λ4 + λ6

μ9 = ln
ν4
λ4

μ9 = ln
ν6
λ6

0 = ln
ν5
λ5

μ2 = ln
ν5
λ5

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν6
λ2 + λ6

ln
ν2
λ2

= ln
ν6
λ6

ln
ν3
λ3

= ln
ν6
λ6

ln
ν4
λ4

= ln
ν6
λ6

ν5 = λ5

Thus one obtains

ν2 = λ2
ν6
λ6
, ν3 =

ν6
λ6
, ν4 = λ4

ν6
λ6
.

Note that ν2+ν6
λ2+λ6

= ν6
λ6

and thus ν1 = λ1
ν6
λ6
, as well. Therefore

ν =
(
λ1

ν6
λ6
, λ2

ν6
λ6
,
ν6
λ6
, λ4

ν6
λ6
, λ5, ν6

)T

with λ ∈ IR6
>0, ν6 > 0, free. As for network N15 it is possible to determine ν and λ ∈ IR6

>0 independent
of μ ∈ IR9. Using ν as above, one obtains

ν1 + ν6
λ1 + λ6

=
ν3 + ν6
λ3 + λ6

= ln
ν4 + ν6
λ4 + λ6

= ln
ν6
λ6
.
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Using κ1 := ln ν6
λ6

and solving for μ yields

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 0
0 1
0 1
1 0
−1 1
0 1
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
μ8
κ1

)
.

A.4.5 Network N5+ N8

The network is given by

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8 Ap +E2

k9

Ap E2
k10

k11 A+E2

E2

k12

0
k13

(N19)

For network N19 the equation

Y (L)T μ = ln
E ν

E λ

reads

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

μ3 = ln
ν1
λ1

μ3 = ln
ν2 + ν6
λ2 + λ6

μ4 = ln
ν2
λ2

μ4 = ln
ν6
λ6

μ5 + μ6 = ln
ν3 + ν6
λ3 + λ6

μ7 = ln
ν3
λ3

μ7 = ln
ν6
λ6

μ6 + μ8 = ln
ν4 + ν6
λ4 + λ6

μ9 = ln
ν4
λ4

μ9 = ln
ν6
λ6

0 = ln
ν5
λ5

μ6 = ln
ν5
λ5

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν6
λ2 + λ6

ln
ν2
λ2

= ln
ν6
λ6

ln
ν3
λ3

= ln
ν6
λ6

ln
ν4
λ4

= ln
ν6
λ6

ν5 = λ5
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Note, that these conditions are equivalent to those obtained for A.4.4. Thus one obtains the same
solution ν ∈ IR6

>0, as in Section A.4.4:

ν =
(
λ1

ν6
λ6
, λ2

ν6
λ6
,
ν6
λ6
, λ4

ν6
λ6
, λ5, ν6

)T

with λ ∈ IR6
>0, ν6 > 0, free. As for network N15 it is possible to determine ν and λ ∈ IR6

>0 independent
of μ ∈ IR9. Using ν as above, one obtains

ν1 + ν6
λ1 + λ6

=
ν3 + ν6
λ3 + λ6

= ln
ν4 + ν6
λ4 + λ6

= ln
ν6
λ6
.

Using κ1 := ln ν6
λ6

and solving for μ yields

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
1 0
0 1
0 1
0 1
0 0
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
μ2
κ1

)
.

A.4.6 Network N5+ N9

The network is given by

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8 Ap +E2

k9

Ap E2
k10

k11 A+E2

E1

k12

0
k13

k14

E2
k15

(N20)

For network N20 the equation

Y (L)T μ = ln
E ν

E λ
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reads

μ1 + μ2 = ln
ν1 + ν7
λ1 + λ7

μ3 = ln
ν1
λ1

μ3 = ln
ν2 + ν7
λ2 + λ7

μ4 = ln
ν2
λ2

μ4 = ln
ν7
λ7

μ5 + μ6 = ln
ν3 + ν7
λ3 + λ7

μ7 = ln
ν3
λ3

μ7 = ln
ν7
λ7

μ6 + μ8 = ln
ν4 + ν7
λ4 + λ7

μ9 = ln
ν4
λ4

μ9 = ln
ν7
λ7

μ2 = ln
ν5
λ5

0 = ln
ν5
λ5

0 = ln
ν6
λ6

μ6 = ln
ν6
λ6

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν7
λ2 + λ7

ln
ν2
λ2

= ln
ν7
λ7

ln
ν3
λ3

= ln
ν7
λ7

ln
ν4
λ4

= ln
ν7
λ7

ν5 = λ5 ν6 = λ6.

Thus one obtains

ν2 = λ2
ν7
λ7
, ν3 =

ν7
λ7
, ν4 = λ4

ν7
λ7
.

Note that ν2+ν7
λ2+λ7

= ν7
λ7

and thus ν1 = λ1
ν7
λ7
, as well.

ν =
(
λ1

ν7
λ7
, λ2

ν7
λ7
,
ν7
λ7
, λ4

ν7
λ7
, λ5, λ6, ν7

)T

with λ ∈ IR7
>0, ν7 > 0, free. As for network N15 it is possible to determine ν and λ ∈ IR7

>0 independent
of μ ∈ IR9. Using ν as above, one obtains

ν1 + ν7
λ1 + λ7

=
ν3 + ν7
λ3 + λ7

= ln
ν4 + ν7
λ4 + λ7

= ln
ν7
λ7
.

Using κ1 := ln ν7
λ7

and solving for μ yields

μ =
[
1, 0, 1, 1, 1, 0, 1, 1, 1

]T
κ1.
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A.4.7 Network N6+ N7

The network is given by

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8

Ap E2
k9

k10 A+E2

E1

k13

0
k14

(N21)

For network N21 the equation

Y (L)T μ = ln
E ν

E λ

reads

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

μ3 = ln
ν1
λ1

μ3 = ln
ν2 + ν6
λ2 + λ6

μ4 = ln
ν2
λ2

μ4 = ln
ν6
λ6

μ5 + μ6 = ln
ν3 + ν6
λ3 + λ6

μ7 = ln
ν3
λ3

μ7 = ln
ν4 + ν6
λ4 + λ6

μ8 = ln
ν4
λ4

μ8 = ln
ν6
λ6

0 = ln
ν5
λ5

μ2 = ln
ν5
λ5

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν6
λ2 + λ6

ln
ν2
λ2

= ln
ν6
λ6

ln
ν3
λ3

= ln
ν4 + ν6
λ4 + λ6

ln
ν4
λ4

= ln
ν6
λ6

ν5 = λ5.

Thus one obtains

ν2 = λ2
ν6
λ6
, ν4 = λ4

ν6
λ6
.

Note that therefore ν2+ν6
λ2+λ6

= ν4+ν6
λ4+λ6

= ν6
λ6

and thus ν1 = λ1
ν6
λ6

and ν3 = λ3
ν6
λ6
. Thus one finally obtains

ν =
(
λ1

ν6
λ6
, λ2

ν6
λ6
,
ν6
λ6
, λ4

ν6
λ6
, λ5, ν6

)T

with λ ∈ IR6
>0, ν6 > 0, free. As for network N15 it is possible to determine ν and λ ∈ IR6

>0 independent
of μ ∈ IR9. Using ν as above, one obtains

ν1 + ν6
λ1 + λ6

=
ν3 + ν6
λ3 + λ6

=
ν6
λ6
.
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Using κ1 := ln ν6
λ6

and solving for μ yields

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 0
0 1
0 1
−1 1
1 0
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
μ6
κ1

)

A.4.8 Network N6+ N8

The network is given by

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8

Ap E2
k9

k10 A+E2

E2

k13

0
k14

(N22)

For network N22 the equation

Y (L)T μ = ln
E ν

E λ

reads

μ1 + μ2 = ln
ν1 + ν6
λ1 + λ6

μ3 = ln
ν1
λ1

μ3 = ln
ν2 + ν6
λ2 + λ6

μ4 = ln
ν2
λ2

μ4 = ln
ν6
λ6

μ5 + μ6 = ln
ν3 + ν6
λ3 + λ6

μ7 = ln
ν3
λ3

μ7 = ln
ν4 + ν6
λ4 + λ6

μ8 = ln
ν4
λ4

μ8 = ln
ν6
λ6

0 = ln
ν5
λ5

μ6 = ln
ν5
λ5

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν6
λ2 + λ6

ln
ν2
λ2

= ln
ν6
λ6

ln
ν3
λ3

= ln
ν4 + ν6
λ4 + λ6

ln
ν4
λ4

= ln
ν6
λ6

ν5 = λ5.
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Note, that these conditions are equivalent to those obtained for A.4.7. Thus one obtains the same
solution ν ∈ IR6

>0, as in Section A.4.7:

ν =
(
λ1

ν6
λ6
, λ2

ν6
λ6
,
ν6
λ6
, λ4

ν6
λ6
, λ5, ν6

)T

with λ ∈ IR6
>0, ν6 > 0, free. As for network N15 it is possible to determine ν and λ ∈ IR6

>0 independent
of μ ∈ IR8. Using ν as above, one obtains

ν1 + ν6
λ1 + λ6

=
ν3 + ν6
λ3 + λ6

=
ν6
λ6
.

Using κ1 := ln ν6
λ6

and solving for μ yields

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
1 0
0 1
0 1
0 1
0 0
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
μ2
κ1

)
.

A.4.9 Network N6+ N9

The network is given by

A+E1

k1

AE1
k2

k3

Ap E1
k4

k5 App +E1

App +E2

k6

App E2
k7

k8

Ap E2
k9

k10 A+E2

E1

k11

0
k12

k13

E2
k14

(N23)

For network N23 the equation

Y (L)T μ = ln
E ν

E λ
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reads

μ1 + μ2 = ln
ν1 + ν7
λ1 + λ7

μ3 = ln
ν1
λ1

μ3 = ln
ν2 + ν7
λ2 + λ7

μ4 = ln
ν2
λ2

μ4 = ln
ν7
λ7

μ5 + μ6 = ln
ν3 + ν7
λ3 + λ7

μ7 = ln
ν3
λ3

μ7 = ln
ν4 + ν7
λ4 + λ7

μ8 = ln
ν4
λ4

μ8 = ln
ν7
λ7

μ2 = ln
ν5
λ5

0 = ln
ν5
λ5

0 = ln
ν6
λ6

μ6 = ln
ν6
λ6

These equations are solvable, if and only if

ln
ν1
λ1

= ln
ν2 + ν7
λ2 + λ7

ln
ν2
λ2

= ln
ν7
λ7

ln
ν3
λ3

= ln
ν4 + ν7
λ4 + λ7

ln
ν4
λ4

= ln
ν7
λ7

ν5 = λ5 ν6 = λ6.

Thus one obtains

ν2 = λ2
ν7
λ7
, ν3 = λ3

ν7
λ7
, ν4 = λ4

ν7
λ7
.

and therefore

ν =
(
λ1

ν7
λ7
, λ2

ν7
λ7
, λ3

ν7
λ7
, λ4

ν7
λ7
, λ5, λ6, ν7

)T

,

with λ ∈ IR7
>0, ν7 > 0, free. As for network N15 it is possible to determine ν and λ ∈ IR7

>0 independent
of μ ∈ IR9. Using ν as above, one obtains

ν1 + ν7
λ1 + λ7

=
ν3 + ν7
λ3 + λ7

=
ν7
λ7
.

Using κ1 := ln ν7
λ7

and solving for μ yields

μ =
[
1, 0, 1, 1, 1, 0, 1, 1

]T
κ1.
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Models for cell cycle regulation

B.1 Binary complex model

B.1.1 Species and complexes of network N10

Species xi Complex yi
Sic1 x1 0 y1
Sic1P x2 Sic1 y2
Clb x3 Sic1P y3

Clb · Sic1 x4 Sic1 · Clb y4
Clb · Sic1P x5 Clb+ Sic1 y5
Cdc14 x6 Clb · Sic1 y6

Sic1P · Cdc14 x7 Clb y7
Clb · Sic1P · Cdc14 x8 Clb+ Sic1P y8

Sic1 · Clb x9 Clb · Sic1P y9
Sic1P + Cdc14 y10
Sic1P · Cdc14 y11
Sic1 + Cdc14 y12

Clb · Sic1P + Cdc14 y13
Clb · Sic1P · Cdc14 y14
Clb · Sic1 + Cdc14 y15

B.1.2 Ordinary differential equations

ẋ1 = k1 − k2 x1 + k4 x9 − k5 x1 x3 − k6 x1 x3 + k7 x4 + k15 x7 (B.1a)
ẋ2 = −k3 x2 + k9 x9 − k10 x2 x3 + k11 x5 − k13 x2 x6 + k14 x7 (B.1b)
ẋ3 = k4 x9 − k5 x1 x3 − k6 x1 x3 + k7 x4 + k8 x4 + k9 x9 − k10 x2 x3 + k11 x5 + k12 x5 (B.1c)
ẋ4 = k6 x1 x3 − k7 x4 − k8 x4 + k18 x8 (B.1d)
ẋ5 = k10 x2 x3 − k11 x5 − k12 x5 − k16 x5 x6 + k17 x8 (B.1e)
ẋ6 = −k13 x2 x6 + k14 x7 + k15 x7 − k16 x5 x6 + k17 x8 + k18 x8 (B.1f)
ẋ7 = k13 x2 x6 − k14 x7 − k15 x7 (B.1g)
ẋ8 = k16 x5 x6 − k17 x8 − k18 x8 (B.1h)
ẋ9 = −k4 x9 + k5 x1 x3 − k9 x9 (B.1i)

x6 + x7 + x8 = c1 (B.2a)
x3 + x4 + x5 + x8 + x9 = c2 (B.2b)

123



124 APPENDIX B. MODELS FOR CELL CYCLE REGULATION

B.1.3 Structural data

The ordinary differential equations (B.1a) – (B.1i) can be written as

ẋ = Y Ia diag (k) φ (x)

using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the monomial vector

φ (x) = ( 1, x1, x2, x9, x1 x3, x1 x3, x4, x4, x9, x2 x3, x5, x5, x2 x6, x7, x7, x5 x6, x8, x8 )
T

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)′
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The conservation relations (B.2a) and (B.2b) can be written as

WT x = c

using the matrix

WT =
[
0 0 0 0 0 1 1 1 0
0 0 1 1 1 0 0 1 1

]

and the vector cT = ( c1, c2).
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B.2 Ternary complex model

B.2.1 Species and complexes of network N11

Species xi Complex yi
Sic1 x1 0 y1
Sic1P x2 Sic1 y2
Clb x3 Sic1P y3

Clb · Sic1 x4 Clb+ Sic1 y4
Clb · Sic1P x5 Clb · Sic1 y5
Cdc14 x6 Clb y6

Sic1P · Cdc14 x7 Clb+ Sic1P y7
Clb · Sic1P · Cdc14 x8 Clb · Sic1P y8
Clb · Sic1 · Clb x9 Clb · Sic1 + Clb y9

Clb · Sic1 · Clb y10
Clb · Sic1P + Clb y11
Sic1P + Cdc14 y12
Sic1P · Cdc14 y13
Sic1 + Cdc14 y14

Clb · Sic1P + Cdc14 y15
Clb · Sic1P · Cdc14 y16
Clb · Sic1 + Cdc14 y17

B.2.2 Ordinary differential equations

ẋ1 = k1 − k2 x1 − k4 x1 x3 + k5 x4 + k15 x7 (B.5a)
ẋ2 = −k3 x2 − k7 x2 x3 + k8 x5 − k13 x2 x6 + k14 x7 (B.5b)
ẋ3 = −k4 x1 x3 + k5 x4 + k6 x4 − k7 x2 x3 + k8 x5 + k9 x5 − k10 x3 x4 + k11 x9 + k12 x9 (B.5c)
ẋ4 = k4 x1 x3 − k5 x4 − k6 x4 − k10 x3 x4 + k11 x9 + k18 x8 (B.5d)
ẋ5 = k7 x2 x3 − k8 x5 − k9 x5 + k12 x9 − k16 x5 x6 + k17 x8 (B.5e)
ẋ6 = −k13 x2 x6 + k14 x7 + k15 x7 − k16 x5 x6 + k17 x8 + k18 x8 (B.5f)
ẋ7 = k13 x2 x6 − k14 x7 − k15 x7 (B.5g)
ẋ8 = k16 x5 x6 − k17 x8 − k18 x8 (B.5h)
ẋ9 = k10 x3 x4 − k11 x9 − k12 x9 (B.5i)

x6 + x7 + x8 = c1 (B.6a)
x3 + x4 + x5 + x8 + 2 x9 = c2 (B.6b)

B.2.3 Structural data

The ordinary differential equations (B.5a) – (B.5i) can be written as

ẋ = Y Ia diag (k) φ (x)

using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the monomial vector

φ (x) = ( 1, x1, x2, x1 x3, x4, x4, x2 x3, x5, x5, x3 x4, x9, x9, x2 x6, x7, x7, x5 x6, x8, x8 )T

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)′
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The conservation relations (B.6a) and (B.6b) can be written as

WT x = c

using the matrix

WT =
[
0 0 0 0 0 1 1 1 0
0 0 1 1 1 0 0 1 2

]

and the vector cT = ( c1, c2).
A matrix whose columns are generators of ker(Y Ia) ∩ IR18

≥0 is

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.9)



Appendix C

Models of the signal transduction
motifs

C.1 Network N12

C.1.1 Species and complexes of network N12

Species xi Complex yi
A x1 A+ E1 y1
E1 x2 AE1 y2
AE1 x3 A∗ + E1 y3
A∗ x4 A+A∗ y4
AA∗ x5 AA∗ y5
E2 x6 A∗ +A∗ y6

A∗E2 x7 A∗ + E2 y7
A∗E2 y8
A+ E2 y9

C.1.2 Ordinary differential equations

ẋ1 = −k1 x1 x2 + k2 x3 − k4 x1 x4 + k5 x5 + k9 x7 (C.1a)
ẋ2 = −k1 x1 x2 + k2 x3 + k3 x3 (C.1b)
ẋ3 = k1 x1 x2 − k2 x3 − k3 x3 (C.1c)
ẋ4 = k3 x3 − k4 x1 x4 + k5 x5 + 2 k6 x5 − k7 x4 x6 + k8 x7 (C.1d)
ẋ5 = k4 x1 x4 − k5 x5 − k6 x5 (C.1e)
ẋ6 = −k7 x4 x6 + k8 x7 + k9 x7 (C.1f)
ẋ7 = k7 x4 x6 − k8 x7 − k9 x7 (C.1g)

x2 + x3 = c1 (C.2a)
x6 + x7 = c2 (C.2b)

x1 + x3 + x4 + 2 x5 + x7 = c3 (C.2c)

C.1.3 Structural data

The ordinary differential equations (C.1a) – (C.1g) can be written as

ẋ = Y Ia diag (k) φ (x)

127
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using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0 1
1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 2 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the monomial vector

φ (x) = (x1 x2, x3, x3, x1 x4, x5, x5, x4 x6, x7, x7)
T

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)T
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The conservation relations (C.2a) – (C.2c) can be written as

WT x = c

using the matrix

WT =

⎡⎣ 0 1 1 0 0 0 0
0 0 0 0 0 1 1
1 0 1 1 2 0 1

⎤⎦

and the vector cT = ( c1, c2, c3).
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C.2 Network N13

C.2.1 Species for and complexes of network N13

Species xi Complex yi
A x1 A+ E1 y1
E1 x2 AE1 y2
AE1 x3 A∗ + E1 y3
A∗ x4 A∗E1 y4

A∗E1 x5 A∗∗ + E1 y5
A∗∗ x6 A∗∗ + E3 y6
E3 x7 A∗∗E3 y7

A∗∗E3 x8 A∗ + E3 y8
E2 x9 A∗ + E2 y9

A∗E2 x10 A∗E2 y10
A+ E2 y11

C.2.2 Ordinary differential equations

ẋ1 = −k1 x1 x2 + k2 x3 + k12 x10 (C.5a)
ẋ2 = −k1 x1 x2 + k2 x3 + k3 x3 − k4 x2 x4 + k5 x5 + k6 x5 (C.5b)
ẋ3 = k1 x1 x2 − k2 x3 − k3 x3 (C.5c)
ẋ4 = k3 x3 − k4 x2 x4 + k5 x5 + k9 x8 − k10 x4 x9 + k11 x10 (C.5d)
ẋ5 = k4 x2 x4 − k5 x5 − k6 x5 (C.5e)
ẋ6 = k6 x5 − k7 x6 x7 + k8 x8 (C.5f)
ẋ7 = −k7 x6 x7 + k8 x8 + k9 x8 (C.5g)
ẋ8 = k7 x6 x7 − k8 x8 − k9 x8 (C.5h)
ẋ9 = −k10 x4 x9 + k11 x10 + k12 x10 (C.5i)
ẋ10 = k10 x4 x9 − k11 x10 − k12 x10 (C.5j)

x2 + x3 + x5 = c1 (C.6a)
x7 + x8 = c2 (C.6b)
x9 + x10 = c3 (C.6c)

x1 + x3 + x4 + x5 + x6 + x8 + x10 = c4 (C.6d)

C.2.3 Structural data

The ordinary differential equations (C.5a) – (C.5j) can be written as

ẋ = Y Ia diag (k) φ (x)

using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ia =

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
and the monomial vector

φ (x) = (x1 x2, x3, x3, x2 x4, x5, x5, x6 x7, x8, x8, x4 x9, x10, x10 )
T

A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)T
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The conservation relations (C.6a) – (C.6d) can be written as

WT x = c

using the matrix

WT =

⎡⎢⎢⎣
0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
1 0 1 1 1 1 0 1 0 1

⎤⎥⎥⎦

and the vector cT = ( c1, c2, c3, c4).

C.3 Network N14

C.3.1 Species and complexes of network N14

Species xi Complex yi
A x1 A+ E1 y1
E1 x2 AE1 y2
AE1 x3 A∗ + E1 y3
A∗ x4 A∗ + E3 y4
E3 x5 A∗E3 y5

A∗E3 x6 A+ E3 y6
A∗A∗ x7 2A∗ y7
A∗∗ x8 A∗A∗ y8

A∗A∗∗ x9 A∗∗ +A∗ y9
E2 x10 A∗A∗∗ y10

A∗∗E2 x11 2A∗∗ y11
A∗∗ + E2 y12
A∗∗E2 y13
A∗ + E2 y14



C.3. NETWORK N14 131

C.3.2 Ordinary differential equations

ẋ1 = −k1 x1 x2 + k2 x3 + k6 x6 (C.9a)
ẋ2 = −k1 x1 x2 + k2 x3 + k3 x3 (C.9b)
ẋ3 = k1 x1 x2 − k2 x3 − k3 x3 (C.9c)

ẋ4 = k3 x3 − k4 x4 x5 + k5 x6 − 2 k7 x24 + 2 k8 x7 + k9 x7 − k10 x4 x8 + k11 x9 + k15 x11 (C.9d)
ẋ5 = −k4 x4 x5 + k5 x6 + k6 x6 (C.9e)
ẋ6 = k4 x4 x5 − k5 x6 − k6 x6 (C.9f)

ẋ7 = k7 x
2
4 − k8 x7 − k9 x7 (C.9g)

ẋ8 = k9 x7 − k10 x4 x8 + k11 x9 + 2 k12 x9 − k13 x8 x10 + k14 x11 (C.9h)
ẋ9 = k10 x4 x8 − k11 x9 − k12 x9 (C.9i)
ẋ10 = −k13 x8 x10 + k14 x11 + k15 x11 (C.9j)
ẋ11 = k13 x8 x10 − k14 x11 − k15 x11 (C.9k)

x2 + x3 = c1 (C.10a)
x5 + x6 = c2 (C.10b)

x10 + x11 = c3 (C.10c)
x1 + x3 + x4 + x6 + 2 x7 + x8 + 2 x9 + x11 = c4 (C.10d)

C.3.3 Structural data

The ordinary differential equations (C.9a) – (C.9k) can be written as

ẋ = Y Ia diag (k) φ (x)

using matrices

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 2 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 2 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ia =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the monomial vector

φ (x) =
(
x1 x2, x3, x3, x4 x5, x6, x6, x

2
4, x7, x7, x4 x8, x9, x9, x8 x10, x11, x11

)T
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A representation φ (x) =
(
xy

(L)
1 , . . . , xy

(L)
r

)T
can be obtained using

Y (L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 2 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The conservation relations (C.10a) – (C.10d) can be written as

WT x = c

using the matrix

WT =

⎡⎢⎢⎣
0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1
1 0 1 1 0 1 2 1 2 0 1

⎤⎥⎥⎦

and the vector cT = ( c1, c2, c3, c4).



Appendix D

An Algorithm to check Lemma 3

D.1 Preliminary ideas

The starting point is a software to calculate the extreme rays of a pointed polyhedral cone ker (A)∩IRn
>0,

where A ∈ IRm×n is an arbitrary m× n matrix. It is possible to use this software in order to calculate
extreme rays of a different cone ker (A) ∩ IRn

δi
. To see this, recall the definition of an extreme ray v of

ker (A) ∩ IRn
δi

(see Chapter 3):

v ∈ IRn
δi .

A v = 0,

Given u, v with Au = 0 and Av = 0. Then

supp (u) ⊆ supp (v)⇒ u = 0 or v = αu, α ∈ IR>0.

Further note that any v ∈ IRn
δi

can be expressed as

v = diag (δi) w, w ∈ IRn
≥0, with wi = |vi|, i = 1, . . . , n. (D.1)

Using eq. (D.1) in Av = 0 yields
A diag (δi) w = 0.

Then extreme rays of a cone ker (A) ∩ IRn
δi

can be defined as

v ∈ IRn
δi (D.2a)

given by v = diag (δi) w with

w ∈ IRn
≥0 (D.2b)

Ã w = 0, (D.2c)

where Ã := A diag (δi). Given w(1), w(2) with Aw(1) = 0 and Aw(2) = 0. Then

supp
(
w(1)

)
⊆ supp

(
w(2)

)
⇒ w(1) = 0 or w(2) = αu, α ∈ IR>0. (D.2d)

If Ẽ1, . . . Ẽp are generators of ker
(
Ã
)
∩ IRn

≥0, then Ei = diag (δi) Ẽi, i = 1, . . . , p are generators

of ker (A) ∩ IRn
δi
. To see this, consider AEi = Adiag (δi) Ẽi = Ã Ẽi = 0, i = 1, . . . , p. Using this

definition it is thus possible to calculate generators of ker (A)∩IRn
δi
using software designed to calculate

generators of ker (A) ∩ IRn
≥0.
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D.2 Deciding ker (A) ∩ IRn
δi
�= ∅

To decide ker (A)∩IRn
δi
�= ∅ the following algorithm is used: Generate all δi, i.e. all combinations of n ele-

ments from {−1, 0, 1}. This is done using the m-file combn.m, obtainable at http://www.mathworks.com/matlabcentral
For all δi

(i) Ã := diag (δi) A

(ii) calculate generators Ẽi, i = 1, . . . , p of ker (A) ∩ IRn
δi
. If

�j ∈ {1, . . . , n} with j �∈ supp
(
Ẽi

)
, i = 1, . . . , p

then ker (A) ∩ IRn
δi
�= ∅. Thus keep δi.

The condition in (ii) requires that no entry Ẽij exists that is zero in every generator. Those correspond
to generators for a different orthant, namely the one where δij = 0.
The above mentioned algorithm is by no means efficient. It could easily be made more efficient by

1. Considering that M and S are subspaces, that is, that μ ∈M⇒ −μ ∈M and v ∈ S ⇒ −v ∈ S.
Thus, if M∩ IRn

δ �= ∅ and S ∩ IRn
δ �= ∅, then M∩ IRn

−δ �= ∅ and S ∩ IRn
−δ �= ∅ as well.

2. Using the implicit information given in step (ii) that even though ker (A) ∩ IRn
δ = ∅, there exists

an orthant δ̄ with ker (A) ∩ IRn
δ̄
�= ∅. For δ̄ holds the following

δ̄j =

{
δj , if ∃i ∈ {1, . . . , p} with Eij �= 0
0, else.

The algorithm is available in the matlab file sign comp subs.m displayed below:

function E=sign_comp_subs( W )
% E=sign_comp_subs( W ) returns a matrix E whose columns correspond
% to those orthants of R^n that are sign compatible to the linear
% subspace that is defined by the matrix W: W is the orthogonal
% complement of the subspace under consideration. Each column
% vector e entirely consits of entries e_i=1, e_i=0 or e_i=-1, indicating
% x_i>0, x_i=0 and x_i<0, respectively. Thus each e defines an
% orthant.

n=length(W)

M=combn([-1 0 1], n);

[Mnrows,Mncols]=size(M);

or_count = 1;
for i=1:Mnrows
disp(’Processing orthant:’); M(i,:)
[elm,num_modes,revs,mode_rates,fix_rates]= ...

elmodes_calc((diag(M(i,:))*W)’,[],[], ones(1,length(W)), ...
[],1e-10,’useMex’,’1’);

if length(fix_rates)==0
E(:,or_count) = M(i,:)’;
or_count = or_count+1;

end;

end;

The command [elm,...]= elmodes calc(...) invokes a routine to calculated the generators of the
cone diag(M(i, :)) ∗W ∩ IRn

>0. It is contained in the software package CellNetAnalyzer [32].
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D.3 Determining generators

The following steps were executed to derive the generators for all orthants where M∩ IRn
δ �= ∅ and

S ∩ IRn
δ �= ∅.

Step 1: ReformulateM and S: Let W = [w1, . . . , ws] be a matrix whose column vectors are a basis for
S⊥ and B = [b1, . . . , bp] be a matrix whose column vectors are a basis for M⊥. Then all v ∈ S
can be represented as {v ∈ IRn | WT v = 0} and all μ ∈ M as {μ ∈ IRn | B′ μ = 0}, i.e. v ∈ S
and μ ∈ M are in a form suitable for the algorithm described above (using either W or B as
matrix A).

Step 1: Determine all δi that are sign compatible to S: ΔS .
Step 1: Determine all δi that are sign compatible to M: ΔM.

Step 1: Determine Δ = ΔS ∩ΔM.

Step 1: For each δi ∈ Δ calculate the generators of M ∩ IRn
δi

and S ∩ IRn
δi

(see the matlab file
all cones.m).

The following matlab commands were used to perform these steps:

orthi=sign_comp_subs(W);

orthi_mu=sign_comp_subs(mu);

k=1;for i=1:length(orthi) for j=1:length(orthi_mu) if
(orthi(:,i)==orthi_mu(:,j)) Erg(:,k)=orthi(:,i);k=k+1;end; end;end;

MuCones=all_cones(Erg,mu)

SCones=all_cones(Erg,W)

The matlab file all cones.m:

function ConeSet=all_cones(orth_mat,w)

[Orows,Ocols]=size(orth_mat);

ConeSet={};
ConeCounter=1;
for k=1:Ocols
SomeCone = calculate_cone(orth_mat(:,k),w);
ConeSet(ConeCounter)={SomeCone};
ConeCounter = ConeCounter + 1;

end;

And the matlab file calculate cone.m that calculates generators for a particular cone:

function C = calculate_cone( orthant, w)

[C, num_modes, revs, mode_rates, fix_rates] = elmodes_calc( ...
(diag(orthant)*w)’, [], [], ones(1,length(w’)), [], 1e-10, ...
’useMex’, ’1’);

if (num_modes > 0)
C=diag(orthant)*C’;

else
C=[];

end;
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