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Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit Fragestellungen der Modellidentifikation und modellge-

stützten Analyse von Membranreaktoren.

Im ersten Teil der Arbeit werden Probleme der Parameteridentifikation und der optimalen

Versuchsplanung für den Gastransport in porösen Membranen mit einer oder mehreren

Schichten untersucht. Ein genetischer Algorithmus wird verbessert, um die auftretenden

globalen Optimierungsprobleme zu lösen. Im zweiten Teil der Arbeit werden die sta-

tionären Lösungen verschiedener Membranreaktormodelle einer nichtlinearen Analyse un-

terzogen, und die Bildung örtlicher Muster wird studiert.

In Kapitel 2 werden die Membranreaktormodelle, die in der Arbeit verwendet werden,

vorgestellt und kurz diskutiert.

Die Identifikation eines Mehrschichtmembranmodells, die im Zentrum des ersten Teils der

Arbeit steht, stellt ein schwieriges globales Optimierungsproblem dar. Kapitel 3 beschäftigt

sich mit methodischen Ansätzen zur Lösung dieses Problems. Da die auftretenden Güte-

funktionale nicht-konvex sind, ist ein traditionelles lokales und gradientenbasiertes Opti-

mierungsverfahren nicht in der Lage, das Minimum des Gütefunktionals korrekt zu lokali-

sieren. Deshalb sollte ein globales Optimierungsverfahren verwendet werden. In dieser Ar-

beit wird zunächst ein genetischer Algorithmus aus der Literatur eingesetzt. Es zeigt sich
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jedoch, dass dieser Algorithmus unbefriedigende Ergebnisse liefert, wenn die zu identi-

fizierenden Parameter korreliert sind. Kapitel 3 diskutiert numerische Algorithmen zur Pa-

rameteridentifikation und Versuchsplanung und konzentriert sich dann auf die Verbesserung

des genetischen Algorithmus, um die hier auftretenden Optimierungsprobleme zu lösen.

Eine neue Variante des genetischen Algorithmus, die Koordinatentransformationen ein-

setzt, wird vorgestellt.

In Kapitel 4 wird das Dusty-Gas-Modell für den Gastransport durch eine keramische Ein-

schichtmembran benutzt, um die Effizienz sechs verschiedener Identifikationsexperimente

zu vergleichen. Ein dynamisches Experiment mit einem Gasgemisch liefert die besten

Ergebnisse. Die Untersuchung wird dann auf die Identifikation einer Mehrschichtmem-

bran ausgedehnt. Die Analyse eines idealisierten Zweischichtmembranmodells, die zuerst

durchgeführt wird, zeigt, dass es möglich ist, die Parameter beider Schichten gleichzeitig

zu identifizieren. Die Transportparameter einer metallischen Zweischichtmembran wer-

den dann aus experimentellen Daten ermittelt. Das Zweischichtmodell der Membran zeigt

dabei bessere Übereinstimmung mit dem Experiment als ein Einschichtmodell, das zu Ver-

gleichszwecken eingesetzt wird.

Kapitel 5 konzentriert sich auf die nichtlineare Analyse eines Membranreaktors. Ein Mem-

bran-Rohrreaktor mit idealer Pfropfenströmung wird mit Hilfe numerischer Bifurkations-

analyse untersucht. Hopfbifurkationen und reelle Bifurkationen werden detektiert. Bei der

Fortsetzung periodischer Lösungen wird eine Periodenverdopplungssequenz beobachtet,

die zu einer chaotischen Lösung führt. Im zweiten Teil des Kapitels wird der Einfluss der

axialen Wärmeleitfähigkeit diskutiert. Schließlich wird ein detaillierteres Membranreak-

tormodell betrachtet, das eine verfeinerte Reaktionskinetik und ein komplexeres Modell für

den Stofftransport in der Membran enthält. Die Simulationsergebnisse mit diesem Modell

deuten darauf hin, dass es möglich sein sollte, die simulierten räumlichen Muster auch in

einem Labormembranreaktor zu beobachten.
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Abstract

This work considers problems of model identification and model based analysis of mem-

brane reactors. The parameter identification and optimal experimental design problems for

gas transport through both single and multi-layer membranes have been investigated. A

genetic algorithm has been improved to solve the corresponding global optimization prob-

lems. Nonlinear analysis has been performed for the steady state solution of membrane

reactor models, and pattern formation has been studied.

In chapter 2, the membrane reactor models considered in this work are introduced and

discussed briefly.

The identification of multi-layer membrane models, which is the focus of the first part

of this work, is a difficult global optimization problem. Chapter 3 discusses methods for

solving this problem. Since the objective function is non-convex, a traditional gradient

based hill climbing algorithm is unable to locate the minima correctly. Therefore a global

optimizer should be applied instead. However, the genetic algorithm that is used in this

work becomes also inefficient in solving this problem because of the high correlation of

the parameters. Chapter 3 first gives background of numerical algorithm for parameter

identification and experimental design, and then is focused on improving the efficiency of

genetic algorithm to solve the demanding global optimization problems. A new method

with coordinate transformation is developed and applied successfully to the problems in

chapter 4.
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In chapter 4, the dusty gas model of gas transport through a homogeneous ceramic mem-

brane is used to compare the efficiency of different experimental schemes. The proposed

multi-component gas dynamic transport experiment gives the best result. The research is

then extended to the identification of a multi-layer membrane. The analysis of an idealized

two-layer membrane model, which is performed first, indicates that it is possible to identify

the parameters of both layers simultaneously. The properties of a real metallic membrane

are then identified from experimental data by using a two-layer membrane model. The

two-layer model shows better agreement with experimental data than a single-layer model

that is used for comparison.

Chapter 5 is focused on the nonlinear analysis of the membrane reactor. An ideal plug flow

membrane reactor is investigated by numerical bifurcation analysis in DIVA. Hopf bifur-

cation as well as real bifurcation points are located. By continuation of periodic solutions,

period doubling sequence is observed which leads to chaotic solution. The influence of the

heat dispersion coefficient λ is also discussed. Finally a more detailed model of a fixed bed

membrane including both detailed reaction kinetics and mass transfer model is considered.

The simulation results show it’s possible to observe the pattern formation under feasible

operation conditions in a laboratory membrane reactor.
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Chapter 1

Introduction

1.1 Membranes

A membrane is a discrete, thin interface that moderates the permeation of chemical species

in contact with it [1]. The interface could be homogeneous or heterogeneous, dense or

porous, nevertheless the key feature of a membrane is the ability to control the permeation

rate. The most common application of membranes are separation processes for liquids,

including microfiltration, ultrafiltration and reverse osmosis. The concept for such pro-

cesses is quite similar to that of the conventional filtration: particles larger than the pores in

membrane are completely rejected, and particles smaller than the pores in membrane can

pass through. Another membrane process for liquids is electrodialysis, in which charged

membrane are used to separate ions from aqueous solutions driven by electrical potential

difference. All the above membrane processes for liquids are well developed separation

technologies and already have broad applications in industry. The membranes for such

processes are mostly organic polymers, which are also the conventional materials for all

commercial membranes.
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Membrane processes for gas separation, which are the focus of this work, have developed

very fast in recent years. Some companies provide membranes to separate nitrogen from

air or carbon dioxide from methane. Most of the commercial membranes for such pro-

cesses are also polymer membranes. However, in this work, the research is focused on

the gas transport through inorganic membranes. The inorganic membranes are until now

mainly studied in laboratories, but many advantages over traditional polymer membranes

have been reported [2]. One important advantage of inorganic membranes is their thermal

stability. The operable temperature limit of inorganic membrane is much higher than that of

polymer membranes, which makes the inorganic membranes more suitable for constructing

chemical reactors where exothermic reactions happen.

The inorganic membrane can be further divided into porous and dense, homogeneous or

multi-layer, and catalytic or inert. In this work the research is restricted to the porous, inert

inorganic membranes. Usually a composite membrane is designed to combine a selective

layer, which is supposed to dominate the transport behavior, and a support layer which

provides the physical strength to the membrane. Some intermediate layers may be intro-

duced between the two layers to make the whole membrane coherent. Such membrane is

also called asymmetric membrane, because it’s been proved that the gas flow rates with dif-

ferent flow directions are asymmetric [3]. The asymmetric flow effect, although up to now

just a byproduct of composite membranes, could become an important factor for design of

membrane in the future, since both the selective product removal and distributed injection

operation schemes for membrane reactor may require some membrane that prefer a certain

mass flow direction.

It should be noted that the discrimination between support layer and selective layer of com-

posite membrane is not absolute. The support layer, although much more porous than the

selective layer, could also take important effect on transport phenomena, since it’s also

much thicker than the selective layers and the transport rate of species through a membrane
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is proportional to the inverse of the membrane thickness. The multi-layer membrane will

show more distinct characteristics compared to the homogeneous membrane only when

each layer possess similar influence to the change of gas flow rate. The mass transfer coef-

ficient for each layer of a composite membrane can be identified simultaneously only when

the composite membranes show features that recognizably different from any homogeneous

membrane.

1.2 Membrane reactors

The membrane reactors are multi-functional process units, which combine reaction and

separation in one apparatus. The class of membrane reactors studied in this work is com-

posed of a catalytic fixed bed, a porous membrane, and an annulus side outside the mem-

brane, see figure 1.1. A membrane reactor may be superior to the conventional reactors by

offering advantages with respect to yield, selectivity, and energy integration [4].

There are two principle operation schemes for membrane reactors. The first one is to selec-

tively remove some reaction product of an equilibrium limited reaction, and thus force the

reaction balance to move to the right-hand side as is shown in figure 1.1-a. The second one,

on the contrary, is to feed the reactant through the membrane into the reactor as is shown in

figure 1.1-b. The main advantage of supplying the reactants through the membrane rather

than only with the feed is to keep the concentration of some reactant at the optimal value,

so that both the conversion rate and selectivity could be maintained at high level [5, 6, 7, 8].

By changing the permeability of the membrane or the concentration of the reactants sup-

plied through the membrane, one may be able to create an optimal concentration profile of

reactants along the reactor coordinate and thus to maximize the yield of the reaction.

One important application of the second operation scheme is to improve the performance

of partial oxidation reactions [9]. In this work, the oxidative dehydrogenation of ethane is
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Figure 1.1: Two main operation schemes of the membrane reactor: a -
selective removal of the reaction product; b - supplying
reactants through the membrane

investigated. However, the purpose of studies in this work is not to improve the conversion-

selectivity behavior, but to discuss the possibility of a special nonlinear behavior - the

formation of stationary patterns along the membrane reactor.

1.3 Objectives

The modeling of membrane is a demanding but valuable task for understanding these

complicated, highly integrated processes. Since the membrane reactor has a more com-

plex structure than traditional reactors, one can expect to observe more complex and non-

intuitive behaviors. The model of membrane reactor becomes also an essential tool for

process control, process design and process analysis.
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The task of model development can be divided into two parts:

1. Choice of a suitable model structure and suitable model equations

2. Determination of unknown model parameters

In this work, the task of model development is focused on the model of mass transfer

through a porous membrane. Since the Dusty Gas Model(DGM) is already proven to be

a successful model for describing the mass transfer phenomenon, the model identification

problem is simplified to parameter identification problem.

The DGM equation uses some lumped parameters which could not be obtained by direct

observation of the microscopical structure of the membrane. Therefore, some experiments

such as the steady state gas permeation, isobaric diffusion or transient diffusion should be

performed in order to identify the transport coefficients of the membrane experimentally.

Identifications of single layer membranes have been investigated extensively [10, 11, 12].

Identifications of multi-layer membranes have also been studied [3, 13], but usually per-

formed layer by layer.

The DGM for single gas transport through a single layer membrane leads to a linear model,

therefore by using the least-square criteria the identification problem could be solved ex-

plicitly by linear regression. In this work we consider a more complex situation that trans-

port coefficients for multi-layer membrane must be identified simultaneously. The param-

eter identification and experimental design problems are discussed in chapter 4. The most

difficult part of this problem is the global optimization problem, since the parameters to

be identified are highly correlated and the objective function is highly nonlinear and non-

convex. The numerical details for solving such problem will be discussed in chapter 3
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After the model identification step, the usefulness of the models is illustrated by study-

ing the phenomenon of spatial pattern formation. It has been proved that even the sim-

plest membrane reactor model with the simplest reaction kinetics could show complex spa-

tiotemporal patterns, including standing or moving waves and aperiodic patterns [14, 15].

Even chaotic solution is found if two consecutive reactions are carried out in a membrane

reactor [16]. The patterns may be induced by several different reasons:

1. The generation of Turing wave when the inhibitor diffuses sufficiently faster than the

activator.

2. The pattern induced by the interaction of kinetics and convection.

3. The pattern emerge due to the interaction of enthalpy and mass balances.

The last term is also a common reason to cause nonlinear behavior in traditional CSTR

reactors and has been studied thoroughly by Uppal [17, 18]. The similarity between the

CSTR and membrane reactor will be explained in chapter 5. The periodic and aperiodic

pattern formation has been investigated in the same chapter by using both a simple and a

detailed membrane reactor model.



Chapter 2

Models for fixed bed membrane reactors

with porous membrane

2.1 Definition of a parametric model

In daily language, model is an ambiguous word with many different meanings. But in this

book, a model refers specifically to a mathematical model, which is an abstract model that

uses mathematical language to describe a system. Furthermore, the model discussed in this

work is deterministic and composed by a group of algebraic and/or differential equations.

A deterministic model may compute an output vector y from an input vector u, see Figure

2.1. This model scheme is said to be parallel because the model and real system have the

same input [19].

A model may be used e.g. for:

• Process simulation and process optimization

• Nonlinear behavior analysis

7
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Figure 2.1: A parallel model structure

• Estimation of states and parameters for which no direct observation is available

• Model predictive control

In all, establishing a mathematical model is a practical way for better understanding or

controlling a real process. The process of establishing a model is composed of two steps:

1. Selection of a suitable model structure, also called characterization.

2. Identification of the parameters for the given model structure.

For any unknown process, the model structure selection is the critical step in modeling.

And the two modeling steps may have to be repeated many times for each model structure

candidate. For some other chemical or physical process, where the model structure could

be determined by prior knowledge or first principle, the task of model identification is

simplified to the choice of parameters. Usually the parameters are chosen by optimization

of some cost function, which is discussed in detail in section 3.1.1.
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2.2 Models for fixed bed membrane reactors with porous

membrane

2.2.1 Model structure

A model of a fixed bed membrane reactor is composed of three parts:

1. A model of the catalytic fixed bed inside a porous membrane

2. A model of heat and mass transport through the membrane

3. A model of the sweep gas side outside the membrane

The scheme of such a membrane reactor model is illustrated in figure 2.2. Considering dif-

ferent boundary conditions, the inlets and outlets of the reactor could be modeled separately

as described in figure 5.12.

Figure 2.2: Scheme of fixed bed membrane reactor model
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2.2.2 Model for the fixed bed

In this work, a pseudo-homogeneous fixed bed reactor model is considered. The model is

the same as that of a normal tubular reactor except for an additional term of mass transfer

through the membrane. Under the assumption of constant pressure and plug flow inside the

reactor, the component mass balances in fixed bed side as shown in figure 2.3 is:

Figure 2.3: Fixed bed side of the membrane reactor

∂(cidV )

∂t
= (Ṅi)z − (Ṅi)z+dz + (Ṅi)mem + RidV (2.1)

Radial concentration and temperature gradients as well as the change of the axial flow rate

due to mass transport through the membrane are neglected. We expand the flux terms by

flow velocity, cross-section area, flux density through membrane and reaction kinetics to

obtain:

∂(Sdzci)

∂t
= Suci,z − Suci,z+dz + SmemJi +

n∑
j=1

νijrjρcatSdz (2.2)

Suppose that dz → 0, we have:
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Suci,z+dz = Suci,z + Sudz
∂ci

∂z
|z,t (2.3)

By replacing the second term of the right-hand side of equation 2.2 with equation 2.3, we

obtain:

∂(Sdzci)

∂t
= −Sudz

∂ci

∂z
|z,t + SmemJi +

n∑
j=1

νijrjρcatSdz (2.4)

The cross-section area for plug flow and membrane is S = πr2
mem,in and Smem = 2πrmem,indz,

therefore:

∂(πr2
mem,indzci)

∂t
= −πr2

mem,inudz
∂ci

∂z
|z,t + 2πrmem,indzJi +

n∑
j=1

νijrjρcatπr2
mem,indz

(2.5)

Finally, we devide all the terms in above equation by πr2
mem,indz and the mass balance

becomes:

∂ci

∂t
= −u

∂ci

∂z
+

n∑
j=1

νijrjρcat +
2

rmem,in
Ji, i = 1, . . . , n (2.6)

The energy balance can be deduced in a similar way. Since the heat transfer model of

membrane is simply q̇ = αmem(T0 − T ) and can be incorperated into the energy balance

equation of fixed bed, the final form of the energy balance equation is:

(ρcP )tot

∂T

∂t
= −u (ρcP )f

∂T

∂z
+λfl

∂2T

∂z2
+

5∑
j=1

νij (−ΔRH)j rjρcat+
2

rmem,in
αmem (T0 − T )

(2.7)

In the model, the heat of reaction varies with temperature; the partial molar enthalpy of
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each component is computed by:

hi = hi,ref + cPi × (T − Tref) (2.8)

The boundary conditions for equations 2.6 and 2.7 are:

z = 0 : ci = ci,in, i = 1, . . . , n, λ
∂T

∂z
= u (ρcP )f (T − Tin) (2.9)

z = L :
∂T

∂z
= 0 (2.10)

2.2.3 Model for sweep-gas side

The model of sweep gas side is similar to that of the fixed bed side except for that the

chemical reaction is ignored. Note that the cross-section area becomes π(r2
wall − r2

mem,out),

see figure 2.4, and the mass balance is:

Figure 2.4: Sweep gas side of the membrane reactor

∂c0,i

∂t
= −u0

∂c0,i

∂z
− 2rmem,out

r2
wall − r2

mem,out

Ji, i = 1, . . . , n (2.11)
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The energy balance should also consider the heat transfer through the outer reactor wall, so

the total energy balance equation is:

(ρcP )tot

∂T0

∂t
= −u0 (ρcP )f

∂T0

∂z
+ λsw

∂2T0

∂z2
+

2rmem,out

r2
wall − r2

mem,out

αmem (T − T0)

+
2rwall

r2
wall − r2

mem,out

αwall (Twall − T0) (2.12)

Similar boundary conditions as for the fixed bed side are applied.

2.2.4 Mass transfer model for the membrane

The model of mass transport through the membrane is an important part in the modeling

of membrane reactor, because this mass transport distinguishes a membrane reactor from

a traditional plug flow reactor. During the last decades, a complete theory of gas transport

through porous media has been established, which is known as the dusty-gas model (DGM)

[20]. The DGM theory assumes that gas transport through porous media is determined by

three independent mechanisms as follow:

• Free-molecule or Knudsen flow, which is driven by the collisions of molecules with

the walls of the porous medium.

• Viscous flow, also called convective or bulk flow, which is driven by the pressure

gradient, or molecule-molecule collisions.

• Continuum diffusion, also called molecular diffusion, where different species of a

mixture move relative to each other.

Considering all the above mechanisms, the gas transport phenomenon could be described

by the following full equation:
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− P

RT
∇xi − xi

RT
(1 +

B0

DK,iη
p)∇P =

n∑
j=1,j �=i

xjJi − xiJj

De
ij

+
Ji

DK,i
(2.13)

where:

DK,i =
4

3
K0

√
8RT

πMi

(2.14)

De
ij = F0Dij (2.15)

where Dij is the gas diffusion coefficient which only depends on the composition of the

gas phase and independent of the material of the membrane. In this work Dij is calculated

by Fuller’s equation [21]:

DAB =
0.00143T1.75

PM
1/2
AB [(Συ)

1/3
A + (Συ)

1/3
B ]

(2.16)

Therefore, the influence of the porous media to the gas transport could be characterized by

the three parameters: B0, K0 and F0. Under some additional assumptions [20], the three

parameters could be related to the structural parameters by the following equations:

B0 =
ε

τ

d2
P

32
(2.17)

K0 =
ε

τ

dP

4
(2.18)

F0 =
ε

τ
(2.19)

where dP is the diameter of assumed capillaries, and ε
τ

is porosity divided by tortuosity of

the membrane. Thus, the membrane could be described by any two of the above parameters.

However, it should be stressed dP and ε
τ

are not really structural parameters, and could not



2.2. MODELS FOR FIXED BED MEMBRANE REACTORS 15

be derived by direct observation of the physical micro-structure of the membrane. These

parameters can only be identified from experimental data of gas transport.

For a thin cylindrical homogeneous membrane, the equation 2.13 can be approximated to:

− 2πL

RT ln
(

rmo

rmi

) [−P̄Δxi − (1 +
B0

DK,iη
P̄ )x̄iΔP ] =

n∑
j=1,j �=i

x̄jṄi − x̄iṄj

De
ij

+
Ṅi

DK,i
(2.20)

Note that here Δ stands for the differences between the two sides of membrane, x̄i and P̄

denote the average values inside the membrane, and Ṅi = 2πLrJi is the total mass flux

through the membrane. For a multi-layer membrane, the DGM equations should be applied

to each layer, and the equation can be rewritten as:

− 2πL

RT ln
(

rm,k+1

rm,k

) [−P̄kΔxi,k − (1 +
B0,k

DK,i,kη
P̄k)x̄i,kΔPk] =

n∑
j=1,j �=i

x̄j,kṄi,k − x̄i,kṄj,k

De
ij

+
Ṅi,k

DK,i,k

(2.21)

where:
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ΔPk = Pin,k − Pin,k+1 (2.22)
n∑

k=1

ΔPk = PA − PB (2.23)

Pk =
Pin,k + Pin,k+1

2
(2.24)

Δxi,k = xin,i,k − xin,i,k+1 (2.25)
n∑

k=1

Δxi,k = xi,A − xi,B (2.26)

xi,k =
xin,i,k + xin,i,k+1

2
(2.27)

for k=1,2,. . . ,n and:

Pin,1 = PA (2.28)

Pin,n+1 = PB (2.29)

xin,i,1 = xi,A (2.30)

xin,i,n+1 = xi,B (2.31)

Here Pin,k and xin,i,k are the pressure and molar fraction between the membrane layers, PA

PB xi,A xi,B are pressure and molar fraction on both sides of the membrane, Δ stands for

the differences between membrane layers, x̄i,k and P̄k denote the average values inside the

membrane layer, and Ṅi = 2πLrJi is the total mass flux through the membrane.
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2.3 Parameters to be identified in experiments

Most of the parameters of the membrane reactor are already known or can be found in

literatures, such as the geometry of the membrane reactor, the properties of the gases,

but still some parameters must be identified from experiments. The two main groups of

parameters to be identified are:

1. The parameters describing the reaction kinetics. In this work the oxidative dehydro-

genation of ethane catalyzed by V Ox/γ − Al2O3 is considered.

2. The parameters describing the mass transfer through the membrane. In DGM model

the K0 and B0 for each layer of the membrane should be identified.

The parameters describing the reaction kinetics can be viewed as a property of the catalyst,

while the parameters describing the mass transfer represent the property of the membrane,

however both of the two groups of parameters can not be calculated directly from the micro-

scopical structure or the chemical composition of the material but have to be fitted through

corresponding experimental data. The numerical methods for parameter fitting and exper-

imental design are discussed in chapter 3 and the application to identify mass transport

parameters is presented in chapter 4. The parameter identification of reaction kinetics is

already finished by Klose [22] and Joshi [23].



Chapter 3

Methods for model identification and

experimental design

3.1 Introduction

3.1.1 Parameter identification problem

Usually only a part of the model states is measurable which is called observation. The

parameter identification problem is to choose values of set of parameters which minimize

the difference of model prediction and real observation, see Figure 3.1.

The most commonly used criteria for parameter identification are called quadratic cost

functions. To minimize the quadratic error between measurements and model outputs, the

cost function below can be applied:

J =
∑

k

∑
i

wik(yk,tik − ymk,tik)
2, (3.1)

where yk,tik is the k-th measurement value taken at time tik, ymk,tik is the corresponding

18
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Figure 3.1: Identification of parametric model

simulated measurement value, and wik is a weighting factor. The statistical theoretical

background of this identification criterion is discussed in Appendix A.1.

3.1.2 Estimation of confidence intervals

The parameter identification method described in section 3.1.1 is a point estimate, because

it returns a single value for each parameter, but provides no information about how pre-

cise and how reliable the values are. In a realistic problem, the estimate of the parameter

variance, which is called confidence interval may be a key point in the whole process of

parameter identification and experimental design, see section 3.1.4. There are several dif-

ferent ways for estimation of confidence interval, the most common methods are:

• Cramér-Rao inequality, which gives a lower bound for the estimated variances (The
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provement is given in [24]. It states that for an unbiased parameter estimator the

variance σ2
j of a certain estimated parameter is at least as large as the corresponding

element on the main diagonal of the inverse Fisher information matrix (FIM): σ2
j ≥

(FIM−1)jj.

• The bootstrap method [25]: first use a Monte-Carlo simulation to generate a large set

of replicated experimental data, and then identify the parameters from each replica-

tion.

• The sigma point method [26, 27, 28]: a similar approach as bootstrap, but use far less

experiments (usually totally 2Dy + 1 points)

The calculated confidence interval (by bootstrap or sigma point method) could be used

directly for experimental design and usually provide better performance than the traditional

FIM method. However, for any big enough model or global optimization problem, the

computation time is formidable.

3.1.3 Optimal experimental design

In order to get maximal information from a limited number of experiments or in a lim-

ited amount of time, usually some kind of optimal experimental design (OED) should be

performed [29, 30]. The application of OED to linear steady state experiments has been

developed for a long time [31], and recently there are also some papers on application of

OED to nonlinear and dynamic processes [32]. The classical way of experimental design

is to choose some input signal u(t) to minimize some criterion of the Fisher information

matrix, which is in turn based on parameter sensitivities of an output y with respect to

parameter p, see figure 3.2
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Figure 3.2: Scheme of experimental design

For a system with time discrete measurements at times ti, i = 1, . . . , N and additive normal

distributed measurement noise, the Fisher information matrix reads

FIM =
N∑

i=1

(
∂y

∂p
)T
i Q−1(

∂y

∂p
)i, (3.2)

where y is the measurement vector, p is the parameter vector and Q is the covariance

matrix of the measurement noise [29].

The inverse of the Fisher information matrix gives a lower bound for the estimated covari-

ances of the parameters, which is called the Cramér-Rao bound [29].
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σ2
j ≥ (FIM−1)jj (3.3)

Figure 3.3 gives a geometric illustration of Cramér-Rao bound, where the shaded area

represents the confidence region of the estimated parameters.

Figure 3.3: A geometric illustration of the Cramér-Rao bound and
various OED criteria

The classical OED minimizes a scalar function of the FIM by changing some control pa-

rameters. Commonly used optimization criteria are listed below, and illustrated in figure

3.3.
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1. D-Criterion → arg max(det FIM): minimize the volume of the joint confidence re-

gion.

2. E-Criterion → arg max(λmin(FIM)): minimize the size of the major axis of the joint

confidence region.

3. A-Criterion → arg min trace(FIM−1): minimize the dimensions of the enclosing box

around the joint confidence region.

4. ME-Criterion → arg min (λmax(FIM))
(λmin(FIM))

:minimize the proportion of the largest eigen-

value to the smallest eigenvalue of FIM, thus improve the shape of joint confidence

region.

Where λmin and λmax are the smallest and biggest eigenvalue of FIM, respectively.

Although all of these criteria have been tested in the study, only the design results of e-

criterion will be discussed, since in most cases the e-criterion provided the best perfor-

mance results. The calculation of the Fisher information matrix requires information on

the sensitivity. There are several different ways to calculate the sensitivity, in this work

we use the ”direct method” which means to incorporate equations of sensitivity into the

original model, see the dashed box in figure 3.2. The details of this method are described

in appendix A.3.

3.1.4 Standard algorithm for model identification

The full process of parameter identification and experimental design is shown in figure

3.4. In the first step, some preliminary experiments are performed. The conditions of

experiments could be chosen by experience or simple experimental design such as block

experiment or factorial experiment [33]. In the second step a model structure is designed

either by prior knowledge or guess from the experimental data. Then, the parameters and



24 CHAPTER 3. MODEL IDENTIFICATION AND EXPERIMENTAL DESIGN

confidence intervals could be estimated from the data. Usually the confidence interval

is very big in the first identification process, so either a new model structure should be

tested or some new experiments should be designed in order to increase the precision of

the parameters. This process is repeated until certain precision criterion is reached.

3.1.5 Global optimization problem

Both parameter identification problem and experimental design problem need to minimize

some kind of cost function, therefore are both optimization problems. Most of the common

optimizer are gradient based and can only locate a local minimum. They are so called local

deterministic optimizer (LDM). A LDM can only be applied when the model is convex, or

the initial guess of the parameters is close enough to the real values. In reality, however,

the problem is usually highly non-convex and no prior knowledge of the parameters could

be obtained. In this case a global optimizer should be used instead.

In this paper, we use a hybrid optimizer for optimal experimental design. The hybrid

optimizer is a combination of a genetic optimizer by K. Teplinskiy [34, 35] and a local

deterministic optimizer by C. Zhu [36]. Both optimizers are incorporated in the DIANA

simulation environment [37]. The classical genetic algorithm is modified to increase effi-

ciency. The details of the algorithm will be described in the next sections.

3.2 The traditional Genetic Algorithm

3.2.1 Genetic algorithm and global optimization

The simplest method of global optimization is to perform a thorough grid search, which

needs to evaluate the objective function at each grid point of the entire feasible parameter

region. The minimum value found in this way is guaranteed to be the global optimum at
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Figure 3.4: Standard algorithm for model identification

certain precision. And this is also (up to now) the only way to guarantee to find the global

optimum of a non-convex objective function. However, in such a way the computation

time grows exponentially with the increase of number of parameters to be optimized, which
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means for most of the practical problems it’s impossible for such technique to be applied.

To increase the search efficiency, most of the practical global optimizer perform a heuristic

search or a random search, or a combination of both. The most popular optimizer using

such technique include simulation annealing and evolutionary algorithms. The genetic

algorithm, which is applied through this work, is one of the most recognized forms of

evolutionary algorithms. However, it should be noted that heuristic search techniques also

increase the risk for the optimiation result to be trapped in wrong local minima, since the

heuristic approach may be misguided by some cheating information from the objective

function. And the random search of course, unavoidably brings some uncertainties into the

optimization results which makes it difficult to evaluate the performance of an optimizer.

In theoretical research, the global optimization problem has proved to be a NP-complete

problem [38]. According to the theorem presented by Hart and Belew [39], there exists no

algorithm which is able to approach the global optimum of arbitrary functions to a certain

accuracy in a polynomial time. Therefore, one cannot just focus on parameter identification

or experimental design tasks and treat the optimizer simply as a black box. The optimizer

should also be studied and optimized to be adapted to special practical problems.

Except for the noise of observation, the randomness of the genetic optimizer introduces

another uncertainty to the parameters. Therefore, when calculating the confidence interval

the variance caused by the genetic optimizer should also be considered as an additional

source of noise. Since GA is a heuristic algorithm, the optimization precision increases

proportionally to the number of function evaluations. It’s sometimes a difficult choice to

compromise between optimization time and precision. The solutions for different problems

are discussed in the according sections.
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3.2.2 Genetic algorithm

The genetic algorithm (GA) was first suggested by John Holland in 1975 [40]. GA works

as an imitation of a biological system - by ”selection of the fittest”, the ”good genes” are

preserved and reproduced, and therefore more competitive offspring will be generated.

The basic idea of GA is to use chromosomes, which in fact is a long line of bit strings

composed of 0 and 1, to represent the parameters to be optimized. The chromosomes can

be recombined in a crossover way to simulate the sexual reproduction of organisms, and

can also mutate to simulate the mutation of organism by simple bit flips. Afterwards, the

”offspring” are compared and selected according to the relative ”fitness” value, which is

usually a scaling scalar function of the objective value. With a small enough mutation rate,

after several generations the chromosomes in the population will tend to be homogeneous

and thus usually a ”good enough” global optimization result is found.

The classical GA is composed of the following steps:

1. Representation and Initialization

In this step, the parameters to be optimized are translated to a long line of bit-string.

The bit-string represents a Chromosome, and each bit of it represents a gene. The

length of the bit-string is decided by the Upper, Lower-boundary and precision of

the parameter to be optimized: L = log2
Upper−Lower

precison
. The parameter can be first

converted to a positive integer as P−Lower
precision

, and then converted from decimal numeral

expression to a binary numeral expression. Although there are different kinds of

encoding system, the simplest way is a direct conversion such as: 1 → 00001, 31 →
11111. In the evaluation step the bit-string can be converted back to recover the

parameter value, based on the same rule.

During the initialization process, a group of chromosomes are initialized randomly.

The group of chromosomes is called a population. The number of chromosomes in



28 CHAPTER 3. MODEL IDENTIFICATION AND EXPERIMENTAL DESIGN

the group is called the size of the population. In the next steps, the chromosomes in

population are recombined and mutated to form new chromosomes, and after selec-

tion to form a new population. The process of going from one population to the next

population is called a generation. Usually the number of chromosomes in popula-

tion will keep constant during generation, which means the number of chromosomes

eliminated is the same as the number of newly created chromosomes.

2. Crossover

The crossover operator is the most distinguished feature of GA. The most common

form of crossover is one-point crossover, which means to recombine two chromo-

somes at a single randomly chosen crossover point, as described below.

0000 00

1111 11
→ 0000 11

1111 00

Since each bit represents a gene, such kind of operation is assumed to be able to

combine the good gene and form some offspring with higher fitness.

3. Mutation

Although the crossover operator can recombine and preserve good gene, it cannot

create new gene which is not initialized in the original population. Therefore the

mutation operator is introduced to increase the possibility of finding the global opti-

mum which is not covered by the initial population of chromosomes. The mutation

operator randomly flips a bit of the chromosome with a constant probability Pm, as

follows:

parent 000000

child 000100

Typically the probability of mutation should be less than 1%, otherwise it would be

difficult for the GA optimizer to converge.
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4. Evaluation and selection

In this step, the parameter values are restored from the bit-string expression and the

corresponding objective function is calculated. The objective value is used to calcu-

late the fitness of the chromosomes. Then the chromosomes are selected according to

their fitness. The chromosomes with higher fitness value will have higher selection

probability (or survival probability). The selection mechanism developed by Hol-

land is called the proportional selection method as it defines the survival probability

proportional to the relative fitness of the chromosomes.

5. Termination

There are many possible stopping criteria for GA, such as the homogeneity of the

population, the given maximal generation or maximal number of function evaluation

reached, or the given percentage of schemata completed. The GA will stop when

it meets any of the above stop criteria and return the best objective value of the

population.

The original GA optimizer in this work is developed by Teplinskiy [34, 35], in a Pro-

Mot/Diana simulation environment [37]. The program and modifications in the following

sections are all written in GNU C++/python interface. The total process of GA is illustrated

in figure 3.5.

3.2.3 Schemata theory

Schemata and hyperplane

A schema is a string composed of 0, 1 and *, where * is a wildcard to represent both 0 and

1. For any population of chromosomes, a schema can be easily constructed by replacing

the different bits with *, as described in tabular 3.1.
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Figure 3.5: Outline of a Genetic Algorithm

Therefore, a schema can represent a group of possible bit-strings. For example, schema

like 1****** represents all the bit-strings that begin with 1 and thus defines a sub-set which

contains half of the possible chromosomes. The sub-set is also called a hyperplane of the
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Table 3.1: Definition of a schema

000000
011111

→ 0*****

100001
001111

→ *0***1

search space, and the number of 0 or 1 in the string of schema is called the order of the

hyperplane. The situation of 1-dimensional hyperplane is illustrated in figure 3.6.

Holland suggests that the chromosomes in the population format different order of schemata,

and the schemata represent different levels of hyperplane. The lower the order of the

schema, the more chromosomes will sample it. Therefore the evolution of the popula-

tion is not only competition between chromosomes and chromosomes but also competition

between schema and schema, or hyperplane and hyperplane. The schema with low order

and high average fitness will tend to survive and produce more offspring, and thus makes

the GA optimization a heuristic search process. Furthermore, Holland estimates that for

a population composed of n chromosomes, there are O(n3) schemata processed in each

generation. So the GA is also called an implicit parallel process, and expected to be more

efficient than other evolutionary algorithms.

Schema theorem

Holland deduced an equation to describe the growth rate of a schema/hyperplane:

E[m(H, t+1)] ≥ m(H, t)
f(H, t)

f̄(t)
[1−Pc

Δ(H)

L − 1
(1−m(H, t)

f(H, t)

f̄(t)
×(1−Pm)O(H) (3.4)

where

• H is the given schema/hyperplane.
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• m(H, t) is the proportion of the population that is within hyperplane H at generation

t.

• f(H) is the mean fitness of the chromosomes in H.

• f̄(t) is the mean fitness of the whole population at generation t.

• O(H) is the order of the schema.

• Δ(H) is the definition length of the schema.

• Pc is the crossover probability.

• Pm is the mutation probability.

Unfortunately, the equation can only predict the lower boundary of the relative frequency

of a schema for one step, and cannot provide any information about the growth rate of the

schema in the future steps or how to choose the mutation rate or crossover rate to increase

the converging rate to the global optimum.

The equation can only be explained qualitatively, that a schema with short definition length

and high fitness, which is also called a building block will grow very fast, as we have

already mentioned before. There’s also an argument that the building blocks will receive

exponentially increasing trails in future generations. But such argument is very dubious

since the equation 3.4 in fact only gives a prediction for one step, both the fitness of H and

the average fitness could change rapidly during optimization process.

Criticism of schema theorem

In practical study, however, many deficiencies of the schema theory have been raised [41].

Some of them are listed as below:
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1. The schemata may be not sampled

The possible number of schemata is far more than the number of bit strings, therefore

schemata with high order have very few samples. A big population size is important

to prevent GA from missing important schemata, but there’s not general guideline

about how to choose the population size.

2. The schemata may be inconsistent

For schemata as ***11* and ****00 can both have above average fitness, but are

conflicting in the fixed bits. Apparently they can both increase fast after some time,

and they cannot be recombined to form a better chromosome.

3. The schemata could be cheating

Occasionally the global optimum is not located in the hyperplane with high average

fitness, see figure 3.7. In such case no efficient way could be found to reach the

global optimum, but GA may have worse performance than a pure random search

strategy since the heuristic search process is misguided.

4. Schemata could be easily destroyed

Schemata could be easily destroyed when the mutation rate or crossover rate are too

high as described in equation 3.4, therefore the mutation rate is usually limited below

0.01.

Besides all of the above already known problems with schema theory and GA optimiza-

tion, in this research, linear correlation of the parameters is found to be another factor to

cause problem for GA optimization tasks. The main purpose of the next sections of this

chapter, is to study the impact of linear correlation of parameters to the GA, and present a

possible solution to such problems. The newly developed method was applied to solve the

optimization problems in chapter 4 and proved successful.
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3.3 Genetic algorithm with linear correlation in parame-

ters

To study the GA with linearly correlated parameters, we need to look into some optimiza-

tion problems with at least two parameters. Consider four benchmark problems as follow:

z = x + y (3.5)

z = (x − 5)2 + (y − 5)2 (3.6)

z = 10000((x − 7)2) + (y − 5)2 (3.7)

z = 10000(((x− y) − 2)2) + (x + y − 12)2 (3.8)

For an intuitive view, the surface plot of the objective function are plotted in figure 3.8.

The above four functions are tested for optimization with GA. The boundary is set to

x ∈ [0 10] and y ∈ [0 10], while the precision is set to 0.1. The genetic optimization

is performed with initial population size=100. In most cases, the optimization and the pre-

cision of function 1,2 or 3 will converge in about 20 generations. But for function 4, the

GA optimizer normally runs over 50 generations and still can’t find a good enough solu-

tion, see figure 3.9. After 10 generations the population converge to the valley of optima,

but such a pattern is not sustainable. The pattern is destroyed and reformed repeatedly, and

the convergence rate is very slowly. After 50 generations, the best solution found has only

objective at the order of 101.

To explain the results, firstly consider the possible schemata of the optimization problems in

figure 3.10. The objective surface of function 4 cannot be described with a order 1 schema,

although there is obvious pattern of the optima of objective. Of-course the schema theorem

cannot be applied here since there’s not even a schema that can be defined. Consider the
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first two bit of the schemata of function four ( the other part is abbreviated for simplicity).

Now we have four conflicting schemata:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 ∗ ... 0 0 ∗ ...

0 1 ∗ ... 0 1 ∗ ...

1 0 ∗ ... 1 0 ∗ ...

1 1 ∗ ... 1 1 ∗ ...

⎞
⎟⎟⎟⎟⎟⎟⎠

For any 3 of the schemata no low order schemata exist, but for some pair of schemata it’s

possible to summerize some low-order schemata:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ∗ ∗ ... 0 ∗ ∗ ...

1 ∗ ∗ ... 1 ∗ ∗ ...

∗ 0 ∗ ... ∗ 0 ∗ ...

∗ 1 ∗ ... ∗ 1 ∗ ...

⎞
⎟⎟⎟⎟⎟⎟⎠

It looks like GA could combine such low order schemata to form the above high order

schemata. For example to combine 0*...0*... and *0...*0... to 00...00... However, for

the one point crossover operator, 0*...0*... and *0...*0... must first form schemata like

00...0*..., 00...*0..., 0*...00... or *0...00..., and these schemata have no higher fitness com-

paring to 0*...0*... and *0...*0..., therefore the formation of such schemata has quite low

probability.

Secondly, consider the operator of GA. See figure 3.11, the solid line represents the valley

of the objective function where the optima exist. Chromosome 1 and chromosome 2 are

two possible chromosomes in the population, the arrows indicate the direction of possible

offspring for one step crossover or mutation. The production of new chromosomes almost

always move in the direction parallel to the axis instead of along the valley. The new
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offspring outside the valley is easily eliminated in the selection step because of the low

fitness and thus has little chance in ”jumping back” to the valley, therefore the evolution

process becomes quite inefficient. There are still small possibilities for the GA optimizer

to find the global optimum by luck, for example by combination of crossover and mutation

or by multi-mutation the chromosomes could happen to locate on the valley, and there are

also small possibilities for some chromosomes outside the valley to survive and generate

the their offspring which could also happen to arrive the valley (especially for a not very

sharp valley). However, apparently these processes are quite inefficient and show more

stochastic character. The better way should be, like the other gradient based optimizer, to

let the optimizer recognize the valley of optima and move along the valley to reach the

optimum.

One can immediately think of two possible solutions to this problem:

1. To define some new crossover and mutation operator considering the correlation of

the chromosomes in the population.

2. To make a coordinate transformation to automatically de-correlate the parameters.

In this work only the second method is tested because it’s intuitively straightforward and

still stay in the basic theory framework of GA. In the following part, this new genetic

algorithm is denoted as GACT (Genetic Algorithm with Coordinate Transformation).

3.4 GACT for 2-dimensional optimization problem

For a two parameter optimization, the GACT works in the following way:

1. After several generations when the pattern of population is expected to be estab-

lished, the correlation coefficient of the two parameters of the current population is
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calculated and compared with a limit value. If the absolute value of the correlation

coefficient is less than a limit value, continue to the next generation.

2. If the correlation coefficient exceeds the limit: |Corr(P1, P2)| > corrlim, the val-

ley of the optima is assumed to have the form P2 = a × P1 + b, a linear regression

is applied to calculate the parameter a and b.

3. When the slope of the line a is known, a rotation matrix could be formulated by

choosing the first column vector parallel to the fitted line and the second one orthog-

onal to it:

Mrot =

⎛
⎝ 1√

a2+1
−a√
a2+1

a√
a2+1

1√
a2+1

⎞
⎠

This matrix represents the transformation from the new coordinate back to current

coordinate. To transform from current coordinate system to the new coordinate sys-

tem the following equation is applied:

⎛
⎝ x′

1 x′
2 x′

3 ... x′
n

y′
1 y′

2 y′
3 ... y′

n

⎞
⎠ = M−1

rot ×
⎛
⎝ x1 x2 x3 ... xn

y1 y3 y3 ... yn

⎞
⎠

4. A new boundary is set for the new representation of each parameter and the op-

timization task is redefined. In this section we simply set the new boundary as

x ∈ [min(x′) max(x′)] and y ∈ [min(y′) max(y′)]

5. Update the total rotation matrix to restore the original parameter values. Since the

coordinate transformation could be performed several times, a total rotation matrix

should be recorded in order to retrieve the original parameter later, thus:

Mtol = Mtol × Mrot (3.9)
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In the first step, Mtol is set to be an identity matrix.

6. The GA is applied to the new defined optimization problem, then return to step 1.

The algorithm is first tested with the simple optimization problem as described in equation

3.8. All the settings of GA and optimization task are the same as before. The limit of

correlation coefficient is set to 0.8. In generation 11, the calculated correlation coefficient

matrix becomes:

Mcor =

⎛
⎝ 1.0 0.81

0.81 1.0

⎞
⎠

The correlation of two parameters of the population exceeds the limit, so a linear regression

is performed and a one step rotation matrix is obtained: :

Mrot =

⎛
⎝ 0.758624 0.651529

−0.651529 0.758624

⎞
⎠

In this section the new boundary is just set to the maximal and minimal value of current

population in new coordinate system. After coordinate transformation the boundary of the

new coordinate is : x ∈ [2.54 12.92] and y ∈ [−3.89 1.88]. In Figure 3.12, the boundary of

the new coordinate system is denoted with the rectangular box. It could be seen that after

coordinate transformation the population converge to the optimum very fast. In generation

15, the optimal solution is found with a order at 10−3. The same optimization process is

repeated for several times, and the GACT at most time performs better than original GA.

3.5 Realistic parameter identification problems

The simple model used in last section is only used to illustrate the process of coordinate

transformation in GACT. Since the simple model is in fact convex, it could be solved by
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a local gradient based method such as Newton’s method with more efficiency and more

preciseness. However, in some realistic models where both linear correlation and multiple

local optima exist, the GACT will show it’s advantage. Next we consider a most common

kind of optimization problem - the parameter identification problem as described in section

3.1.1.

3.5.1 Parameter identification for single gas dynamic transport model

As an example, we consider the identification of a porous membrane from a single gas

dynamic transport experiment. Details will be given in section 4.1.5. To illustrate GACT it

is enough to know that K0 and B0 are two unknown membrane parameters to be identified.

For convenience, we reparametrized K0 and B0 to be: Kf = ln(K0 × 108) and Bf =

ln(B0 × 1014) Then the optimum value becomes: Kf = 2.099 and Bf = 1.085. We set

up an optimization problem with: Kf ∈ [0.0, 2.3] Bf ∈ [0.0, 2.3] and precision=0.0001.

Correlation limit is still set to 0.8. Figure 3.13 is the surface plot and contour plot of the

objective function. The long valley of the objective function indicates the high correlation

of the parameters. The multiple minima along the valley also indicate it’s a non-convex

problem and should be solved with a global optimizer.

Figure 3.14 shows the results of one optimization process. From generation 11, the corre-

lation coefficient of the population is calculated, see Table 3.2. In generation 11 the first

coordinate rotation is performed with rotation matrix:

Mrot =

⎛
⎝ 0.991967 −0.126496

0.126496 0.991967

⎞
⎠

So in the next generation the correlation coefficient is greatly decreased and the converging

rate is obviously increased. However, in this model the valley of the objective function
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is not an exact straight line, so after the first rotation, the correlation coefficient grows up

again slowly. In generation 19 a second rotation is performed with rotation matrix:

Mrot =

⎛
⎝ 0.974874 −0.222756

0.222756 0.974874

⎞
⎠ ,

and the solution converges to the global optimum in the next few steps. The correlation

coefficient decreases again after generation 25, and there’s no need to perform a third rota-

tion.

Table 3.2: Correlation coefficient in each generation

Generation 11 12 13 14 15 16 17
Corr(P1,P2) -0.8033 -0.2880 -0.4854 -0.6978 -0.6671 -0.6526 -0.7666
Generation 18 19 20 21 22 23 24
Corr(P1,P2) -0.7357 -0.8091 -0.1171 -0.2908 -0.2421 -0.2892 -0.2933

3.5.2 Parameter identification of multi component gas dynamic trans-

port model

Now the problem of identifying K0 and B0 in a multi-component gas experiment is consid-

ered. Details will be given in section 4.1.7. K0 and B0 are reparametrized as section 3.5.1.

Also all the optimization setup are same as section 3.5.1 expect for that the correlation limit

is reduced to 0.5, because the contour of objective function is not such a regular straight

line, see Figure 3.15. Although the population is not very highly correlated, and therefore

the coordinate transformation becomes a little stochastic, the convergence rate of GACT is

still greatly increased comparing to the GA. Coordinate rotation is performed for 3 times
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at generation 23,24 and 30 with the rotation matrix:

Mrot1 =

⎛
⎝ 0.719973 0.694002

−0.694002 0.719973

⎞
⎠

Mrot2 =

⎛
⎝ 0.428411 0.903584

−0.903584 0.428411

⎞
⎠

Mrot3 =

⎛
⎝ 0.305896 0.952065

−0.952065 0.305896

⎞
⎠ ,

see Figure 3.16. The optimum solution is reached at about generation 40.

3.5.3 Boundary set-up after coordinate transformation

As we discussed before, after the coordinate transformation a new boundary is set for the

new coordinate system. In this section the boundary is just set to the maximal and minimal

value of current population in new coordinate system. This is the simplest method, but

could cause two negative consequence:

1. If the new search area is smaller than the original one, then the coordinate trans-

formation has an effect of search refinement. Theoretically, it is possible for GA

optimizer to miss some global optimum outside of the new search area, because the

new boundary is forcing the optimizer to converge faster. Although, in our examples

this phenomenon did not occur.

2. The new search area could also exceed the original one, see Figure 3.17. This will

again cause three problems:
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(a) For the optimization problems with active parameter range, this may cause the

GACT to converge to a out-of-range (non-existent) optimum.

(b) For some optimization problem, the objective function is not calculable. The

optimizer could generate large amount of invalid chromosomes.

(c) The search area of parameters could grow with each time of coordinate trans-

formation and therefore the search area becomes more and more diverse.

One possible solution to the problems is to check the original boundary after each crossover

and mutation operation, and remove the invalid chromosomes before evaluation. The

method is similar to the way how GA handle the inequality constants.This algorithm is

realized in the next section. In this section, we just avoid the invalid chromosomes (such as

a negative parameter) by reparametrization of the parameters.

3.6 Generalization to multi-dimensional optimization prob-

lem

The GACT is naturally generalized to solve multi-dimensional optimization problems. The

basic concept is the same as described for 2-dimensional case and the detailed algorithm is

described below.

3.6.1 Calculation of multiple correlations

For the n-dimensional optimization problem, there could be correlations between any two

of the parameters, or there could be multiple correlations among any 3,4,...,n parameters.

The total process of decorrelation should start from checking the multiple correlation for

all parameters, and then proceed to n-1,n-2, .. until finally two parameters.



3.6. GENERALIZATION TO MULTI-DIMENSIONAL OPTIMIZATION PROBLEM43

Before the step of decorrelation, the maximal correlation value for the parameters should

be calculated, the coordinate transformation will be carried out if the maximal correlation

value exceed some limit. The calculation of multiple- correlation value is described below

as in reference [42].

Suppose there are n parameters to be optimized, the correlation between any two of these

parameters form a n × n correlation matrix. The multiple correlation value between pa-

rameter i and the other parameters could be estimated by the square root of the sum of the

square correlation between parameter i and the other parameters, as below:

RM,i =

√√√√ j=n∑
j=1,j �=i

R2
i,j (3.10)

Such estimation is usually not precisely the exact multiple correlation value, since it does

not consider the correlation among the parameters other than i. However, this value is used

to choose the maximal correlated parameter, and use the parameter as criterion variable

for later linear regression.

If we define the criterion variable - parameter i as Y and the other parameters as a vector

X, then the real correlation between Y and X is given by:

R =
√

RxyR−1
xx Ryx (3.11)

as is illustrated in figure 3.18.

3.6.2 The Generation of rotation matrix

If the multiple correlation value for the maximal correlated parameter i is greater than some

limit(for example 0.8), one step of coordinate transformation is performed. Firstly a liner

regression is applied with:
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Pi =

j=n∑
j=1,j �=i

ajPj + b (3.12)

Secondly a basis for the new coordinate system should be calculated. The above equa-

tion defines a hyperplane for the correlated parameters. For the purpose of decorrelation,

one axis of the new coordinate must be chosen orthogonal to this surface, and the other

axis must lie in the hyperplane and orthogonal to each other. To find such a group of vec-

tors, firstly form a matrix composed of one orthogonal vector and n-1 linearly independent

vectors in the hyperplane, as in table 3.3.

Table 3.3: Linearly independent vectors for coordinate transformation

Num. V1 V2 V3 V4 ... Vn

1 a1 1 0 0 ... 0
2 a2 0 1 0 ... 0
3 a3 0 0 1 ... 0
... ... ... ... ... ... ...
i -1 a1 a2 a3 ... an

... ... ... ... ... ... ...
n an 0 0 0 ... 1

Secondly QR factorization is applied to the matrix, and an orthogonal basis for the new

coordinate system is obtained. The matrix of orthogonal base is used as one step rotation

matrix Mrot, and coordinate transformation is performed to each vector of parameters:

Vnewp = M−1
rot × Voldp.

The new parameter orthogonal to the hyperplane of the old coordinate is then removed

from the vector of parameters and the same decorrelation process is repeated for the subset

of the parameters until there’s no further correlation between the rest parameters or there

is only one parameter left. Of course, the total rotation matrix should be updated for each
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level of decorrelation, as equation 3.9.

3.6.3 The boundary set-up

The GACT works like an automatic reparametrization process. After each step of repa-

rametrization, the new boundary of the parameters should be recalculated. In this section,

the method of new boundary calculation is different to that of section 3.5.3 in that, in order

to avoid a premature convergence of the population the boundary is not calculated from

maximal or minimal possible values of the current population but always from the original

parameter limits. For optimization problem, each parameter to be optimized is limited

between two boundary values, and the total possible parameter area form a n-dimensional

hypercube in the current coordinate system. Since the coordination rotation is a linear

transformation, the maximal or minimal possible values of parameters must lie on some

vertices of the original hypercube. For optimization problems of n parameters there are

in total 2n vertices. In this section the maximal and minimal values are calculated by

simply comparing the values of all 2n vertices in new coordinate system. For even more

parameters to optimize, it’s also possible to use a simplex optimization algorithm to search

for the maximal and minimal values, or more simply, use the extreme values in population

as boundaries, as described in section 3.5.3.

The new boundary is only a necessary but not sufficient condition for the newly gener-

ated chromosomes to lie in the original parameter area. After each step of crossover and

mutation, before evaluation, the parameters are transferred back to the original coordinate

system to check for the original boundary and invalid chromosomes outside of the original

parameter limit are eliminated. The total process of GACT is depicted in figure 3.19.
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3.6.4 Comparison with the traditional GA

The discussed GACT is in fact applied thoroughly in all of the parameter identification

problems described in section 4.2 to increase the convergence speed of optimization. To

illustrate the advantage of GACT, the parameter identification problem described in section

4.2.1 is tested for both GA and GACT. The parameter settings for both algorithm are the

same: Pmutation = 0.01, Pcrossover = 0.1, and the actual stop criterion is always set to

be maximal step=50. The initial population size is set to be 100 and 1000 for both algo-

rithms and the final results of the objective function are listed in table 3.4. It’s obvious that

the GACT has better performance, since GACT has much lower average objective value

comparing to GA with same population size. It could also be noticed that the optimization

results of GACT is approximately close to that of GA with 10 times more population.

Table 3.4: Comparison between GACT and GA

Test Number GA(P=100) GA(P=1000) GACT(P=100) GACT(P=1000)
1 -7.24 -9.09 -9.73 -10.43
2 -7.61 -10.11 -10.39 -11.17
3 -9.40 -8.96 -11.67 -10.26
4 -9.38 -10.28 -10.79 -11.32
5 -6.25 -8.13 -7.31 -9.86
6 -7.42 -11.61 -8.53 -10.69
7 -5.53 -10.57 -9.75 -10.34
8 -7.21 -9.72 -7.44 -10.39
9 -7.13 -9.66 -8.62 -8.92
10 -7.91 -8.76 -8.67 -11.43
Mean -7.51 -9.69 -9.29 -10.48
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3.7 Conclusion and discussion: what is the nature of GA

Let’s return to the mechanism of original biological system where the GA is inspired. The

basic advantage of sexual reproduction is that the ”good gene” could be preserved and

reproduced, and the good genes together could be combined to form a better chromosome

or organism. However there’s an intrinsic assumption here which is not yet proven, that any

good gene affects the performance of chromosomes independently, without any correlation

with the other genes. Although it’s still an open question in biology, there’s no doubt

that in many optimization problems some parameters are highly correlated. Therefore, it’s

difficult to claim how a single parameter will influence the objective function. From some

optimization problems of GA, there could be no apparent distinction between ”good gene”

or ”bad gene”, but the way of their how they are combined defines the fitness of the whole

chromosome or the organism. In such case, in order to form a good chromosome offspring,

it’s not enough to simply search for the good gene, instead one should analyze the relations

of the different genes and mechanism how they work together to take effect on fitness.

As we mentioned before, GA uses a heuristic search strategy. In fact, the traditional hill

climbing algorithm can also be defined as a kind of heuristic method. The common char-

acter of any heuristic optimizer is that it assumes there exists some pattern in the surface

of objective function, and the optimizer can find this pattern and use it to guide the search

process. For example, all of the gradient based optimizer assumes the objective function is

continuous and at least locally convex, therefore the optimizer could take use of the gradi-

ent information of the objective function to search for the optimum. The Newton’s method

is usually faster than steepest descent method because in addition to gradient it takes use of

the curvature information of the objective function. The GA optimizer, as discussed before,

can take use of any pattern that could be described by schemata. However, although the

schemata can describe the most common patterns, such as the adjacency or the frequency of
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the optimal objective values, it cannot describe the correlation among parameters. There-

fore, the purpose of this work is the improve the efficency of GA by recognizing and taking

use of the correlation information among the parameters and accelerate the search process.

The GACT optimizer is then applied to solve the practical problems in chapter 4 and has

proved successful.

Since linear correlation of parameters is also a widely existent phenomenon in optimization

problems, the GACT could be also extended to solve some other optimization problems.

Also, further improvement of this algorithm is possible based on the same assumption.
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Figure 3.6: Hyperplane for 1-dimensional GA optimization, the shaded
area in first and second graph represent order 1 schemata
1***** and **1*** respectively, the shaded area in bottom
graph represent two different order 2 schemata which can
be obtained by combination of the above two order 1
schemata.
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Figure 3.7: An example of global optimum located in hyperplane with
low average fitness
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Figure 3.8: Objective functions: (a)z = x + y;
(b)z = (x − 5)2 + (y − 5)2;
(c)z = 10000((x− 7)2) + (y − 5)2; (d)
z = 10000(((x− y) − 2)2) + (x + y − 12)2;
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Figure 3.9: Population during optimization of function 4 with
traditional GA, at generations a=10, b=15, c=20, d=40
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Figure 3.10: Optima area for the functions in figure 3.8
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Figure 3.11: Crossover operator in a linearly correlated
population.Chromosome1 and chromosome2 are the
parents, and chromosome1* and chromosome2* are the
offspring when the crossover points lie exactly between
the parameters. The arrows indicate the possible possible
direction of offspring, which can also describe the
mutation operator. The dashed line shows the valley of
optima, which could be calculated by linear regression.
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Figure 3.12: Population during optimization of function 4 with
coordinate transformation (rectangular box represents the
new boundary) , for generations a=11, b=13, c=15, d=17
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Figure 3.17: Enlargement of parameter area after coordinate rotation

Figure 3.18: Calculation of multiple correlation
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Figure 3.19: Outline of a Genetic Algorithm with Coordinate
transformation



Chapter 4

Experimental design for identification of

membrane parameters

4.1 Mass transport through single-layer membrane

4.1.1 Set-up for different experimental schemes

Traditionally, three main types of gas transport experiments are performed for identification

or validation of mass transport coefficients [10, 13, 43]:

• Steady gas permeation experiment.

• Isobaric diffusion experiment.

• Transient diffusion experiment.

In this section we consider two additional Gedankenexperiment, and the single gas perme-

ation experiments are separated into two different kinds of experiments: experiments with

only one kind of gas or with several different kinds of gas. So the six experimental schemes

considered here are:

62
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• Single gas steady state permeation experiment.

• Single gas dynamic permeation experiment

• Multi-component single-gas steady state permeation experiments

• Multi-component gas dynamic transport experiment

• Isobaric diffusion experiment.

• Transient diffusion experiment.

In this simulation we use a model of a tubular ceramic membrane reactor as described in

section 2.2.4 and [13], but the membrane is considered to be composed of the support layer

only, which equals to a homogeneous membrane. All the parameter values were already

identified in [13] and are given in table 4.1. The reactor set-up is described in figure 4.1.

The tubular membrane separates the reactor into two chambers, the tube side (defined as

chamber A) and the annulus side (defined as chamber B). Automatically controlled mass

flows can be provided on both sides, while the outlets of both sides can be controlled by

valves. When the valve is open the pressure of the corresponding chamber is considered to

be the same as the environmental pressure. The outlet flow rate and the concentrations and

pressures in both chambers are supposed to be measured by some instrument instantly.

Table 4.1: Physical parameters of the tubular membrane

composition thickness length inner radius outer radius K0 B0

[m] [m] [m] [m] [m] [m2]
α − Al2O3 5.5e-3 0.12 10.5e-3 16e-3 8.16e-8 2.96e-14
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(a)

(b)

(c)

Figure 4.1: Schemes for different identification experiments: (a)
permeation experiments; (b) isobaric diffusion experiments;
(c) transient diffusion experiments

Three different reactor schemes in figure 4.1 summarize the set-up of six different exper-

iments. Figure 4.1 (a) stands for the different permeation experiments, figure 4.1 (b) and

figure 4.1 (c) describe the isobaric and transient diffusion experiments.

4.1.2 Conditions for experimental design

The purpose of this section is to theoretically study the efficiency of each experiment

scheme for parameter identification. Since the experimental conditions have important

effect on parameter identification, the experiment schemes should be compared under their
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corresponding optimal experimental conditions. Therefore, OED is applied for each ex-

periment scheme in order to find the optimal condition. And since it’s only a theoretical

comparison of different experimental scheme, and not experimental design for real parame-

ter identification task, for simplicity the inlet gas flow rate is considered as the only control

parameter. In the following sections more realistic experimental conditions will be consid-

ered. The task of experimental design is to find the appropriate operation conditions that get

the most information on the unknown parameters out of a limited number of experiments

or a limited total experimental time. Here for simplicity we assume that all the states in the

system (the concentrations in both chambers, pressures in both chambers, outlet flow rates)

can be observed directly, and all observations have one percent relative standard deviation.

The control parameters are the inlet flow rates of the gases. The total inlet flow rate for all

gases is limited within 0-20 ml/min. For dynamic experiments the feeding profiles are set

piecewise-constant, with a constant interval of one second, and a total experimental time

of ten seconds. Except for the isobaric diffusion experiment the pressure of chamber A is

always set to 1 bar, identical to the normal environmental pressure. The commonly used

nitrogen and helium are selected as gases for multi-component gas experiments and only

nitrogen is used for single-gas experiments. The other specific conditions will be explained

in the following corresponding sections. For all of the OED, the e-criterion is used as the

default design criterion.
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4.1.3 Complete model of the membrane reactor

For a two component mixture, the mass balances in the two chambers A and B of the

membrane reactor are:

dC2B

dt
=

1

VB

(
Fin,2B × PB

RTB

− Fout,BC2B + Ṅ2) (4.1)

dC1B

dt
=

1

VB
(
Fin,1B × PB

RTB
− Fout,BC1B + Ṅ1) (4.2)

dC2A

dt
=

1

VA
(
Fin,2A × PA

RTA
− Fout,BC2A − Ṅ2) (4.3)

dC1A

dt
=

1

VA
(
Fin,1A × PA

RTA
− Fout,BC1A − Ṅ1) (4.4)

(4.5)

For simplicity here the temperature gradient is not considered, so we assume TB = TA =

Tmem. Further, the hold-up of the membrane is neglected. The ideal gas law is applied to

calculate the pressure in two chambers.

For model of homogeneous cylindrical membrane, equation ( 2.20) can be rewritten as:

− 2πL

RT ln
(

rmo

rmi

) [−PA + PB

2
(xi,A − xi,B)− (1 + B0

DK,iη
PA+PB

2
)

xi,A+xi,B

2
(PA − PB)]

=
n∑

j=1,j �=i

xj,A+xj,B

2
Ṅi − xi,A+xi,B

2
Ṅj

De
ij

+
Ṅi

DK,i

(4.6)

For single gas permeation experiments, the above equation can be further simplified to:

Ṅ

(PA − PB)
= − 2πL

RT ln
(

rmo

rmi

)
(

4

3
K0

√
8RT

πM
+

B0

η

PA + PB

2

)
(4.7)
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The dynamic viscosity of the gas mixture is calculated by Wilke’s law [44]. Note that the

parameter ε
τ

be expressed by B0 and K0:

ε

τ
=

K2
0

2B0
(4.8)

so there remain only two parameters to be identified. The diffusion coefficient is calculated

by Fuller’s method as in equation 2.16.

4.1.4 Experimental design for single gas steady permeation experi-

ment

Single gas permeation experiments are widely used for the identification of mass transport

parameters. The experimental scheme is sketched in figure 4.1-a. To identify the two struc-

tural parameters, at least two experiments should be performed. It is intuitively clear that

one should perform some high flow rate experiments, where bulk flow has an important ef-

fect, and some low flow rate experiments, where Knudsen diffusion dominates. To find the

optimal experimental conditions, experimental design has been done using the e-criterion

for optimization. Experiments with between two and six different steady state conditions

are considered. The resulting optimized inlet flow rates are listed in table 4.2, the corre-

sponding design criteria and predicted standard deviations are listed in table 4.3. As we

can see from table 4.2 the experiments are basically performed in 2 different flow rates:

While one or two experiments are performed at maximum flow rate, more experiments are

repeated in low flow rate condition. The reason is that, based on the assumption of Gaus-

sian distributed noise with zero mean, repeated experiments are able to reduce the influence

of measurement noise. The repetition of low flow rate experiments indicates Knudsen dif-

fusion is relatively less important for mass transport in this case and thus K0 is relatively
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difficult to be identified.

From table 4.3 it’s easy to see that the estimated variance of K0 is much larger than B0,

which confirms that the Knudsen coefficient cannot be predicted well in this experiment.

The reason for this problem is that the effect of bulk flow is much bigger than the Knud-

sen diffusion for nitrogen. So a possible solution might be to change to some gas with

smaller molecular weight, such as helium. The experiments with different kinds of gas are

discussed in section 4.1.6

Table 4.2: Designed inlet flow rate for single gas steady state
experiments (Num Exp = number of experiments)

Num Exp Fin1 Fin2 Fin3 Fin4 Fin5 Fin6

2 2.00e+01 8.39e+00
3 2.00e+01 7.83e+00 7.83e+00
4 2.00e+01 7.42e+00 7.42e+00 7.42e+00
5 2.00e+01 2.00e+01 8.08e+00 8.08e+00 8.08e+00
6 2.00e+01 6.85e+00 6.85e+00 6.85e+00 6.85e+00 6.85e+00

Table 4.3: E-criterion and estimated standard deviation for single gas
steady state experiments

Num Exp E-obj Std. K0/10−8 Std. B0/10−14

2 -8.98e-02 3.33 2.39e-01
3 -1.54e-01 2.54 1.90e-01
4 -2.03e-01 2.21 1.70e-01
5 -2.48e-01 2.00 1.47e-01
6 -2.79e-01 1.89 1.50e-01

It is also obvious that the variances reduce as the number of experiments increases. Without

any further experimental design, the variances can be reduced proportionally to the number
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of experiments just by repeating the same experiments many times for any group of results

in table 4.2.

4.1.5 Experimental design for single gas dynamic permeation experi-

ment

In this model the membrane is assumed to possess negligible hold-up, so the term dynamic

experiments only refers to the dynamics inside the tubular and annulus chambers. If the

pressures in both chambers are controlled directly, the experiments can be regarded to be

composed of a series of steady state experiments. The benefit of dynamic experiments

is to improve of efficiency of experiments and save experimental time. Again nitrogen

is used as the process gas, and the the piece-wise constant feeding profile of inlet flow

rate is optimized. The resulting feeding profile is shown in figure 4.2. In analogy to the

steady state case, the experiment starts from a high flow rate followed by a low flow rate

and the stop of the feeding for a moment. Then the same process is repeated. For dynamic

experiments, the value of FIM depends on the frequency of sampling. The variances reduce

proportionally to the increase of sampling points. Here we consider a constant sampling

interval of 1 second, and hence 10 total measurements (for both pressure in chamber B and

outlet flow rate in chamber A). The optimization criterion and variance predicted by FIM

are listed in table 4.4. The estimated precision is about one order of magnitude higher than

for the steady state experiments considered in 4.1.4.
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Figure 4.2: Designed feeding profile for single gas dynamic experiment

Table 4.4: E-criterion and estimated standard deviation for single gas
dynamic experiment

Exp Time E-obj Std. K0/10−8 Std. B0/10−14

10s -6.74+00 3.83-01 3.72e-02

4.1.6 Experimental design for multi-component single-gas steady state

permeation experiment

For multi single-gas steady permeation experiments, nitrogen and helium are supposed to

be supplied to the reactor at the same time(although the design result shows it’s more ef-

ficient to feed nitrogen and helium separately). The total inlet flow rate and the molar
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fraction of helium are used as control parameters. Since the concentrations of nitrogen and

helium are assumed to be measurable in both chambers, one experiment is enough for the

identification of the two parameters. The experimental design results are listed in table

4.5 and table 4.6 for the case of one to six steady state conditions per experiment. The

corresponding design criteria and predicted standard deviations are given in table 4.7. For

groups of two and more experiments the estimated standard deviation is close to single gas

dynamic experiments and much superior to the single gas steady state experiments, which

shows the advantage of multi-component gas experiments: the parameters can be estimated

more precisely with much less experiments. In reality, however, the measurement of con-

centrations of gases would be much more difficult than simple pressure measurements, and

the variance of the measurement noise might be much bigger (here we assume one percent

standard deviation for all measurements).

Table 4.5: Designed inlet flow rate for multi single-gas steady state
experiments.

Num Exp Fin1 Fin2 Fin3 Fin4 Fin5 Fin6

1 7.09e+00
2 2.00e+01 1.85e+01
3 2.00e+01 1.63e+01 1.63e+01
4 1.51e+01 1.51e+01 1.51e+01 2.00e+01
5 1.42e+01 2.00e+01 1.42e+01 1.42e+01 1.42e+01
6 1.63e+01 2.00e+01 1.63e+01 2.00e+01 1.63e+01 1.63e+01
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Table 4.6: Designed inlet molar fraction for multi sinlge-gas steady
state experiments.

Num Exp Xin1 Xin2 Xin3 Xin4 Xin5 Xin6

1 1.84e-04
2 0 1
3 0 1 1
4 1 1 1 0
5 1 0 1 1 1
6 1 0 1 0 1 1

Table 4.7: E-criterion and estimated standard deviation for multi
single-gas steady state experiments.

Num Exp E-obj Std. K0/10−8 Std. B0/10−14

1 -2.82e-01 1.87e+00 2.31e-01
2 -8.42e+00 3.42e-01 5.12e-02
3 -1.22e+01 2.83e-01 4.89e-02
4 -1.46e+01 2.58e-01 4.79e-02
5 -1.64e+01 2.43e-01 4.73e-02
6 -2.44e+01 2.00e-01 3.46e-02

4.1.7 Experimental design for multi-component gas dynamic trans-

port experiment

In the multi-component gas dynamic experiments both nitrogen and helium are supplied

continuously into chamber B, see figure 4.1-a. This method allows to change the pressure

and the molar fraction in chamber B continuously and consequently provides the maximal

information of the system since all the three transport mechanisms are taking effect. For the

corresponding OED problem we set a limitation of the total inlet flow rate to 0-20l/min, and

postulate piecewise constant feeding profiles for both gases. The optimized feeding profile
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is shown in figure 4.3, the pressure of chamber B is shown in figure 4.4. The e-criterion

and the predicted variances are given in table 4.8. As expected the precision of parameters

is greatly improved in this experiment.
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Figure 4.3: Feeding profile of multi-component gas dynamic
experiment

Table 4.8: E-criterion and estimated standard deviation for
multi-component gas dynamic experiment

Exp Time E-obj Std. K0/10−8 Std. B0/10−14

10s -2.36e+07 1.75e-04 1.31e-04
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Figure 4.4: Pressure change in chamber B during multi-component gas
dynamic experiment

4.1.8 Experimental design for isobaric diffusion

For isobaric diffusion experiments, nitrogen is supplied to chamber A and helium is sup-

plied to chamber B. The pressures of both chamber are kept constant at 1 bar. The inlet flow

rates of both chambers are used as control parameters. All the concentrations and outlet

flow rates are measured. For isobaric diffusion, the DGM ( 2.20) can be simplified to :

2πLP̄Δxi

RTln
(

rmo

rmi

) =
n∑

j=1,j �=i

x̄jṄi − x̄iṄj

De
ij

+
Ṅi

De
K,i

(4.9)

Now we have only Knudsen diffusion and molecular diffusion. As these are only secondary
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effects for the transport of nitrogen and helium, this experiment seems to be a bad choice for

parameter identification. (but if ε
τ

is known, it is possible to identify K0 directly, because

the mass transport is independent of B0 as follows from ( 4.9) ). This is confirmed by

the results listed in table 4.9, 4.10 and 4.11. Notice that in table 4.10 the value of B0 is

calculated from K0 and ε
τ

in order to compare the results with other experimental schemes.

Table 4.9: Designed inlet flow rate in chamber A for isobaric diffusion
experiments.

Num Exp Fin1 Fin2 Fin3 Fin4 Fin5 Fin6

2 1.90e-04 2.00e+01
3 7.27e+00 1.80e-04 6.07e+00
4 1.61e+01 1.82e-04 7.87e+00 1.26e+01
5 1.57e+01 1.91e+01 5.28e+00 1.85e-04 1.15e+01
6 1.82e-04 1.84e+01 1.14e+01 7.70e+00 1.23e+01 1.48e+01

Table 4.10: Designed inlet flow rate in chamber B for isobaric diffusion
experiments.

Num Exp Fin1 Fin2 Fin3 Fin4 Fin5 Fin6

2 2.00e+01 1.11e+00
3 1.29e+01 1.18e+01 7.34e-01
4 5.07e-01 1.41e+01 3.76e+00 4.13e-01
5 1.39e+01 6.01e-01 1.05e+01 2.00e+01 1.91e+00
6 1.13e+01 6.47e+00 9.40e+00 1.05e+01 4.96e-01 4.49e-01
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Table 4.11: E-criterion and estimated standard deviation for isobaric
diffusion experiments.

Num Exp E-obj Std. K0/10−8 Std. B0/10−14

2 -3.65e-02 4.19e+00 3.14e+00
3 -4.16e-02 3.92e+00 2.95e+00
4 -6.79e-02 3.07e+00 2.31e+00
5 -6.46e-02 3.14e+00 2.37e+00
6 -7.18e-02 2.98e+00 2.25e+00

4.1.9 Evaluation of the transient diffusion experiment

For the transient diffusion experiment, the reactor is first filled with nitrogen in both cham-

bers, then helium is fed into chamber A with a constant flow rate of 2 l/min, as shown in

figure 4.1-c. While the pressure of chamber A is kept constant, the pressure of chamber

B will increase for a short time because the diffusion of helium if faster than that of nitro-

gen, then drop to the same value as in chamber A, see figure 4.5. The e-criterion of the

Fisher information matrix and the predicted variances are listed in table 4.12. While the E-

criterion is on the same level as for single gas dynamic experiments and multi-component

gas steady experiments, the obvious benefit is that the predicted standard deviations for the

two parameters are very close, which means we have similar precision for both parameters.

Another advantage of this experimental scheme is that less control parameter are required

compared to the dynamic experiments, therefore the possibility of variances caused by the

stochastic change of inlet is reduced.

4.1.10 Analysis of the experimental design results

In the previous part of this work, the lower bound of variances of the parameters has been

estimated by the Cramér-Rao inequality: σ2
j ≥ (FIM−1)jj, where the identity is valid for
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Figure 4.5: Pressure change in chamber B during transient diffusion

Table 4.12: E-criterion and estimated standard deviation for the
transient diffusion experiment

Exp Time E-obj Std. K0/10−8 Std. B0/10−14

20s -5.51e+00 1.60e-01 4.26e-01

models that are linear in their parameters, and for normally distributed measurement noise.

However for nonlinear models, the parameter identification results may be different from

the prediction of Cramér-Rao bound because:

1. The confidence interval itself for the nonlinear model may be much bigger than the

Cramér-Rao bound prediction.



78 CHAPTER 4. OED FOR IDENTIFICATION OF MEMBRANE PARAMETERS

2. The confidence interval by Cramér-Rao prediction is always a symmetric Gaussian

shape curve around the reference value, while in reality asymmetries may appear.

3. Since the cost function is non-convex, for a LDM method, the optimization results

strongly depend on the initial guess of the parameters, and may converge to some

wrong local minimum.

4. For a global optimizer, the results of the parameter identification strongly depend

on the quality of the optimizer. The stochastic nature of a genetic optimizer will

incorporate new uncertainties into the identification results.

In this work, we use the bootstrap method [25] to compare the prediction of confidence

interval by Cramér-Rao bound,LDM optimizer, and hybrid optimizer. For simplicity, only

the results of the dynamic multi-component gas experiment are presented, since it has the

best performance in the FIM based OED part.

Contour of cost functions

The contour plot of the cost function in equation ( 3.1) gives a straight forward illustration

for the parameter identification problem. Figure 4.6 shows contour plots of the cost func-

tion of the dynamic multi-component gas experiment. Obviously, multiple local minima

exist in the whole range of parameter sets. Note that the global minimum is always located

at the center of the graphs. It is easy to see that the size of the attraction region of the

global minimum is smaller than the attraction regions of a nearby local minima, and thus

causes problems for both GA and LDM optimizers. For a local optimizer, a very small

deviation of initial values will cause the convergence to wrong local minima. For genetic

optimizer, as a heuristic optimizer, it is also very difficult to converge to a small attraction

region (It’s like ”look for a needle in the sea”). One basic problem of traditional OED is
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that, for a nonlinear model, it only improves the ”sharpness” (gradient) of the attractive

region around the global optimum, but cannot improve the total size of attractive region.

And not yet any effective solution has been found. In this case, the attraction region of the

global minimum is approximately smaller than 1 percent of parameter deviation, and very

difficult to be found.
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Figure 4.6: Contour of cost functions for designed dynamic
multi-component gas experiment: a b c d with 50%, 10%,
2%, 0.4% deviation of parameters, respectively

One merit of this experimental scheme is that it is robust against the influence of noise.
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Figure 4.7 shows the contour of the cost function calculated for one sample of measurement

values with 10 percent standard deviation noise. The position of the optimum is almost not

changing. Figure 4.8 contains the the corresponding contour plot for a dynamic single gas

experiment with the same noise level. The shift of the global optimum is much stronger

which makes the advantage of the multi-component gas experiment obvious.
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Figure 4.7: Contour of cost functions for the designed dynamic
multi-component gas experiment with 10% noise: left part
with 10% deviation for parameters, right part with 2%
deviation
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Figure 4.8: Contour of cost functions for the designed dynamic
single-gas experiment with 10% noise: left part with 10%
deviation for parameters, right part with 2% deviation

Bootstrap analysis

Again, only the dynamic multi-component gas experiments are analyzed by bootstrap

method. By applying the feeding profile of figure 4.3 and adding 10 percent additional

noise to the measurements, a replication of B=100 samples is generated for both optimiz-

ers. The comparison of both methods and the prediction by the Cramér-Rao bound are

depicted in table 4.13. The real variances of the identified parameters are much bigger than

the FIM based prediction, which implies high nonlinearity of this multi-component gas dy-

namic transport model. The results are visualized in figure 4.9, which illustrates that most

of the estimated parameters lie out of the ellipse, which is a 99.9% CI prediction by FIM. It
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is also interesting to compare the estimates by different optimizers. As expected, the LDM

optimizer seems to perform better than the hybrid optimizer in variance of estimates but

only because the initial values of the parameters are exactly real values. Instead of finding

the real global optimum the ld optimizer tends to be caught in a local minimum close to the

initial values, and thus has a smaller covariance matrix. On the other hand, it also happens

that the LDM optimizer ignores a the nearby optimum and converges to some distant local

minimum. Considering the number of extreme results of estimates, the performances of

the LDM optimizer are even worse than that of the hybrid optimizer. This phenomenon is

more obvious in figure 4.10 that contains the bootstrap results for 50% noise, where many

results of LDM optimization should be excluded by some outlier analysis. And when start-

ing from far away initial values, the results of LDM optimizer apparently have no chance

to reach the real values, just as we expected, see figure 4.11. In summary, the hybrid op-

timizer should be a more appropriate method for bootstrap analysis. However, the LDM

optimizer is definitely superior to the hybrid optimizer in terms of time consumption. The

ld optimizer in combination with the bootstrap analysis is much better than the FIM method

in terms of estimates analysis and CI prediction. So it may be a good compromise between

accuracy and computational costs.

Table 4.13: Bootstrap analysis of mean and standard deviation of
parameters

Parameter Mean/ Std. of FIM Mean/ Std. of LDM opt Mean / Std. of hybrid opt
K0/10−8 8.16 / 5.53e-4 8.1582 /3.7e-3 8.1586 / 4.4e-3
B0/10−14 2.96 / 4.14e-4 2.9587 /4.2e-3 2.9588 / 5.2e-3
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Figure 4.9: Bootstrap estimates for the designed dynamic
multi-component gas experiment with 10% noise: red O are
the results of the LDM optimizer while blue * are the
results of the hybrid optimizer, the green ellipse shows the
99.9% CI by FIM

4.1.11 Conclusion and discussion

In this section we considered the parameter identification problem for a homogeneous ce-

ramic porous membrane. Several different experimental schemes are compared and dis-

cussed on the basis of a realistic membrane reactor model. Optimal experimental designs

are carried out for the different schemes.

The performances of the experimental schemes are then compared at their corresponding

optimal experimental conditions. The Cramér-Rao inequality is used as the basic criterion
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Figure 4.10: Bootstrap estimates for the designed dynamic
multi-component gas experiment with 50% noise: red O
are the results of LDM optimizer while blue * are the
results of the hybrid optimizer, the green ellipse shows the
99.9% CI by FIM

for this comparison. The results show that the efficiency of the tested experimental schemes

has approximately the following order: multi-component gas dynamic>multi-component

gas steady≈ single-gas dynamic>transient diffusion > single-gas steady > isobaric diffu-

sion.

However, the Cramér-Rao bound only gives us the lower boundary of the variances of

parameters for linear systems. For nonlinear systems the variances of the estimated pa-

rameters may be much bigger than prediction of Cramér-Rao bound. In the second part

of this section, a bootstrap analysis is applied to get the real probability distributions of
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Figure 4.11: Bootstrap estimates for the designed dynamic
multi-component gas experiment with 10% noise: the
LDM optimizer starting with 50% deviation in the
parameter values

the estimated parameters for dynamic multi-component gas experiments. Bootstrap results

show much bigger real variances for the estimated parameters. However, the effectiveness

of the bootstrap method is strongly depending on the character of the optimizer. Since

there is not yet an efficient deterministic global optimizer available, some stochastic, local,

or hybrid (stochastic local) methods must be used instead. The consequence is, that new

uncertainties from the optimizer also get into the variances of estimated parameters. In this

case as we discussed, the standard deviation of parameters predicted by both optimizers are

close to each other but far from the Cramér-Rao prediction, which may imply the results of

bootstrap method are more close to the real standard deviation.
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Intuitively, one would expect that the CI of hybrid optimizer is broader than the CI of the

LDM optimizer, since a ”local” optimizer is more easily caught by some local minimum

and stays close to the initial values. This assumption coincides with the comparison of opti-

mization results. However, from figure 4.10 one also notices that the appearance of extreme

values of the ld optimizer are more frequent than for the hybrid optimizer. A possible ex-

planation is that the LDM optimizer sometimes accidentally falls into some other attractive

region (because of the noise changing the shape of the cost function) and thus converges

to some far away local minimum. In this model, these two effects seem to compensate for

each other, so one by luck gets an ”approximately correct” CI from the LDM optimizer

(although with wrong probability distribution). As discussed before, the LDM optimizer is

superior to the hybrid optimizer in terms of computation time, therefore the ld optimizer

could be a substitute for the hybrid optimizer when working with a approximately linear

model and computation time becomes an important factor (e.g. when solving a partial

differential model with finite-element-method, or when an analysis with large number of

bootstrap samples is necessary).

In this section, the experimental design is still based on the traditional way - minimization

of e-criteria of FIM. The direct application of bootstrap CI to design new experiments is

still time forbidden, even with the relative faster ld optimizer. Firstly, to get a ”stable” CI,

a big number of bootstrap replication is necessary, secondly, the time consuming hybrid

optimizer is also necessary for the optimization of control parameters. Since for a dynamic

system, the control parameters of piece-wise constant feeding profile are usually highly

correlated and highly non-linear, it’s not beneficial to use the LDM optimizer also in the

experimental design part. It could be possible to test the ”bootstrap OED” in some small

benchmark models, but that’s beyond the focus of this work.
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4.2 Mass transport through multi-layer membrane

In section 4.1, we discussed different reaction schemes for the identification of a homoge-

neous membrane. In reality, many porous membranes are composed of several layers. The

most common reason is that the selective layer of the membrane is not physically strong

enough and must adhere to a thick ”support layer” [45]. Furthermore some recent research

shows that a composite membrane may have some other potential advantage comparing to

homogeneous membrane, such as to influence the gas transport direction [3], or to choose

permeability for different gases. The best way to identify a multi-layer membrane is to per-

form identification layer by layer, so that K0 and B0 could be precisely identified for each

layer. However, this method is feasible only when all the precursors of the membrane are

available [13]. When the precursors are not available, or even when one has no idea about

whether the membrane in hand is homogeneous or composite, an alternative way must be

performed to identify transport coefficients for all layers simultaneously. Two questions

naturally arise:

1. Is the multi-layer membrane model structurally identifiable?

2. Is it possible to get the parameters within a certain precision, under the noisy mea-

surement condition?

As a matter of fact, these questions should be answered before estimations of parameters

of a real membrane. In this work, instead of a thorough mathematical analysis of the global

identifiability of multi-layer membranes, we first study an example of an ideal membrane

reactor with the same structure as a real metallic membrane. If the Fisher information

matrix of the model is non-zero, the model should have at least local identifiability, and

if the estimated parameters of a global optimization converge to a set of single point, one

can assume the model is globally identifiable. It’s reasonable to generalize this conclusion
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to other membrane with the same model structure and similar transport parameters. The

identification results and problems of a real metallic membrane is presented in section 4.2.2,

and possible experimental design is advised.

4.2.1 Identification of an ideal two-layer membrane

In this section an ideal two-layer membrane model is investigated to discuss the identifia-

bility of multi-layer membrane model. The selection of ideal two-layer membrane is based

on the following intuitive assumptions:

1. The total permeability of each layer of the membrane should be similar.

2. The bulk diffusion and Knudsen diffusion effects for the same layer should also be

similar.

3. The Knudsen diffusion and bulk diffusion effects for different layers should vary as

much as possible.

4. Both bulk diffusion and Knudsen diffusion coefficients should be within physical

realistic range.

All the above criteria in mind, we set a group of parameters for the ideal two-layer mem-

brane as in table 4.14.

Table 4.14: Parameters set of an ideal two-layer membrane

Parameter ln K01 ln B01 ln K02 ln B02

Value -15 -32 -16 -31

Notice that the above parameters are reparametrized to be logarithmic value of the re-

spective original viscous flow and Knudsen flow coefficients, and all the other physical
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parameters of the membrane are set to be the same as the real metallic membrane in section

4.2.2.

In the following sections we discuss two experimental schemes and corresponding exper-

imental design and parameter identification problems. The first scheme is the steady state

multi single-gas permeation experiment, since it’s the most commonly used method for

transport coefficient identification. The second is a dynamic gas transport experiment be-

cause it has the best performance in all the experimental schemes we discussed in section

4.1.

Model for multi single-gas permeation through multi-layer membrane

When modeling the single gas permeation through a multi-layer membrane, the equation

2.21 can be further simplified as follow:

Ṅj

ΔPi
= − 2πL

R̃T ln
(

rm,i+1

rm,i

)
(

4

3
K0,i

√
8R̃T

πM̃j

+
B0,i

ηj
Pi

)
(4.10)

where:

n∑
i=1

ΔPi = PA − PB (4.11)

Pi =
Pin,i + Pin,i+1

2
(4.12)

for i=1,2,. . . ,n

and:
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Pin,1 = PA (4.13)

Pin,n+1 = PB (4.14)

Here, n stands for the total number of layers, and Pin,i represents the pressure inside mem-

brane layers. The situation for a two-layers membrane is described in Figure 4.12. For each

set of PA and PB a mass flow rate Ṅj will be calculated by solving a group of nonlinear

equations. Obviously the identification of the multi-layer membrane is a much more diffi-

cult problem, since the number of observation is still the same but the number of parameters

to be identified increases to n times the value before. Furthermore, the parameters of the

model are highly linearly correlated and the optimization problem is highly non-convex.

Therefore the selection of the optimizer becomes the most difficult problem in the iden-

tification task. Definitely a local deterministic optimizer is not applicable because of the

existence of local minima. Also a traditional genetic algorithm becomes very slow because

of the high linear correlation of the parameters. The genetic algorithm has to be modified

to increase the efficiency of the optimizer. In chapter 3 a modified genetic algorithm is

discussed. However, even with the improved GA, still much computation time is required

for identification problems, especially when the bootstrap method is performed to calculate

the confidence interval of the estimated parameters.

Steady state single gas permeation experiment

The only difference of this experimental scheme of this section in comparison to section

4.1 is that the pressure on both sides of the membrane is assumed to be controlled directly

and precisely. In addition the temperature of the membrane is used as another controlled

experimental condition, while the temperature of both chambers and gas are assumed to be
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Figure 4.12: Sectional view for model of double layer membrane
reactor

the same as membrane. The kind of gas is used as the third condition for OED of steady

gas permeation experiments.

As described in section 4.1, firstly an optimal experimental design should be performed to

locate the optimal experimental conditions.

During the experimental design, the pressure for both sides of the membrane is limited

between 1.5 bar and 3 bar, with 0.1 bar interval. The temperature is limited between 100 and

500 centigrade with 100 centigrade interval. And the gas is chosen from nitrogen, helium

and argon (although the OED result shows only helium and argon is necessary). Therefore,

the total possible combination of experimental condition is utotal = 16×16×5×3 = 3840.



92 CHAPTER 4. OED FOR IDENTIFICATION OF MEMBRANE PARAMETERS

A factorial experimental design will compose all of the above possible conditions, but by

optimal experimental design it’s possible to perform much less experiments. For OED

of n experiments there are possible combination of un
total. The calculation of sensitivities

and Fisher information matrix was described in section 3.1.3, and the e-criterion is again

used as objective. The results of OED for 10 and 20 experiments are listed in table 4.15

and 4.16, where the corresponding e-criteria are -22.3580 and -45.0967(for 1% noise).

Apparently when the number of experiments goes beyond 10 the e-criteria of the FIM (and

the standard deviation of the estimated parameters) increases almost linearly, which could

also be achieved by simply repeating the same group of experiments. Furthermore, it’s easy

to see that most of the experiments in table 4.16 already appeared in table 4.15. Therefore

in the following part we choose only the OED results of 10 experiments for identification.

The full Fisher information matrix (FIM) of the OED result is listed in table 4.17, while the

inverse of FIM as the Cramér-Rao boundary is listed in table 4.18.

Table 4.15: Results of optimal experimental design for 10 experiments

Exp. Number PA [bar] PB[bar] Gas Temperature[o C]
1 1.5 3.0 He 300
2 3.0 1.5 He 500
3 1.5 3.0 He 300
4 3.0 1.5 Ar 100
5 1.5 3.0 Ar 200
6 1.5 3.0 Ar 200
7 1.5 3.0 He 300
8 3.0 1.5 Ar 100
9 3.0 1.5 He 500
10 1.5 3.0 Ar 200

The nonsingular FIM proves the local identifiability of the model, but is not sufficient to

prove global identifiability. Furthermore the estimation of the confidence interval of the
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Table 4.16: Results of optimal experimental design for 20 experiments

Exp. Number PA [bar] PB[bar] Gas Temperature[o C]
1 3.0 1.5 He 500
2 1.5 3.0 He 300
3 1.5 3.0 Ar 200
4 1.5 3.0 Ar 200
5 3.0 1.5 Ar 100
6 1.5 3.0 Ar 200
7 3.0 1.5 He 500
8 1.5 3.0 He 300
9 1.5 3.0 He 300
10 1.5 3.0 He 300
11 3.0 1.5 He 500
12 1.5 3.0 Ar 200
13 1.5 3.0 Ar 200
14 3.0 1.5 He 500
15 3.0 1.5 Ar 100
16 1.5 3.0 He 300
17 1.5 3.0 He 300
18 3.0 1.5 Ar 100
19 1.5 3.0 Ar 200
20 1.5 3.0 He 300

Table 4.17: FIM of designed 10 experiments

FIM K01 B01 K02 B02

K01 12772.21765 5497.66348 5872.83972 11367.57387
B01 5497.66348 4178.81099 1432.80404 5400.26835
K02 5872.83972 1432.80404 3909.46671 4842.78813
B02 11367.57387 5400.26835 4842.78813 10311.49492

parameters by FIM is sometimes not accurate, as we discussed in section 4.1. The more

realistic but also more time-consuming way is to perform a bootstrap identification and
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Table 4.18: Estimated covariance (by FIM) of designed 10 experiments

Covariance K01 B01 K02 B02

K01 0.01961 0.00308 -0.00433 -0.02121
B01 0.00308 0.00214 0.00043 -0.00472
K02 -0.00433 0.00043 0.00232 0.00345
B02 -0.02121 -0.00472 0.00345 0.02433

calculate the confidence interval from the statistics of estimated parameters. However,

the optimization task becomes more difficult and requires much more computation time

now since the number of parameters to be identified increases to four. The traditional

genetic algorithm is modified to increase the efficiency and precision of the optimization,

see chapter 3. However even with improved GA, a single identification task may take from

several hours to several days, depending on the initial population size of the optimizer. And

still the variance caused by the stochastic nature of the optimizer cannot be totally avoided.

To calculate the real parameter variance caused by measurement noise, one possible way is

to simply exclude the variance caused by the optimizer.

Suppose there exists a ideal global optimizer that can always locate the minimum of the

objective function and there exists only one global optimum of the objective function, then

the parameter estimated by this optimizer for a single sample of the bootstrap analysis can

be expressed as θ̂∗s . The parameter estimated by GA θ̂s is stochastic, and therefore by itself

a random variable (notice that θ̂∗s is a single constant value). Suppose the GA estimator

is unbiased, i.e. E(θ̂s) = θ̂∗s , then the difference of optimization results between GA and

perfect global optimizer is dGA,s = θ̂∗s−θ̂s. If dGAs is constant for all bootstrap samples, i.e.

dGA = dGA,s then the estimated parameters for each bootstrap sample can be expressed as:

θ̂ = θ̂∗+dGA. When there’s no correlation between θ̂∗ and dGA, the variance of estimations

is: V (θ̂) = V (θ̂∗) + V (dGA) = V (θ̂∗) + V (θ̂s). Then the true variance caused by the
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measurement noise can be calculated by: V (θ̂∗) = V (θ̂) − V (θ̂s). For multiple parameter

estimation problems, it could also be proved that: Cov(θ̂∗) = Cov(θ̂)−Cov(θ̂s). Note that

here θ̂ is the vector of estimated parameters.

The procedure for confidence interval estimation is summarized as below:

1. Perform bootstrap identification with zero noise, and calculate the covariance matrix

Cov(θ̂s) from the samples of identified parameters.

2. Apply an additional Gaussian distributed white noise and perform bootstrap identifi-

cation again with the noisy measurements. the covariance matrix Cov(θ̂) is calculated

from samples of estimated parameters.

3. The estimation of real covariance of the parameters is calculated by: Cov(θ̂) −
Cov(θ̂s)

The procedure is based on the following assumptions:

1. The covariance of optimization results for each bootstrap sample point is the same.

2. There exists no correlation between θ̂∗ and θ̂s.

3. The estimator θ̂ has no bias, and is distributed around θ̂∗.

4. There’s only one global optimum for θ̂∗.

The performance of GA is strongly dependent on the size of initial population and maximal

evolution steps [34], as the size and steps increase θ̂s → θ̂∗s and dGA,s → 0. Too small ini-

tial population size makes the optimizer easy to converge to some local minimum far away

from the local minimum and thus makes the CI analysis meaningless, while too big popu-

lation size apparently makes the bootstrap analysis too time consuming. The compromise

between preciseness and efficiency is made totally based on experiences. In this work we
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choose initial population size of 1000 and step limit of 50. The GA with coordinate trans-

form is used as described in chapter 3, where also other parameter settings of GA can be

found. Bootstrap identification are performed with noise level at zero and 1%, with B=50,

note that the objective function used here is:

J = ln[
∑

i

(Ṅi − Ṅi,m)2

Ṅ2
i,m

+ 10−6], (4.15)

(A small constant is used to prevent zero in logarithmic function) The calculated covariance

of the parameters with zero and one percent noise of measurements are listed in table 4.20

and 4.19 respectively.

Table 4.19: Bootstrap covariance matrix without noise

Covariance K01 B01 K02 B02

K01 2.50e-03 4.37e-04 -4.92e-04 -2.74e-03
B01 4.37e-04 1.32e-04 -5.20e-05 -5.27e-04
K02 -4.92e-04 -5.20e-05 1.38e-04 5.05e-04
B02 -2.74e-03 -5.27e-04 5.05e-04 3.07e-03

Table 4.20: Bootstrap covariance matrix with 1% noise

Covariance K01 B01 K02 B02

K01 2.25e-02 3.09e-03 -6.15e-03 -2.54e-02
B01 3.09e-03 2.56e-03 3.62e-04 -5.14e-03
K02 -6.15e-03 3.62e-04 3.03e-03 5.82e-03
B02 -2.54e-02 -5.14e-03 5.82e-03 3.07e-02

The real covariance matrix, which is the difference of the above two covariance matrix, is
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in table 4.21. It could be seen that for this small noise level, it’s very close to the predic-

tion of FIM. The confidence interval analysis also proves the existence of a unique global

optimum, part of the identification results can be seen in table 4.22.

Table 4.21: Covariance matrix of an ideal global optimizer

Covariance K01 B01 K02 B02

K01 2.00e-02 2.66e-03 -5.66e-03 -2.27e-02
B01 2.66e-03 2.43e-03 4.14e-04 -4.61e-03
K02 -5.66e-03 4.14e-04 2.89e-03 5.31e-03
B02 -2.27e-02 -4.61e-03 5.31e-03 2.76e-02

Table 4.22: Bootstrap identification results of an ideal global optimizer

K01 B01 K02 B02 Obj
-1.51e+01 -3.21e+01 -1.61e+01 -3.09e+01 -8.19e+00
-1.49e+01 -3.19e+01 -1.60e+01 -3.12e+01 -7.71e+00
-1.54e+01 -3.21e+01 -1.59e+01 -3.04e+01 -6.76e+00
-1.49e+01 -3.20e+01 -1.60e+01 -3.11e+01 -7.49e+00
-1.51e+01 -3.21e+01 -1.60e+01 -3.09e+01 -6.82e+00
-1.51e+01 -3.20e+01 -1.60e+01 -3.09e+01 -6.84e+00
-1.53e+01 -3.20e+01 -1.59e+01 -3.06e+01 -7.60e+00
-1.50e+01 -3.21e+01 -1.60e+01 -3.10e+01 -7.46e+00
-1.51e+01 -3.21e+01 -1.61e+01 -3.08e+01 -8.21e+00
-1.50e+01 -3.20e+01 -1.60e+01 -3.10e+01 -7.25e+00
...

Dynamic gas transport experiment

The dynamic gas transport experiments are performed as described in section 4.1.7, where

also all the settings and condition limits can be found. The model for gas transport is given



98 CHAPTER 4. OED FOR IDENTIFICATION OF MEMBRANE PARAMETERS

in section 2.2.4. After the routine experimental design step, the optimal feeding profile

is obtained as in figure 4.13. In the next step, the bootstrap method is applied to get the

covariance matrix of estimated parameters. The results of bootstrap is given in tabular 4.23.

As expected, the dynamic gas transport experiments enable much more precise parameter

estimations. Furthermore, this kind of experimental scheme also make the GA optimizer

converge faster during parameter identification process.
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Figure 4.13: Designed feeding profile and corresponding concentration
for both gas in chamber A

However, it should be noted that the model of dynamic gas transport experiment only con-

siders the ideal case with a lot of simplifications. The two chambers of the membrane
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Table 4.23: Bootstrap identification results with 1% noise

Covariance K01 B01 K02 B02

K01 1.42e-03 1.12e-03 -6.69e-04 -1.59e-03
B01 1.12e-03 1.26e-03 -6.30e-04 -1.30e-03
K02 -6.69e-04 -6.30e-04 3.51e-04 7.65e-04
B02 -1.59e-03 -1.30e-03 7.65e-04 1.80e-03

reactor are considered to be homogeneous, but in reality there will be axial and radius con-

centration gradients. For more detailed model of dynamic gas transport experiment, the

gradients of concentration and the dispersion effects must also be described in the model,

therefore the model may become too big and time demanding for parameter identification.

Another problem is that the inlet flow rate of the gas cannot be controlled precisely in

reality, and may introduce more uncertainties in parameter estimation. The advantage of

dynamic gas transport experiment still needs to be proved by real experiments.

4.2.2 Case study: identification of two-layer metallic membrane

The problem of this section is to identify the gas transport parameters of a real metallic

membrane. The geometry of the membrane is summarized in table 4.24. From the ob-

servation of a broken metallic membrane, it appears to be composed of two layers with

similar thickness, see figure 4.14. But without producer information, this assumption has

to be verified by gas transport experiments.

Table 4.24: Physical scale of the metallic membrane reactor

Total length[mm] Effective length[mm] Inner radius[mm] Outer radius [mm]
250 120 10.55 12.8
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Figure 4.14: Sectional graph of the broken metallic membrane

Steady gas permeation experiments are carried out by V. Edreva and E. Tsotsas with the

experimental setup described in reference [13]. Since the prior information of the gas

transport parameters is not available, a complete factorial experiment is performed with

two different kinds of gas, two different flow directions (with a constant flow rate), five

different temperatures and five different pressures. Therefore totally 100 experiments are

performed. Firstly the membrane is assumed to be homogeneous, and the Knudsen diffu-

sion coefficient and bulk flow coefficient are easily calculated as in table 4.25. The relative

standard deviation of the measurements is calculated by:
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σr =

√√√√∑
i

(Ṅi−Ṅi,m)2

Ṅ2
i,m

m − k
(4.16)

Where k is the number of model parameters [46].

Table 4.25: Identification result for homogeneous model

ln K0 K0 lnB0 B0 Objective σr

-15.737 1.464e-7 -31.105 3.099e-14 -2.741 2.57%

Note that the actually identified parameters are in fact logarithms of the real transport co-

efficients, and the cost function is:

J = ln
∑

i

(
Ṅi − Ṅi,m

Ṅi

)2, (4.17)

In the next step, the same set of experimental data is used to identify a two-layer model.

It’s reasonable to assume that the two layers have relatively similar structure and transport

coefficients ( otherwise it’s difficult to adhere to each other), and the coefficients for both

layer should be around the identified parameters of the homogeneous model. Therefore,

the search region for K0 and B0 for each layer are limited to K0 ∈ [−33 − 28] and B0 ∈
[−17 − 15]. To minimize the stochastic uncertainty of GA, the same identification process

is repeated for 100 times and the optimum solution is found as in table 4.26

As expected, the two layer model shows a better fit for the experimental data. However,

due to the stochastic nature of GA, the identified parameters show big variances for each

identification process, part of the identification results can be seen in table 4.27. The ex-

perimental data and parameters of GA are the same for all the identification processes, and

therefore the variances are totally caused by GA.
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Table 4.26: Identification result for two-layer model

ln K01 ln B01 ln K02 ln B02 Objective σr

-15.97 -30.04 -15.83 -31.75 -3.332 1.93%

Table 4.27: Identification results of two-layer membrane

ln K01 ln B01 ln K02 ln B02 Objective
-1.6022e+01 -2.9453e+01 -1.6029e+01 -3.1811e+01 -3.3242e+00
-1.6081e+01 -3.0586e+01 -1.5485e+01 -3.1625e+01 -3.3239e+00
-1.5955e+01 -2.9448e+01 -1.6041e+01 -3.1802e+01 -3.3255e+00
-1.5487e+01 -3.1578e+01 -1.6151e+01 -3.0546e+01 -3.3212e+00
-1.6089e+01 -3.1747e+01 -1.7100e+01 -2.8838e+01 -3.3047e+00
-1.5999e+01 -2.9002e+01 -1.6156e+01 -3.1816e+01 -3.2983e+00
-1.7991e+01 -2.8379e+01 -1.6250e+01 -3.1830e+01 -3.2613e+00
-1.6145e+01 -3.0738e+01 -1.5323e+01 -3.1589e+01 -3.3212e+00
-1.5961e+01 -2.9995e+01 -1.5845e+01 -3.1753e+01 -3.3321e+00
-1.5949e+01 -2.9745e+01 -1.5944e+01 -3.1782e+01 -3.3308e+00
-1.5890e+01 -3.1700e+01 -1.6031e+01 -2.9734e+01 -3.3292e+00
-1.5942e+01 -3.1716e+01 -1.6083e+01 -2.9548e+01 -3.3274e+00
...

The histogram for each parameter is plotted in figure 4.15. While the histograms of Ke01

and Ke02 are almost around some certain value, the histograms of Be01 and Be02 are

distributed in two separate groups. It’s more clear to see the plot of Ke01 vs Ke02 in

figure 4.16, apparently the optima are composed of two disconnected regions. The reason

for this behaviour may be that it is possible to identify the properties of the two layers

from the given experimental data, but not their sequence. In such situation, neither FIM

or bootstrap method can be applied to calculate the confidence interval of the identified

parameters correctly, and some further experiments should be designed and performed to
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find the real parameter region. However, it’s possible to prove all of the results in table 4.27

are valid possible values of parameters. Suppose the noise level for each measurement is

independent and constant with a relative standard deviation of 1.93%, as is calculated in

table 4.26, then: ∑
i

(Ni − Ni,m)2

(Ni,mσr)2
∼ χ2

dm−dp (4.18)

It can be calculated that each identification result with objective below -3.1078 is within

the 95% confidence interval. Therefore all the identification results for two-layer model lie

in the confidence interval, and the single-layer model can be excluded(see table 4.25).
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Figure 4.15: Histogram for the identified parameters of the two-layer
model
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Figure 4.16: Identification results of B01 and Be02 of two-layer model

In this example, experimental design has two different considerations:

1. To increase the global identifiability by distinguishing between the two disconnected

optimal regions (i.e. the correct sequence of the two layers).

2. To increase the local identifiability for each possible set of parameters.

For the first consideration, two representative sets of parameters are chosen from the two

separate optimal regions, see table 4.28, and the distance between the corresponding ob-

servations is maximized.
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J1 =
∑

i

(Ni,1 − Ni,2)
2

(Ni,1σr)2
(4.19)

In equation 4.19 Ni,1 denotes the fluxes for the first set of parameters in the first line of

table 4.28, and Ni,2 denotes the fluxes for the second set of parameters.

During the preliminary factorial experiments, the pressure difference between the two

chambers of membrane reactor is always limited below 0.1 bar. However, by experimen-

tal design, it is found that the increase of pressure difference ( and also the flow rate)

can greatly increase the identifiability of the two-layer model. In table 4.29, the limit of

maximal pressure difference increases from 0.1 bar to 0.5 bar linearly. The design results

show that the optimal experimental conditions always have maximal pressure difference,

and when the noise is Gaussian distributed at least 0.5 bar pressure difference is needed to

distinguish the two groups of parameters with 95% confidence level by a single experiment.

Table 4.28: Representative parameters for two optimal region

ln K01 ln B01 ln K02 ln B02

-15.97 -30.04 -15.83 -31.75
-15.84 -31.69 -16.04 -29.88

Another approach is to calculate FIM for all possible set of parameters, and minimize the

sum of some criteria. Thus the global local identifiability of the model is increased. The

identified parameters in table 4.27 are good representative for all possible combinations of

parameters within confidence interval. But for efficiency consideration still only the two

representation sets of parameters in table 4.28 are used for experimental design. The OED

is performed to minimize the sum of e-criteria of the FIM of two group of parameters, and

OED results of 10 experiments is in table 4.30.
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Table 4.29: Experimental design results

Exp. PA [bar] PB[bar] Gas Temperature[o C] Objective J1
1 1.5 1.6 He 500 0.5025
2 1.5 1.3 He 500 1.795
3 1.5 1.2 He 500 4.535
4 1.5 1.1 He 300 8.9307
5 1.5 1.0 He 300 15.5428

Table 4.30: Experimental design results

Exp. PA [bar] PB[bar] Gas Temperature[o C]
0 1.6 1.1 Ar 200
1 2.0 1.5 He 300
2 1.5 2.0 Ar 200
3 1.5 1.0 He 500
4 1.6 2.1 He 100
5 1.5 2.0 Ar 300
6 1.6 1.1 Ar 200
7 2.4 2.9 Ar 100
8 1.5 1.0 Ar 100
9 1.8 1.4 He 300

4.2.3 Thickness of the membrane layers

Except for the gas transport coefficients, one may also want to identify the thickness of

each membrane layer simultaneously. However, generally such approach is not going to

succeed. Consider equation 4.10 again, the radius of each layer is fully correlated with

the gas transport coefficients K0i and B0i, and therefore cannot be identified separately.

The effect of increasing or decreasing the thickness of the layers can be compensated by

increasing or decreasing the transport coefficients proportionally.
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The thickness of the membrane is only identifiable when it has other effects on the mem-

brane behavior except for the transport phenomenon. For example, when the membrane

process a non-negligible hold-up or dynamic adsorption effects have to be taken into ac-

count, the volume of the membrane will influence the dynamic behavior of gas transport.

One model considering the hold-up effect of the membrane is implemented as depicted

in figure 4.17. The simulation results of the metallic membrane are compared with the

original model, but no apparent difference is observed. The metallic membrane is too thin

(2.45mm) to show any apparent hold-up effects, therefore the identification problem is not

considered.

Figure 4.17: Model of the multilayer membrane with hold-up, each
layer is considered to be a small chamber, and dusty gas
model is applied to describe the gas transport between
adjacent chambers. Note that the gas flow rate Nj now is
different for each layer.
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4.2.4 Conclusion and discussion

In this section we discussed the possibility of identification of multi-layer membranes.

Firstly the steady gas permeation experiments are discussed. After a successful OED, the

existence of a non-singular FIM proves the local identifiability of the model. In the next

step, a bootstrap method is performed, and proves the global identifiability. Since the

randomness can not be totally eliminated, a method for estimation of the real bootstrap

confidence interval is advised. However, the method is still limited and cannot be applied

to optimization problems with disconnect optimal regions, such as the practical case study

in section 4.2.2.

The dynamic multi-component gas transport experimental scheme is also examined for

identification of the two-layer membrane model. As discussed in section 4.1, this exper-

imental scheme shows much higher efficiency and much narrower confidence interval of

estimated parameters. Although the control and measure of dynamic experiments could

also be more difficult, it may still be a competitive experimental scheme and should be

investigated when conditions permit.

In the practical study of identification a metallic membrane, more realistic problems are

discussed. Although the identification results for two-layer model are superior to the results

of the homogeneous model, the confidence interval it is too broad to determine the precise

values of the transport coefficients for both layers. The identification results also show

that there exists two disconnected optimal regions. Therefore, the experimental design is

performed in two different approaches: firstly some experiments are designed to distinguish

between the two optimal regions, and secondly some OED are performed to increase the

local identifiability. For both approaches, only two representative parameter sets, which

are the optimal results for the corresponding optimal regions, are used in order to save the

computation time.
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During the OED process, it’s found that the pressure difference has an important effect in

identification of the two-layer membrane model. In all discussed experimental designs the

highest pressure difference is always selected. In the identification of a real metallic mem-

brane, the existence of two disconnected optimal region is also possibly a consequence of

insufficient pressure difference. In fact, by observation of the two representative parameter

sets, it’s easy to notice that they are almost the same by exchanging the turn of two layers.

For steady gas permeation experiments, without big enough pressure gradients inside the

membrane, it’s difficult to determine the order of the different layers of the membrane.



Chapter 5

Spatiotemporal patterns in membrane

reactors

5.1 Introduction

After the model selection and the parameter fitting step, the identified model can be used for

process simulation, process analysis and finally process optimization and model predictive

control. This chapter is focused on the process simulation and analysis of a special kind of

nonlinear phenomena - the formation of spatiotemporal patterns, especially the stationary

spatially patterns within a membrane reactor. The simulation starts firstly with a simple

membrane reactor model, then the results are extended to and verified by a detailed model

reactor model where both the experimentally identified reaction kinetics and mass transfer

coefficients are incorporated. The final results show that it’s possible to observe the pattern

in a laboratory reactor under feasible operation conditions.

The nonlinear dynamics of CSTR system have been investigated extensively for a long time

[47, 48, 17]. The instability may be caused by either interaction of reaction kinetics or by

110
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interaction of mass and enthalpy balance. Sheintuch first pointed out the analogy between

the membrane reactor and the CSTR [14, 16], see figure 5.1. Unter certain circumstances,

the temporal behavior of a CSTR could be used to describe and classify the stationary

spacial behavior of a membrane reactor.

The analogy can be simply explained by considering single exothermic reaction: A → B.

The mass balance and energy balance for such a reaction in a CSTR can be described as

follows:

dc

dt
= −r +

q̇in

V
(c0 − c) (5.1)

ρCp
dT

dt
= −ΔHr +

q̇in

V
ρCP (Tin − T ) +

αA

V
(T0 − T ) (5.2)

Where c and c0 are the concentration of A in the CSTR and the feeding concentration of A,

T , Tin and T0 are the temperature of CSTR, feeding and reactor wall, q̇in and V represent

the feeding flow rate and volume of the reactor. Under the assumption that the tempera-

ture of the feeding and the reactor wall are the same, the equations could be simplified as

follows:

dc

dt
= −r + β(c0 − c) (5.3)

ρCp
dT

dt
= −ΔHr + α∗(T0 − T ) (5.4)

where β = q̇in

V
and α∗ = q̇in

V
ρCP + αA

V

It’s well known that in certain parameter space such a system shows various bifurcations

and nonlinear behavior [17, 18]. Now suppose the same reaction is carried out in a tubular

fixed bed membrane reactor. By assuming a constant annulus side and using a simplified

membrane model, the mass balance and energy balance of the fixed side as described in
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equation 2.6 and 2.7 should be rewritten as:

∂c

∂t
+ u

∂c

∂z
= r + β∗(c0 − c) (5.5)

(ρCp)tot
∂T

∂t
+ u(ρCp)f

∂T

∂z
= −ΔHr + λ

∂2T

∂z2
+ α∗(T0 − T ) (5.6)

Here β∗ = 2
rmem,in

β, α∗ = 2
rmem,in

αmem , see figure 5.1-b. It’s easy to notice that if the heat

dispersion term in equation 5.6 is very small and could be ignored, and the concentration

and temperature in the membrane reactor reaches steady state, then the spatial pattern of the

membrane reactor is identical to the temporal dynamics of the CSTR. Therefore the solu-

tion of the CSTR could be used as the basis to study the steady state solution of membrane

reactor, and the influence of heat dispersion coefficient could be considered afterwards. It

is well known that the dynamic behavior of exothermic CSTR may be very complex and

show periodic and aperiodic solutions [17]. Due to the analogy between membrane reactor

and CSTR, a spatial pattern formation can be expected in membrane reactors.

Figure 5.2 gives a more intuitive physical explanation for the formation of stationary pat-

tern within a membrane reactor. The fluid flowing through the fixed bed possesses a storage

capacity for material of reactants and for heat. A spatial pattern is caused by the alternate

charging and discharging of the material storage and the heat storage resulting from the

chemical reaction. In sections of high conversion, the material storage is discharged, and

the reaction heat released charges the energy storage. In sections of low conversion, the

material storage is reloaded by mass transfer from the sweep gas side through the mem-

brane, while heat losses reduce the temperature of the fixed bed and hence discharge the

energy storage.

In the next step, first the simple membrane reactor model as described in figure 5.1-b is used

for bifurcation analysis. The analysis results are then applied to a more detailed membrane

reactors as described in figure 2.2. The detailed membrane reactor model consists of three
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Figure 5.1: Comparison of membrane reactor and CSTR

parts: a porous tubular membrane, a catalytic fixed bed inside the tube and an empty shell

side. Reactants are fed simultaneously to the fixed bed and the shell side, and could also

exchange through the porous membrane. It’s easy to notice two main difference between

the two models:

1. The sweep gas side is also modeled, therefore the feeding concentration through

membrane can not be kept constant.

2. The membrane can not be heated directly, and instead the shell of the entire mem-

brane reactor is heated.

Besides these apparent difference, there are also some more details such as the mass transfer

model incorporated the complex model, which will be explained in section 5.5.
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Figure 5.2: Physical interpretation of stationary pattern formation in a
fixed bed membrane reactor; meaning of filled arrows: ⇑ =
charging of energy storage by chemical reaction; ⇓ =
discharging of energy storage by heat losses; meaning of
open arrows: ⇑ = charging of mass storage by mass supply
through membrane; ⇓ = discharging of mass storage by
chemical reaction.

5.2 The simple membrane reactor model

One of the most important application of membrane reactor is to improve the selectivity

in partial-oxidation reactions, since a proper reactant concentration is required to maintain

a high conversion rate as well as high selectivity. One good example is the oxidative de-

hydrogenation of ethane catalyzed by V Ox/γ − Al2O3. The reaction was investigated by
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Klose [22], and a detailed reaction kinetics with five step reaction network is identified

from the experiments. The reaction network is presented in figure 5.3, and the correspond-

ing reaction kinetics and kinetic parameters are listed in table 5.1 and 5.2. It should be

noted that only reaction 1 is described by a Mars van Krevelen mechanism while the rest

of reactions use a Langmuir Hinshelwood approach.

Figure 5.3: Five step reaction network of ethane partial oxidation

The reactions are supposed to be carried out in the fixed bed membrane reactor as shown

in figure 2.2. In the first step, a one-dimensional pseudo-homogeneous model of the mem-

brane reactor is studied, where the concentration and the temperature on the annulus side of

the membrane reactor are assumed to be constant and identical to the (annulus) inlet con-

ditions. The mass transfer model is also simplified to: Ji = β(c0i − ci). By combination

of fixed bed model and mass transfer model, the mass balance model for fixed bed side can

be rewritten to be:
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Reaction Equation

1 r1 = [
kredcC2H6koxc0.5

O2

kredcC2H6+koxcO2
]

2 r2 = k2[
KC2H6cC2H6

1+KC2H6cC2H6+KCO2cCO2
× K0.5

O2c0.5
O2

1+K0.5
O2c0.5

O2
]

3 r3 = k3[
KC2H4cC2H4

1+KC2H4cC2H4+KCOcCO
× K0.5

O2c0.5
O2

1+K0.5
O2 c0.5

O2
]

4 r4 = k4[
KC2H4cC2H4

1+KC2H4cC2H4+KCO2cCO2
× K0.5

O2c0.5
O2

1+K0.5
O2c0.5

O2
]

5 r5 = k5
KCOcCOK0.5

O2c0.5
O2

[1+KCOcCO+K0.5
O2c0.5

O2+KCO2cCO2]2

Table 5.1: Reaction kinetics for the reaction network in Figure 5.3; an
Arrhenius approach is used for the rate factors, i.e.
ki = k0i exp (Ei/R/T ) , i = red, ox, 1, 2, . . . , 5. ci

represent the molar concentration of component i in mol/l at
298 K and 1 atm.

k0,red = 4.3 × 109l / kg / h E1 = 94kJ / mol
k0,ox = 1.1 × 108mol0.5l0.5/kg/h E2 = 114kJ / mol

k02 = 1.6 × 107mol / kg / h E3 = 51kJ / mol
k03 = 2.0 × 104mol / kg / h E4 = 51kJ / mol
k04 = 1.0 × 103mol / kg / h E5 = 118kJ / mol
k05 = 1.1 × 107mol / kg / h

KC2H6 = 4769.76l/mol
KO2 = 1002.58l/mol

KC2H4 = 3025.57l/mol
KCO2 = 3455.82l/mol
KCO = 3233.91l/mol

Table 5.2: Kinetic parameters for the reaction network in Figure 5.3

∂ci

∂t
= −u

∂ci

∂z
+

5∑
j=1

νijrjρcat +
2

r
β (c0i − ci) , i = 1, . . . , 5 (5.7)

An the energy balance equation becomes:
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(ρcP )tot

∂T

∂t
= −u (ρcP )f

∂T

∂z
+ λ

∂2T

∂z2
+

5∑
j=1

νij (−ΔRH)j rjρcat +
2

r
α (T0 − T ) (5.8)

X0,C2H6= 0.02 hC2H6,ref = -84.67 J/mol
X0,C2H4= 0.0001 hC2H4,ref= 52.56 J/mol
X0,CO= 0.0001 hCO,ref =29.14 J/mol
X0,CO2= 0.0001 hCO2,ref =37.11 J/mol
X0,O2= 0.2 hO2,ref =0 J/mol
cP,C2H6 = 81.67 J / mol / K L= 0.95 m
cP,C2H4 = 43.56 J / mol / K rout = 0.016 m
cP,CO = 29.14 J / mol / K T0 = 848 K
cP,CO2 = 37.11 J / mol / K Tref = 298 K
cP,O2 = 29.355 J / mol / K uin = 0.32 m / s
α= 128 W / m2/ K (ρcP )tot = 43622g /m3 / K
β = 0.0934 m / s ρCat = 585kg/m3

Table 5.3: Parameters used in the simulations with the simple
membrane reactor model, if not given differently in the text.

Naturally, the same boundary conditions as in equation 2.10 and 2.10 as well as the partial

molar enthalpy relations described in equation 2.8 are also applied.

In the above equations, t and z are the time and the space coordinate, respectively; u is

the flow velocity of the gas; c1 to c5 stand for the molar concentrations of the components

ethane, ethene, carbon monoxide, carbon dioxide and oxygen, respectively; ν ij are the

stoichiometric coefficients; r is the inner radius of the membrane; β is a mass transfer

coefficient; (ρcP )tot and (ρcP )f are the thermal capacities of the fixed bed and the gas,

respectively; λ is the axial heat conductivity of the bed; α is a heat transfer coefficient. All

model parameters used in the simulations are given in table 5.3.



118 CHAPTER 5. SPATIOTEMPORAL PATTERNS IN MEMBRANE REACTORS

5.3 Bifurcation analysis without heat dispersion

In this section, the simple membrane reactor model described in section 5.2 is further sim-

plified by neglecting the heat dispersion term in equation 5.8. Obviously, the boundary

condition in equation 2.10 and 2.10 can also be neglected, and the steady state mass bal-

ance and energy balance equations become:

u
∂ci

∂z
=

5∑
j=1

νijrj +
2

r
β (c0i − ci) , ci(0) = ci,in, i = 1, . . . , 5 (5.9)

u (ρcP )f

∂T

∂z
=

5∑
j=1

νij (−ΔRH)j rj +
2

r
α (T0 − T ) , T (0) = Tin (5.10)

The partial differential equations are converted to ordinary differential equations. As ex-

plained before, the equations describe the stationary solution of an ideal plug flow mem-

brane reactor, which is analogous to the dynamic behavior of CSTR. The nonlinear dy-

namic of CSTR has been studied in detail and different kinds of behavior are classified

[18]. Therefore, the next step is to look for the bifurcation points for the nonlinear behav-

iors in the corresponding CSTR.

5.3.1 Hopf bifurcation point

A Hopf bifurcation point appears when a fixed point of a dynamical system loses stability

as a pair of complex conjugate eigenvalues of the linearization around the fixed point cross

the imaginary axis of the complex plane. If the hopf bifurcation is supercritical, a small

amplitude limit cycle will be formed circling the fixed point and oscillatory behavior will

be observed.

The hopf bifurcation points are obtained by using one-parameter continuation method in
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DIVA [49]. When the temperature of shell side is fixed to 848K, two hopf bifurcation

points appear in figure 5.4 when changing the shell side concentration of ethane. The

corresponding oscillatory solutions are also calculated and plotted in figure 5.4. It’s obvious

that the limit cycles are stable or attractive, since after the first several periods, both the

amplitude and the frequency of the oscillation tends to be constant.

Figure 5.4: One parameter continuation of steady state membrane
reactor, with all the conditions as in table 5.3 except for the
shell side molar fraction of ethane. solid lines denote stable
solutions, dashed lines denote unstable solutions, squares
denote Hopf bifurcation points. The right-hand side graphs
are the corresponding stationary pattern solution



120 CHAPTER 5. SPATIOTEMPORAL PATTERNS IN MEMBRANE REACTORS

5.3.2 Bifurcation diagram

The two-parameter continuation method in DIVA [49] is used to locate all the hopf bifur-

cation points according to the shell side concentrations c0i and the shell side temperature

T0. The results are given in figure 5.5.
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Figure 5.5: Analysis of spatially homogeneous solutions of the ideal
plug flow membrane reactor; (a) saddle node bifurcations
(solid lines) and Hopf bifurcations (dotted lines); (b) one
parameter continuation with the shell side molar fraction of
ethane as continuation parameter and a constant shell side
temperature T0 = 848 K (c) one parameter continuation with
the shell side temperature as continuation parameter and a
constant shell side molar fraction of ethane x0,C2H6 = 0.04;
The asterisk in (a) and the arrow in (b) indicate the
simulation condition of Figure 5.8
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Saddle node bifurcations are also found when the temperature and the concentration on the

shell side are varied. The curve of saddle node bifurcations in figure 5.5 borders a region

of multiple spatially homogeneous solutions, i.e. inside this region there are three different

sets of reactor inlet conditions Tin, ci,in resulting in three different spatially homogeneous

solutions for given shell side conditions. Figure 5.5 also contains information on the sta-

bility of the steady state solutions of equation 5.9 and 5.10 when moving along the space

coordinate z. Stability means in this case that, as z is increased, the composition and tem-

perature in the fixed bed approach asymptotically the homogeneous solution, i.e. the steady

state solution of equation 5.7 and 5.8, if Tin and ci,in are close to but not identical to the

homogeneous solution. Obviously, this notion of stability has to be distinguished from the

dynamic stability of the homogeneous solutions of equation 5.7 and 5.8.

5.3.3 More complex solutions

Some more complex behavior is observed when ethene is also added into the feed. In

addition to normal period-1 solutions, period-2 and period-4 solutions are also found, see

figure 5.6.

Figure 5.6 even shows an aperiodic solution. The Lyapunov exponents are calculated for

the solution in figure 5.6-d according to the method by Wolf et al [50], Benettin et al. [51]

and Shimada [52], assuming the membrane reactor has infinite length. The three leading

Lyapunov exponents found are λ1 = 0.1765, λ2 = 0.0, and λ3 = −3.649, respectively.

The positive Lyapunov exponent λ1 is an indicator of deterministic chaos. The Lyapunov

dimension DL of the aperiodic attractor is calculated according to the Kaplan- Yorke con-

jecture [13] from:

DL = 2 +
λ1 + λ2

|λ3| (5.11)
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Figure 5.6: Examples of pattern solutions of the ideal plug flow
membrane reactor; (a) period-1 oscillation with shell side
temperature T0 = 820 K, shell side molar fractions X0,C2H6

= 0.02, X0,C2H4 = 0.0313, other conditions as in Figure 5.5
(a); (b) period-2 oscillation with X0,C2H4 = 0.0315, other
conditions as (a); (c) period-4 oscillation with X0,C2H4 =
0.0317; other condition as (a); (d) aperiodic solution with
T0 = 820.8 K, X0,C2H4 = 0.0318, other conditions as (a).

The resulting value of DL= 2.048 is slightly above the lower limit of 2 for chaotic attractors.

By continuation of the spatially periodic solutions, a bifurcation diagram is obtained as

figure 5.7. It could be noticed that the Supercritical Flip Bifurcation (Period Doubling

Bifurcation) are repeated until the chaotic solution is reached.

In conclusion, the model of steady state membrane model can show complex stationary

patterns. Most of the pattern solutions are found to be beyond the realistic limit of tem-

perature. Nevertheless, the solutions show the possibility of obtaining complex nonlinear
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Figure 5.7: Continuation of periodic solutions of the ideal plug flow
membrane reactor model; circles indicate period-1
solutions, squares indicate period-2 solutions, triangles
indicate period-4 solutions; filled symbols denote stable
solutions, open symbols denote unstable solutions;
operation conditions on shell side: shell side temperature T0

=820 K, shell side molar fraction of ethane X0,C2H6 = 0.02,
other conditions as in Figure 5.5.

behavior in the more detailed models. As more details are included into the model, more

realistic solutions could be found or verified by real experiments. In the next section, the in-

fluence of axial dispersion of heat as well as the boundary condition are taken into account

and more complex behaviors are observed.
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5.4 Influence of heat dispersion

In section 5.3, the special case of the membrane reactor model with stationary state and

vanishing heat dispersion is investigated. In this section the full model as described by

equation 5.7 and 5.8 is considered. To solve the partial differential equations, the method

of lines is applied to the model equations with 4000 finite volumes, which means 20000

ordinary differential equations are to be solved simultaneously. The steady state solutions

are solved by the damped Newton method NLEQ1S [53], and the dynamic behavior s are

solved by the integrator DDASAC [54].

Firstly the period-1 pattern with the conditions marked at figure 5.5 is studied again. For

a small enough heat dispersion coefficient λ the stationary patterns should agree with the

model in section 5.3, as is proved by the simulation results in figure 5.8. The similarity of

the first two graphs in figure 5.8 indicates the reasonable accuracy of the discretized model.

With the increase of λ, the stationary pattern becomes more and more smooth, until the λ

reaches a critical point where the stationary pattern can not be sustained. The critical point

could be determined analytically by linearization of the original problem [16].

Secondly the influence of λ on the more complex bifurcations is investigated. In figure 5.9,

the condition for a period-2 solution of CSTR is applied in membrane reactor with different

λ value. It seems that λ also works like some kind of bifurcation parameter. When the

value of the heat conductivity goes below some limit, the pattern solution seems to undergo

bifurcations: The period of the pattern doubles suddenly for a value of λ between 0.0201

and 0.0202 W/m/K(see Figure 5.9). As the applied continuation algorithm fails for this

model, the bifurcation point is located approximately by solving the steady state solution

for different λ value repeatedly.

Finally the transient behavior of the membrane reactor model is also studied and some

interesting solutions are found. The dynamic behavior of the system is shown in Figure 5.10
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Figure 5.8: Stationary patterns of an ideal plug flow membrane reactor
and of a membrane reactor model with axial heat dispersion
for λ=0.1, 0.4 and 1.0 W/m/K (from top to bottom
respectively); T0=848.0K, X0,C2H6=0.027, other parameters
as in Figure 5.5.

and 5.11. A spatially homogeneous profile is used as initial condition. At the beginning

of the simulation, a pattern with a rather short wavelength forms. This pattern moves in

the direction of the gas flow towards the reactor outlet. The remaining stationary pattern

possesses a longer wave length and a smaller amplitude.
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Figure 5.9: Stationary patterns of temperature for λ =0.01, 0.0201,
0.0202, 1.0 W/m/K (from top to bottom respectively) as
T0=820.0 K and X0,C2H6=0.02 X0,C2H4=0.0319 other
parameters as in Figure 5.5.

5.5 Detailed membrane model

5.5.1 Assumptions of the detailed model

In this section, the detailed membrane reactor model as described in figure 2.2 is imple-

mented in the process modeling tool ProMot using a model library for membrane reactors

available in this software [55]. The model describes the catalytic fixed bed inside a porous

membrane, the heat and mass transport through the membrane, the sweep gas side outside

the membrane as well as the inlet and outlet boundary conditions. The model structure

implemented in ProMot is given in figure 5.12.

The mass and energy balance for both fixed bed side and sweep gas side are already given
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Figure 5.10: Surf plot showing the formation of a sustained pattern
starting from a spatially homogeneous initial profile;
T0=848.0 K, X0,C2H6=0.025 and λ =0.01 J/m/s all other
parameter as in Figure 5.9.

in equation 2.6 to 2.12. Some of the parameters are already given in table 5.3, the new

parameters are given in table 5.5.

The main differences between detailed model and simple model are:

1. In addition to the fixed bed side, the detailed model also calculates the sweep gas

side.

2. In the detailed model, the experimentally identified mass transfer coefficients are

applied.

3. The dependence of the heat capacities and of the total molar mass on the composition

of the gases is taken into account.
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Figure 5.11: Transient pattern at time=60s, 300s, 780s, from top to
bottom, respectively, all parameters as in Figure 5.10.

The mass transfer model of the membrane is identified by Hussain et al. [13]. The identi-

fied membrane model is composed of 4 layers with the mass transfer coefficients given in

table 5.4. The model equations describing the mass transfer is given in section 4.2.1, for

simplicity the molecular diffusion effect is not considered.

Layer i Thickness
[m]

K0i

[m]
B0i

[m2]
1 5.5×10−3 8.16×10−8 2.96×10−14

2 25×10−6 7.99×10−8 2.73×10−14

3 25×10−6 2.98×10−8 2.88×10−17

4 2×10−6 2.03×10−9 7.47×10−18

Table 5.4: Parameters of the multi-layer ceramic membrane
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Figure 5.12: Detailed membrane reactor model implemented in ProMot

The temperature of the membrane Tmem is not constant now and should be calculated by

Tmem =
(Tsw + Tfl)

2
, (5.12)

where Tsw is the local temperature on the sweep gas side, and Tfl is the local temperature

of the fixed bed.

The heat transfer from the sweep gas through the membrane to the fixed bed is described

by

q̇ = αmem × (Tsw − Tfl) (5.13)

The effect of the heat transfer coefficient will be discussed in the following sections.
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5.5.2 Simulation results

The formation of temperature and concentration patterns is also observed in the more de-

tailed reactor model, as is shown in Figure 5.13. The pattern is very obvious in the tubular

side, but on the annulus side the temperature is almost constant, and the molar fraction of

ethane and ethene decreases and increases almost monotonously. In contrast to the simpli-

fied model, only patterns with decaying amplitude are found. The main reason for this may

be that the concentration of the reactant ethane decreases on the sweep gas side along the

reactor coordinate, which is constant in the simple model. All the parameters and condi-

tions for the pattern formation are listed in table 5.5.

The conditions for the pattern formation are obtained by continuation of the similar simple

membrane reactor model, since the detailed model is too big and can not use the contin-

uation function in DIVA. Of course the similarity between the simple model and detailed

model is only relative, because it’s not possible to accurately represent the mass transfer

through multi-layer membrane with only one parameter. However, the purpose of the re-

search of the detailed model is not to locate the precise bifurcation points but to explore

the possibility of observing such pattern in a real membrane reactor. Therefore, the study

is focused on looking for the lowest possible temperature for pattern formation. As can

be seen the pattern in figure 5.13 occurs at a temperature and concentration range that can

possibly be obtained in a laboratory reactor.

5.5.3 Influence of the heat transfer coefficient

Another important parameter that will affect pattern formation is the heat transfer coeffi-

cient αmem. However, in this simulation the identified heat transfer coefficient by Hussain

[13] is not applied. Firstly the thermal conductivity λm only represents the heat trans-

fer inside the membrane, but may not be enough for describing the heat transfer between
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Figure 5.13: Stationary pattern for the detailed membrane reactor
model. Shell side(a,b,c): T0=805 K, X0,C2H6=0.027,
X0,O2 = 0.2 Reactor side(d,e,f): Xin,C2H6=0.97E-02,
Xin,C2H4=0.65E-02, Xin,CO2=0.18E-01,
Xin,CO = 0.174E − 01, Xin,O2 = 0.196,
Xin,H2O=0.268E-01, Tin=928K, other parameters see table
5.5

the tubular gas and annulus gas. Secondly, the identified relationship of αmem in [13] is

described by equation:

αmem = −5.7372 lnTm + 38.853 (5.14)

The relationship is apparently only valid within a certain temperature region, since when

the temperature goes above 873.15K, the αmem becomes negative which will inevitably

cause the solver to collapse.

Therefore, in this simulation various values of αmem are studied. The pattern turns out to

be rather sensitive against αmem. An increase of αmem reduces the temperature level in the
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JDi,sw=JDi,fl=1.0×10−8 kg/m3/s (i = 1,. . . ,7) ε = 0.5
λfl=0.1 W/m/K λsw=0.01 W/m/K
Tin,fl=928.0 K αmem= 60 W / m2/ K
Tin,sw=805.0 K αwall= 140 W / m2/ K
Twall=805.0 K rsw=0.15 m
Cp, pellet=480 J/kg/K ρpellet=1650 kg/m3

T,pellet,ref=300.0 K H,pellet,ref= 0.0 J/mol
ufl=0.3 m/s usw=0.3 m/s
Psw,tot=100000 Pa Pfl,tot=100000 Pa
η = 39.16 × 10−6N.s/m2 L= 0.95 m

Table 5.5: parameters used in the detailed membrane reactor model in
section 5.5 , parameters not listed are the same as in simple
models; subscript ’fl’ denotes fixed bed side; subscript ’sw’
denotes sweep

fixed bed, especially in the inlet region, and dampens the temperature oscillations strongly.

A decrease of αmem causes a high temperature peak at the reactor inlet, but also reduces

the oscillation amplitudes in the rear part of the reactor, see Figure 5.14. One may argue

the αmem set is smaller than the realistic case. In fact, the really effective parameter is not

αmem but the Péclet number(Pe = LV
α

). It could be proved that if the length of the reactor

is proportional to the square root of αmem, the exactly same pattern could be observed in

the corresponding reactor. Therefore, the pattern is still possible to be observed even for

bigger αmem, but only within a longer reactor.

5.6 Conclusions

The objective of this contribution is to explore the possibility of obtaining spatial stationary

patterns in a membrane reactor with the selective oxidation of ethane. First an ideal plug

flow reactor model is used to locate the region of parameters, where spatially periodic
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Figure 5.14: Stationary patterns for different heat transfer coefficients.
48, 56, 64 and 72 W / m2 / K respectively (from top to
bottom respectively), all other parameters as in Figure 5.13

patterns may exist. As expected, many oscillatory solutions are found. The continuation

method of DIVA is used to locate the region of unstable solutions. In addition to hopf

bifurcation points, real bifurcation points are also found and the entire bifurcation graph

with respect to shell side temperature and molar fraction of ethane is plotted.

When ethene is also supplied to the membrane reactor,quite complicated oscillatory so-

lutions including period-1, period-2, period-4 and chaotic solutions are also found. By

continuation of the oscillatory solution, the period doubling sequence is observed. As ex-

pected, a period doubling bifurcation finally leads to a chaotic solution.

In a next step, the influence of the heat dispersion is studied. When the heat dispersion
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coefficient λ changes, the stationary patterns can vary both in amplitude and wave length,

which indicates that λ is also an important bifurcation parameter. The transient behavior

of membrane reactor model is also studied, and different kinds of stationary and transient

patterns are observed.

Finally, a detailed membrane reactor model is analyzed. The simulation results show de-

caying stationary spatial patterns, which can be obtained in a laboratory membrane reactor

under realistic operating conditions. The wave length of the patterns is in an order of mag-

nitude that can be measured easily.



Chapter 6

Conclusion and discussion

Three different but connected problems are investigated in this work.

1. Model identification and model based optimal experimental design for the gas trans-

port in porous membranes.

2. The global optimization algorithm, in order to solve the complex optimization prob-

lems.

3. The model simulation of a membrane reactor, focused on the pattern formation, with

detailed reaction kinetics and membrane model.

In chapter 3, the problems for traditional genetic algorithm to solve optimization tasks

with highly correlated parameters are discussed. An improved method with correlation

analysis and coordinate transformation is developed. The method is applied to deal with

the practical identification problems in chapter 4 and proves to be successful. In fact, the

decorrelation method can be viewed as automatic reparametrization process. The difference

of this method to traditional reparametrization method is that the task is not controlled by

the modeler but finished automatically by the optimizer. And since only the optimizer part

135
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is modified, one could expect that such method is not only limited to a certain model but

also suitable for solving all global optimization problems with correlated parameters.

In chapter 4, the parameter identification and optimal experimental problems are investi-

gated for both single and multi layer membranes. The purpose of the study of single layer

membrane is to theoretically compare the effectiveness of several experimental schemes.

The compared experimental schemes may be already widely applied, such as the steady

state gas permeation, isobaric diffusion and transient diffusion, or just proposed in this pa-

per, such as the single, or multi-component gas dynamic transport experiments. The results

suggest the dynamic multi-component gas transport experiment provides much smaller

confidence interval for identified gas transport coefficients.

The identification of a multi-layer membrane is a more complex problem. The most dif-

ficult part is the optimization of highly correlated multi-minima identification problems,

the numerical solution for which is discussed in chapter 3. An ideal two-layer membrane

is studied to prove the global identifiability of a multi-layer membrane. In simulation, the

dynamic multi-component gas transport experiment is again found to be more efficient than

the steady state single gas permeation experiment. However, such method is never tested in

real experiments and the realistic dynamic model could be much more complicated than the

ideal case considered in this work. Therefore the advantage of dynamic multi-component

gas transport experiment for parameter identification of mass transfer coefficients is still to

be investigated by real experiments.

In the end of chapter 4 a real metallic membrane is studied. The identification of mass

transfer coefficients from experimental data is performed for both single-layer and multi-

layer assumptions. The multi-layer model is more coherent to the experimental data, but the

identified parameters still show wide confidence interval. Some experiments are designed

to increase the preciseness of the identified parameters.



137

Chapter 5 is focused on the model synthesis and model simulation of a detailed membrane

reactor. The objective of this chapter is to explore the possibility of pattern formation in the

membrane reactor. Quite complicated oscillatory solutions are found for the steady state

ideal plug flow membrane reactor. The influence of the heat dispersion λ is investigated,

and different bifurcation for patterns is found. Finally the analysis is extended to a de-

tailed membrane reactor with both detailed reaction kinetics and mass transfer model. The

simulation results show the possibility of observing the pattern experimentally.



Appendix A

A.1 Parameter identification

A.1.1 Point estimation theory

The ”parameter identification” problem is also called ”point estimation” in statistic lan-

guage. The objective of point estimation is to use a sample to compute parameter values

which represent a good guess for the true value of some parameters. The first problem of

point estimation is how to choose an appropriate estimator to make the estimation as pre-

cise as possible. We represent the vector of real parameters to be p and the estimation to

be p̂, then the best choice of estimator p̂ should follow two principles:

1. The estimator should be unbiased, i.e. E(p̂) = p.

2. The estimator should have minimal variance, i.e. min V (p̂)

The resulting p̂ is called the minimum variance unbiased estimator(MVUE) of p. Unfor-

tunately, there’s no general method to derive a MVUE for any specific problem. The most

commonly used estimator is called Maximum Likelihood Estimator (MLE), and was first

introduced by R.A. Fisher in the 1920s. It can be prooved that, when the sample size is

large enough, the MLE is approximately MVUE.

138
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Let y be a vector of observed sample values which is a function of a vector of parameters

p. The probability given by the model, that an observed sample occurs, depends on the

estimated parameter vector p̂, as will be shown in the next section. The probability density

is expressed as f(y; p̂). The MLE means to find a parameter vector p̂ that maximizes f for

a given observation y : arg max f(y; p̂).

A.1.2 Identification criteria for dynamic model

For a dynamic parameter identification problem, suppose we have n observations measured

at nt time points, and all the measurements are independent with Gaussian distribution

N(μi,j, σ
2
i,j), where μi,j is the expectation of observation i at time point j, which depends

on the real values of the paramter vector p. Then the probability density for a single mea-

surement is:

f(yi,j; p) =
1√

2πσi,j

e
− (yi,j−μi,j(p))2

2σ2
i,j (A.1)

and the joint probability density is:

f(y; p) =
n∏

i=1

nt∏
j=1

1√
2πσi,j

e
− (yi,j−μi,j (p))2

2σ2
i,j (A.2)

The parameter identification problem is to choose a vector of estimated parameters p̂ to

maximize the joint probability density f(y; p̂).

arg max
p̂

n∏
i=1

nt∏
j=1

1√
2πσi,j

e
− (yi,j−ym,i,j(p̂))2

2σ2
i,j (A.3)

In equation A.3, ym,i,j is the simulated model output that should be equal to μi,j.In practice,

normally the logarithm function is used as criteria since it’s increasing monotonically.
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Jml = ln f(y; p̂) = −1

2

n∑
i=1

nt∑
j=1

ln(2πσ2
i,j) −

n∑
i=1

nt∑
j=1

1

2σ2
i,j

(yi,j − ym,i,j(p̂))2 (A.4)

Generally, it’s impossible to solve this maximization problem analytically, and some opti-

mizer should be used to find the maximum. For known and constant σi,j, the MLE becomes:

arg min
p̂

n∑
i=1

nt∑
j=1

1

2σ2
i,j

(yi,j − ym,i,j(p̂))2 (A.5)

which is exactly the same as the least squares estimator. When the amplitude of noise σi,j

is unknown, one can try to parametrize σi,j and to estimate those additional parameters as

well [56]. A common assumption is that the standard deviation of noise is proportional to

the absolute value of the measurement, i.e. σi,j = a|ym,i,j(p̂)|, where a is the additional

unknown parameter. Then the equation A.4 becomes:

Jml = −n × nt ln 2π

2
− n × nt ln a −

n∑
i=1

nt∑
j=1

ln |ym,i,j| −
n∑

i=1

nt∑
j=1

(yi,j − ym,i,j)
2

2a2y2
m,i,j

(A.6)

To maximize the function, notice that:

∂Jml

∂a
= −n × nt

a
+

1

a3

n∑
i=1

nt∑
j=1

(yi,j − ym,i,j)
2

y2
m,i,j

= 0 (A.7)

therefore,

a2
ml =

1

n × nt

n∑
i=1

nt∑
j=1

(yi,j − ym,i,j)
2

y2
m,i,j

(A.8)

Substituting aml for a in equation A.6 and dropping the constant terms, we get:
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Jml = −
n∑

i=1

nt∑
j=1

ln |ym,i,j| − n × nt

2
ln(

1

n × nt

n∑
i=1

nt∑
j=1

(yi,j − ym,i,j)
2

y2
m,i,j

) (A.9)

It’s not exactly the same as least square estimator, but for most case the first term has much

smaller effect on the result than the second term. So is still very close to a least square

estimator .

A.2 Bootstrap method

The bootstrap method [25] is used to measure the quality of the estimates of the parameters,

such as the probability distribution or the confidence interval of the estimates. The approach

is rather simple but very time consuming:

1. first a set of measurements is generated by the model with nominal parameter values

p, ym = f(p)

2. then some quasi-experimental data sets are generated by adding noise with zero mean

and standard relative deviation, y = ym + N(0, σyym)

3. finally a new set of parameters is identified by some kind of optimizer (here we test

both the hybrid and the ld optimizer),

4. step 2 and step 3 are repeated, and the corresponding statistics are calculated from

all the sets of identified parameters
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A.3 Calculation of the sensitivity

A DAE system can be described by:

Bẋ = f (x) (A.10)

where x is the vector of states in the system with length n, f is the length n vector of

function expressions and B is a n.n matrix. ẋ denotes the time derivatives of the state

vector x: ẋ = ∂x
∂t

.The partial derivative of x for a certain parameter p is calculated by

differentiation of both sides of the equation:

∂(Bẋ)

∂p
=

∂f (x)

∂p
(A.11)

In addition to the function f , x and B may also depend on parameter p, the above equation

must be expended to:

∂Bẋ

∂x
.
∂x

∂p
+

∂Bẋ

∂p
+ B.

∂

∂t
(
∂x

∂p
) =

∂f

∂x
.
∂x

∂p
+

∂f

∂p
(A.12)

We denote the sensitivity by s = ∂x
∂p

, and the above equation becomes:

∂Bẋ

∂x
.s +

∂Bẋ

∂p
+ B.ṡ =

∂f

∂x
.s +

∂f

∂p
(A.13)

For the models considered in this work, the matrix B is only composed of constants, there-

fore the first term of the above equation can be ignored, and the equation is simplified

to:

B.ṡ =
∂f

∂x
.s +

∂f

∂p
(A.14)

The above equation is incorporated into the original model system, and calculated together
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by the integrator.
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