
Interactive Visualization
of Complex Structures in Modular Models

for Systems Biology

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät III der
Martin-Luther-Universität Halle-Wittenberg

von Herrn

Diplom-Ingenieur Sebastian Mirschel
geboren am 13.06.1977 in Görlitz

Gutachter:

Prof. Dr. Falk Schreiber

Prof. Dr.-Ing. Andreas Kerren

Verteidigung am: 02. Juli 2012

Magdeburg, im Juli 2012

Shaker Verlag
Aachen 2012

Forschungsberichte aus dem Max-Planck-Institut
für Dynamik komplexer technischer Systeme

Band 35

Sebastian Mirschel

Interactive Visualization of Complex Structures
in Modular Models for Systems Biology

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Halle, Univ., Diss., 2012

Copyright Shaker Verlag 2012
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-1275-0
ISSN 1439-4804

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Acknowledgments

This thesis is the summary of recent work at the Max Planck Institute for Dynamics of Complex Techni-
cal Systems. In the System Biology Group, I encountered an excellent working atmosphere, and got the
chance to work at the interface between mathematics, engineering, biology, and computer science.

I would like to thank the many individuals who have helped me on the path towards this dissertation.
I am deeply grateful to my advisors, Prof. Ernst Dieter Gilles and Prof. Falk Schreiber.
Prof. Ernst Dieter Gilles has supported me throughout my thesis with his wisdom, inspiration and moti-
vation. He has always given me the freedom to work in my own way. Prof. Falk Schreiber has provided
me with thoughtful comments and encouragement. I would like to thank him for his uncomplicated,
open and helpful way of thinking. Without their patient guidance and generous support, this dissertation
would not have been possible. I am also in debt to Prof. Andreas Kerren, who accepted to review my
thesis.
I sincerely appreciate the friendship and inspiration of the people I have had the good fortune of working
with during this thesis.
I gratefully acknowledge my co-workers from the PROMOT Development Team: Katrin Kolczyk,
Michael Rempel, Gerrit Danker and Martin Ginkel. I would also like to thank Erik Aschenbrenner
for supporting me with the realization of ideas and concepts of the HyCoGLa approach.
I would like to thank my colleagues Regina Samaga, Jeremy Húard and Julio Saez-Rodriguez for the
discussions we had and their ideas and comments with respect to modeling issues and visualization
methods. They also provided me with complex, challenging models and gave me permission to use their
data and images in this thesis.
I would like to thank those with whom I shared my office, Odón Angeles Palacios, Axel von Kamp and
Oliver Hädicke for their friendship, help, and patience.
I would like to express my gratitude to all my colleagues from the Systems Biology Group and the Max
Planck Institute, who provided invaluable support and infrastructure along the way. Especially, I would
like to thank Steffen Klamt, Renate Wagner, Janine Holzmann, Robert Rehner, Gerry Truschkewitz and
the library team.
My deepest thanks go to my parents and especially to my family, Thaddeus, Alina and Christine for their
love and support throughout. They have kept me grounded and provided me with the necessary ambience
to be relaxed.

The work presented in this thesis was part of the Systems Biology Competence Network ‘HepatoSys’
and the research initiative ‘FORSYS’. Both were financially supported by the German Federal Ministry
for Education and Research (BMBF).

iii

iv

Contents

List of Figures ix

List of Tables xiii

List of Algorithms xv

List of Symbols and Abbreviations xvii

1. Introduction 1
1.1. Motivation . 1
1.2. Research Challenges and Objectives . 2
1.3. Organization . 3
1.4. VISUAL EXPLORER . 5

2. Modeling in Systems Biology – Fundamentals 7
2.1. Biological Background . 7

2.1.1. Intra-Cellular Processes . 7
2.1.2. Cellular Signaling . 8

2.2. The Modeling Process . 8
2.2.1. The Process of Knowledge Generation . 9
2.2.2. Types of Models . 12

2.3. Modeling Approaches . 13
2.3.1. Logical Modeling . 13
2.3.2. Dynamic Modeling . 14
2.3.3. Modular Modeling . 15

2.4. Modeling Tools and PROMOT . 18
2.4.1. Modeling Languages, Tools and Formats . 18
2.4.2. Modeling with PROMOT . 19

2.5. Application to Models . 22
2.5.1. The EGF Receptor Models . 22
2.5.2. The T Cell Receptor Model . 24

2.6. Conclusions . 24

v

Contents

3. Graphs and Visualization in Systems Biology – Fundamentals 27
3.1. Graph Theory . 27

3.1.1. Graph Classes . 28
3.1.2. Characteristics of Graphs . 29

3.2. Graph Drawing . 30
3.2.1. Graph Layout . 30
3.2.2. Layout Strategies . 33
3.2.3. Methods on Physical Analogies . 34
3.2.4. Domain-Specific Knowledge . 35

3.3. Visualization Principles . 36
3.3.1. Information Visualization . 36
3.3.2. The Visualization Pipeline . 36
3.3.3. Perceptual and Cognitive Principles . 38
3.3.4. Interactive Exploration . 40

3.4. Visual Interface Schemes . 42
3.4.1. Overview+Detail Interfaces . 42
3.4.2. Zooming Interfaces . 43
3.4.3. Focus+Context Interfaces . 43

3.5. Networks and Modular Models . 45
3.5.1. Cellular Networks and their Visual Representation 45
3.5.2. Visualizing Modular Models . 46

3.6. Tools for Visualization . 48
3.6.1. ZUI Toolkits . 49
3.6.2. Visualization Tools for Systems Biology . 49
3.6.3. Visualization with PROMOT . 52

3.7. Conclusions . 52

4. Visual Representation of Dynamic and Logical Modular Models 55
4.1. Research Problem . 55
4.2. Towards a Single Integrated View . 56
4.3. Entities for Dynamic Modeling and their Visualization 58

4.3.1. Basic Elements . 58
4.3.2. Visualizing a Composite Module . 59
4.3.3. ‘Phosphorylation’-Example . 60

4.4. Entities for Logical Modeling and their Visualization 61
4.4.1. Basic Elements . 62
4.4.2. Visualizing a Composite Module . 66
4.4.3. Visual Handling of Parameters . 68
4.4.4. The Logical Toy Model . 69

4.5. Applications . 69
4.5.1. The Dynamic EGF Model . 69
4.5.2. The Logical Models: EGFR/ErbB and TCR 71
4.5.3. Integration with CELLNETANALYZER – Multiple Maps 71

4.6. Conclusions . 75

5. A Visual Interface for Interactive Exploratory Model Analysis 77
5.1. Research Problem . 77
5.2. Interactive Exploration Schemes for Modular Models 78

vi

Contents

5.2.1. InteractiveZoom . 79
5.2.2. ContextualZoom . 79
5.2.3. HierarchicalZoom . 82

5.3. Animations, Semantic Zooming and LOD . 84
5.3.1. Smooth (Non-)Uniform Animations . 85
5.3.2. Semantic Zooming and LOD . 85
5.3.3. Efficient Pan+Zoom Operations . 89

5.4. Combining and Comparing Interactive Exploration Schemes 89
5.4.1. Overview+Detail . 90
5.4.2. Comparison . 90

5.5. Applications . 93
5.5.1. Search the Modular Model . 93
5.5.2. Visual Correlation Using Multiple Foci and Contextual Visualization 95
5.5.3. Topology-Aware Exploring of the Local Context 95

5.6. Conclusions . 97

6. Visual Scenarios 99
6.1. Research Problem . 99
6.2. Concept . 101

6.2.1. Visual Mappings Using Transfer Functions . 101
6.2.2. Filter and Analysis . 102
6.2.3. Layout and Exploration Strategy . 103
6.2.4. Visual Mapping in Modular Models . 105
6.2.5. Pre- and User-Defined Visual Scenarios . 105

6.3. Specific Visual Scenarios . 107
6.3.1. Visual Scenarios ‘Dynamic Model’ and ‘Logical Model’ 107
6.3.2. Visual Scenario ‘Hierarchical Level’ . 107
6.3.3. Visual Scenario ‘Connectivity’ . 109
6.3.4. Visual Scenario ‘Interaction Distance’ . 109
6.3.5. Defining Local Visual Scenarios . 113

6.4. Applications . 113
6.4.1. Overlay Data in Context of Networks . 115
6.4.2. Visual Analysis of the Logical TCR Model . 117
6.4.3. Visual Analysis of the Logical EGFR/ErbB Model 118
6.4.4. Visualization of Time-Series Data . 118

6.5. Conclusions . 119

7. Layout Strategies for Modular Models 125
7.1. Research Problem . 126
7.2. HyCoGLa . 128

7.2.1. The HyCoGLa Algorithm . 128
7.2.2. Domain-Specific Knowledge . 131
7.2.3. Visual Handling of Multiple Instances . 133
7.2.4. Generalization of the Concept . 133
7.2.5. Runtime and Layout Quality . 133

7.3. Flat Layout . 135
7.3.1. The Flattening Algorithm . 136
7.3.2. Applications . 137

vii

Contents

7.4. Conclusions . 138

8. Concluding Remarks 141
8.1. Scientific Contributions . 141
8.2. Open Issues and Research Directions . 143

Bibliography 145

Index 161

A. CD Information, Software Architecture and UML Diagrams 163
A.1. Supplied CD . 163
A.2. Architecture of PROMOT . 163
A.3. UML Diagrams . 164

B. Visual Representations and Visual Scenarios 169
B.1. Symbol Reference Cards . 169
B.2. Comparison of Elements . 169
B.3. Visual Handling of Additional Parameters . 169
B.4. Visual Representation of the Logical Toy Model . 173
B.5. Logical Model of EGFR/ErbB Signaling . 175
B.6. Logical Model of TCR Signaling . 175
B.7. Visual Properties and Mappings . 175
B.8. Visual Scenarios and Model Types . 175

C. Interactive Exploration Schemes 181
C.1. InteractiveZoom versus ContextualZoom . 181
C.2. Zoom Sequence with LOD . 181
C.3. Shortcuts and Mouse Controls . 181

D. Layout and Algorithms 185
D.1. Applying FlatLayout . 185
D.2. Algorithms for FlatLayout . 185
D.3. Algorithms for HyCoGLa . 185

viii

List of Figures

1.1. Relations of individual chapters . 4

2.1. Overview of signal transduction pathways . 9
2.2. Knowledge generation as an iterative process . 11
2.3. Different model types . 14
2.4. Structural and hierarchical organization . 15
2.5. Hierarchical and modular modeling with PROMOT . 20
2.6. Schematic view of the modeling workflow in PROMOT 21
2.7. Network of the EGFR/ErbB signaling . 23
2.8. Network of the TCR signaling . 24

3.1. Graph classes . 28
3.2. Different views of hierarchy . 31
3.3. Typical visual properties of nodes and edges . 32
3.4. Aesthetic criteria and conventions . 33
3.5. Standard layout methods . 34
3.6. Visualization pipeline . 37
3.7. Preattentive features . 39
3.8. Relative effectiveness of visual cues . 39
3.9. Mental maps in graph drawing . 40
3.10. Overview of animations functions . 42
3.11. Space-scale diagrams . 44
3.12. Semantic zooming in space-scale diagrams . 44
3.13. Views of modular models . 48
3.14. Visualization of modular EGF model using disjunct views 52

4.1. Comparison of visualization of a modular model . 57
4.2. Visualization of storages and reactions . 60
4.3. Visualization of links and terminals . 60
4.4. Visualizing a composite module (dynamic) . 61
4.5. Dynamic model using typical components . 62
4.6. Visualization options for a reservoir element . 65

ix

List of Figures

4.7. Visualization and usage of a dummy element . 65
4.8. Visualization of logical gates . 66
4.9. Visualization of different interaction types in logical models 66
4.10. Visualizing a composite module (logical) . 67
4.11. VARIABLE EDITOR for a somehow element . 68
4.12. Logical Toy model in PROMOT . 70
4.13. Visual representation of the dynamic EGF model. 72
4.14. Visual representation of the logical EGFR/ErbB model 73
4.15. Visual representation of the logical TCR model . 74
4.16. Multiple maps for CELLNETANALYZER . 76

5.1. Focus+Context using the ContextualZoom . 81
5.2. ContextualZoom with consideration of edge bend points 81
5.3. Focus+Context with multiple foci . 83
5.4. Different scale factors . 83
5.5. Zooming based on topological features . 84
5.6. HierarchicalZoom with sensitive areas . 85
5.7. Semantic zooming . 86
5.8. LOD applied to the modular EGF model . 87
5.9. Visual states of an enzymatic reaction . 88
5.10. Different strategies for Pan+Zoom operations . 89
5.11. Logical Toy model with Overview+Detail . 91
5.12. Overview+Detail using two cameras . 91
5.13. HierarchicalZoom versus ContextualZoom . 92
5.14. Comparison of views of different exploration schemes 94
5.15. Exploration schemes applied to space-scale diagrams 94
5.16. Search the modular EGF model . 95
5.17. ContextualZoom . 96
5.18. Exploring the local context . 97

6.1. Different visual transfer functions . 103
6.2. Different components for network visualization . 104
6.3. Constant width of lines and borders . 106
6.4. Handling of of line and border width in modular models 106
6.5. Color coding of hierarchical levels . 108
6.6. Computation of the interaction distance . 112
6.7. Interaction distance applied to the TCR model . 112
6.8. Options for handling hierarchical relations . 114
6.9. Options for directionality of interactions . 114
6.10. Options for handling multiple foci . 116
6.11. VSs encoding different distance metrics . 116
6.12. Different VSs applied to the logical TCR model . 117
6.13. Different visual scenarios of the TCR model . 121
6.14. Different visual scenarios of the EGFR/ErbB model 122
6.15. Visualization of time-series data . 123

7.1. Different layouts of the dynamic EGF model . 126
7.2. Traversal of the inclusion tree of the Toy model . 129

x

List of Figures

7.3. Model of forces . 130
7.4. Comparison of different layouts . 132
7.5. HyCoGLa with domain-specific constraints . 134
7.6. Handling of multiple instances . 134
7.7. Traversing of inclusion tree with different parameter values 135
7.8. Results for runtime and quality of the layout algorithm 136
7.9. Example graph with applied local method and HyCoGLa 137
7.10. Important steps of FlatLayout algorithm . 138
7.11. FlatLayout applied to the Toy model . 139
7.12. Manual, modular layout versus FlatLayout . 139

A.1. Diagram of the software architecture of PROMOT . 165
A.2. UML class diagram compiling important classes . 166
A.3. UML diagram compiling the package structure . 167

B.1. Symbol reference card for dynamic models . 170
B.2. Symbol reference card for logical models . 171
B.3. Visual representation of a simplified Toy model . 174
B.4. Alternative visualizations of the Toy model using local VSs 174
B.5. Visual representations in the modeling workflow of the logical EGFR/ErbB model . . . 176
B.6. Different visual scenarios of logical TCR model . 177
B.7. Additional visual scenarios of logical TCR model . 178

C.1. InteractiveZoom versus ContextualZoom . 182
C.2. LOD applied to the Ecoli model . 183

D.1. Comparison of manual, modular layout and FlatLayout 186

xi

List of Figures

xii

List of Tables

3.1. Comparison of tools and their visualization features . 51

5.1. Features of interactive exploration schemes in VISUAL EXPLORER 93

B.1. Graphical representations of logical elements . 172
B.2. Visual mappings for nodes and edges in VISUAL EXPLORER 179
B.3. Global visual scenarios and their components . 180
B.4. Global visual scenarios and their valid model types . 180
B.5. Model types and invalid network elements . 180

C.1. Shortcuts and modifiers used in VISUAL EXPLORER. 184

xiii

List of Tables

xiv

List of Algorithms

1. General FlatLayout algorithm . 187
2. Traverse hierarchy . 187
3. General HyCoGLa algorithm . 187
4. Extended spring layout algorithm . 188
5. Calculate spring forces . 188
6. Calculate repulsive forces . 189
7. Calculate gravitational forces . 189
8. Calculate magnetic forces . 189

xv

List of Symbols and Abbreviations

cf. confer, compare
e.g. exempli gratia
etc. et cetera
i.e. id est
vs. versus

2D 2-Dimensional
3D 3-Dimensional
CNA CellNetAnalyzer
DAE Differential Algebraic Equation
DIVA Dynamische Simulation verfahrenstechnischer Anlagen
DNA Deoxyribonucleic Acid
Diana Dynamic Simulation and Numerical Analysis Tool
E. coli Escherischa Coli
EGF Epidermal Growth Factor
EGFR/ErbB Epidermal Growth Factor Receptor / Receptor Family ErbB
FEV Fish Eye View
GUI Graphical User Interface
GraphML Description format for graphs based on XML
HyCoGLa Hybrid Compound Graph Layout
In-silico simulated experiments
In-vitro experiments under artificial conditions in a test tube
In-vivo experiments with living cell/system
LOD Level of Detail
MAPK Mitogen-Activated Protein Kinase
MDL Modeling Definition Language
MMC Modular Modeling Concept
NT Network Theory
ODE Ordinary Differential Equation
OVL Omix Visualization Language
Omics technological methods for gathering massive datasets from biological relations

(e. g., metabolomics, proteomics, genomics)

xvii

List of Algorithms

PDE Partial Differential Equation
ProMoT Process Modeling Tool
SBGN Systems Biology Graphical Notation
SBML Systems Biology Markup Language
TCR Tumor Cell Receptor
UML Unified Modeling Language
VS Visual Scenario
XML Extensible Markup Language
ZUI Zoomable User Interface

xviii

We now have unprecedented ability to collect data about
nature but there is now a crisis developing in biology, in
that completely unstructured information does not enhance
understanding. We need a framework to put all of this
knowledge and data into – that is going to be the problem in
biology.
We’ve reached the stage where we can’t talk to each other –
we’ve all become highly specialized. We need a framework,
a framework where people can come back to us and say,
‘Yes, I understand.’ Driving toward that framework is really
the big challenge.

Sydney Brenner, Nobel Prize, 2002 [27]

CHAPTER 1

Introduction

1.1. Motivation

In recent years, the modeling of biochemical reaction systems has tended to become more complex. They
are omnipresent and can be found in various domains such as process engineering in the form of fuel cells
or membrane reactors, or in systems biology as complicated intra-cellular processes. Especially systems
biology is being pushed along by some trends, which are highlighted in the following paragraph.
Researchers in the molecular life sciences are faced with exploding quantities of data. By using new par-
allel techniques many projects are generating an escalating amount of data1, including whole genomes,
the human interactome or huge signaling networks. Research in systems biology is characterized by
multidisciplinary teams. Organized into huge consortia, groups with different scientific backgrounds, of-
ten highly specialized, work closely together on a common objective. Often, these collaborations result
in data with heterogeneous characteristics or data distributed across many different locations world-
wide. Collaboration between different disciplines needs a common and intuitive basis for understanding
and discussing complex structures of biochemical systems. In order to obtain a holistic understanding
of the biological processes, heterogeneous and distributed data need to be integrated. Recently, diverse
databases such as KEGG [93], BIOMODELS [117] or JWS ONLINE [142] and model description formats
such as CELLML [67], BIOPAX [44] or SBML [86] have provided ways to consolidate the accumulated
data. Indeed researchers are faced with models growing in size, complexity and scope. Accordingly, the
amount of work needed to evaluate and integrate the data is increasing rapidly.
In this sense, visualization can be understood as a domain-independent, universal tool and a common
basis for communication and transfer of knowledge. Visual representations can assist the development
of mental models that allow researchers to access, integrate and analyze complex biochemical infor-
mation, and support the process of decision making. Most of the recent software systems dedicated to
systems biology use visual output for the representation of their data and results. However, traditional
approaches have several limitations due to the increasing size and complexity of biochemical models and
visualization trade-offs including the lack of screen real estate, namely, limited screen size and resolu-
tion. Innovative visualization techniques are rarely applied. As a consequence, in the area of systems
biology new methods and tools for efficient, interactive visualization need to be developed [69].

1It is estimated that the amount of biological data doubles every six months – one of the fastest rates in a scientific discipline.

1

1. Introduction

For instance, splitting the model up into different units by applying hierarchical and module-based de-
composition (results in modular models), consequently visualizing them (e. g., as subnetworks or using
different network perspectives), and providing ways to explore them can help to understand complex
model structures and make them more manageable in terms of computational purposes, formal represen-
tation, and explaining the knowledge to other researchers.
This thesis exploits existing and contributes novel visualization and exploration techniques that can be
used to tackle current challenges in systems biology.

1.2. Research Challenges and Objectives

Researchers in systems biology are faced with several research challenges in the visualization and explo-
ration of complex models. This thesis focuses on the particular research questions and challenges listed
below. Most have also been highlighted in recently published reviews [4, 57, 69, 77, 145, 170, 188].

1. Visual representation of dynamic and logical modular models
Model decomposition based on modules and hierarchy is a powerful concept. However, such
complex model structures needs to be visually represented in order to improve their interpretation.
This is relevant both for dynamic and logical models. Dynamic models are characterized by a
detailed mathematical description of the underlying processes. This detailed knowledge should
be visualized in a systematic manner. Logical models, typically, are characterized by many com-
ponents and complex relationships. Thus, visual support is greatly needed to represent modular
logical networks and to facilitate their convenient visual exploration. In this regard, a central point
is the formalized visual representations of modular structures specifically adapted to dynamic and
logical models.

2. Exploration of and navigation in complex structures of modular models
For convenient use, not only a graphical representation of the network is crucial; a graphical net-
work needs to be combined with exploration techniques that are able to handle navigation in com-
plex structures in an intuitive way. Since many current approaches are based on models without
hierarchical structures, less research has been done in linking techniques to content and its struc-
ture. Specific research questions in this context are: How can modular models be interactively
explored? What are efficient navigation and interaction patterns? How can submodels be explored
in the context of the entire system? Providing an integrated visualization of a modular model
combined with adequate exploration and navigation schemes would help users manage large and
complex networks.

3. Flexible graphical representations
A standardized representation is essential in order to provide a common and unambiguous nota-
tion for exchanging knowledge [114, 170]. However, a standard specification is not necessarily the
appropriate way to graphically depict knowledge. In many cases, visual representations have to be
tailored to a specific modeling task or individual requirements and preferences. Since the require-
ments can frequently change (i. e., the current modeling task), it should be possible to modify and
switch complex visual settings in an easy and flexible manner. The visual appearance of the net-
work with complex structures is directly affected not only by the visual properties of the network
elements, but also by the exploration scheme and the overall layout. Hence, a strategy is desired
that will define individual views that take into account major aspects of visual representation while
still facilitating high-performance switching.

2

1.3. Organization

4. Overlaying data on top of modular models
A huge amount of datasets is derived from external in-vivo, in-vitro and in-silico experiments.
Different ways exist to integrate the collected data using visual methods. A common approach
is overlaying this external data on top of the network model using data glyphs, subgraphics or
animated transitions. When working with modular models, the integration and subsequent inter-
pretation of overlay data is challenging due to the complex structures. Hence, there is a strong
need for adequate visualization techniques.

5. Layout of modular models
The drawing of complex model structures can be partly covered by graph layout strategies. Layout
algorithms are able to reveal global patterns within the context of the network model such as
structures of protein complexes and relationships between them. However, general purpose layout
algorithms do not consider the specific structure of modular models. Furthermore, several domain-
specific requirements need to be incorporated into the biologically motivated layout process. A
relevant example is the direction of reactions in logical models of signaling networks where all
reactions point from top to bottom, thus creating an overall causal signaling flow in the same
direction. An adapted layout incorporating different domain-specific constraints can result in an
improved representation of modular structures and consequently enhance the understanding of the
biological meaning.

In summary, the overall research objective for the work described in this thesis is to support modelers in
visualization and exploratory analysis of modular models by supplying them with appropriate tools.
Thereby, the focus of the cited and described literature as well as the research results is mainly on the
application for systems biology and in particular signal transduction systems.

1.3. Organization

The remainder of this thesis is organized into eight chapters. The first part contains two chapters, which
cover the relevant background information and related work.
Chapter 2, entitled Modeling in Systems Biology – Fundamentals, introduces fundamental information
on modeling in systems biology including a short introduction to modular modeling. Furthermore, some
biological concepts from the area in cellular signaling are presented.
Chapter 3, Graphs and Visualization in Systems Biology – Fundamentals, contains an overview of foun-
dations of graphs including different graph classes, theoretical properties and background information on
how graphs can be drawn. Furthermore, it is concerned with the foundations of visualization. Thereby,
different aspects of ‘information visualization’ ranging from perceptual and cognitive principles to visual
interfaces, are discussed. In the main part of this thesis, four separate chapters present the actual work
and its results.
Chapter 4, Visual Representation of Dynamic and Logical Modular Models, presents formalized visual
representations specifically adapted to dynamic and logical models.
In Chapter 5, entitled A Visual Interface for Interactive Exploratory Model Analysis a novel approach,
which allows interactive navigation and exploration of modular models, is presented.
Chapter 6, Visual Scenarios, proposes a new approach for visual settings that defines primarily how
geometrical objects are rendered. Hereby, different visual scenarios are discussed. Two examples are
discussed already in Chapter 4.
Chapter 7, entitled Layout Strategies for Modular Models is focused on layout methods that are
able to layout modular models and draw elements on different hierarchical levels. HyCoGLa and
FlatLayout, two new layout methods, are described.

3

1. Introduction

At the end of each of Chapters 4-7 the applicability of the given approaches is illustrated, which shows
their relevance for modeling projects in systems biology. Based on examples and case studies it is shown
how visualizations support the modeler exactly.
Chapter 8 summarizes the contributions of the work and evaluates them in a larger context. Furthermore,
possible future directions for research in this area are given.
Finally, Appendices A-D provide further information on the supplied CD, software architecture, visual
representation of dynamic and logical models, visual scenarios, shortcuts and mouse controls and layout
algorithms.
Since this work covers many visualization topics, Figure 1.1 illustrates the structure of the thesis in
a visual sense. It depicts the relations and important dependencies of the different chapters and parts
comprising the thesis.

Actual
Work

Formalized
Visual

Representa-
tions

Interactive
Exploration
Schemes

Visual
Scenarios

Layout
Strategies

Basics

Graphs &
Visuali-
zation

Modeling &
Systems
Biology

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.1.: Graph depicting relations and important dependencies of the individual chapters. Back-
ground information from different scientific domains: systems biology and related modeling
techniques (Chapter 2), graph drawing and information visualization (Chapter 3). The ac-
tual work is divided into four chapters: ‘Formalized Visual Representations’ (Chapter 4),
‘Interactive Exploration Schemes’ (Chapter 5), ‘Visual Scenarios’ (Chapter 6) and ‘Layout
Strategies’ (Chapter 7). ‘—>’ denotes a dependency between chapters of one part, either
‘Basics’ or ‘Actual Work’; ‘- ->’ denotes a dependency between chapters from both parts,
‘Basics’ and ‘Actual Work’.

4

1.4. VISUAL EXPLORER

1.4. VISUAL EXPLORER

VISUAL EXPLORER – newly developed as a software component of the modeling tool PROMOT –
implements the approaches described in this thesis.
VISUAL EXPLORER uses a multilevel graph drawing approach based on the hierarchical and modular
structure of the model and supports the interactive exploration of the graph representation. The devel-
oped techniques are designed for a general purpose and applied to different application areas including
chemical engineering and systems biology. However, the main focus is on intra-cellular reaction systems
in particular signal transduction processes.
VISUAL EXPLORER addresses mainly two challenges: first, the interactive visual exploration of model
parts in the context of the entire modular model and second, a highly flexible handling of visual properties
of the model tailored to the modeling task and individual preferences of the modeler. The former is
discussed in Chapter 5; the latter is described in Chapter 6.
In further chapters, it is shown how the developed techniques are used for the adequate visual repre-
sentation of the dynamic and logical modeling formalisms (Chapter 4) and for the visualization of data
derived from diverse external investigations (Chapter 6). Furthermore, a strategy for drawing modular
models in a ‘flat’ fashion is integrated (Chapter 7).

As already mentioned, VISUAL EXPLORER is part of the PROMOT software tool. PROMOT itself is
freely available for download from http://www.mpi-magdeburg.mpg.de/projects/promot/. The source
code of VISUAL EXPLORER is distributed under an open-source software license.

5

1. Introduction

6

Nowadays models should be consistently clear, reusable,
maintainable and extendable. Reusable mathematical
models become more critical to research, guidelines are
needed to ensure that models can be easily combined to
modular models.

Mike T. Cooling [208]
CHAPTER 2

Modeling in Systems Biology – Fundamentals

This chapter gives general background information on modeling in systems biology. It starts with the
biological background, in particular, with information on processes of cellular signal transduction. Fur-
ther, it gives a basic introduction on how new knowledge is generated, and in which way the knowledge
is modified, refined and validated. It also highlights different model types, modeling approaches and
existing modeling tools in the context of modular modeling. Finally, it introduces three different models
of well-known signaling systems that are used throughout this thesis.

2.1. Biological Background

“In every second, a cell makes hundreds of decisions, based on its internal status and its
inputs. The underlying decision-making mechanism is a complex network of molecular level
interactions.” [42]

As stated in the quote, in a complex, intra-cellular network numerous entities such as macromolecules
(e. g., proteins or DNA), small molecules (e. g., ATP or lipids) or physical events (e. g., heat or mechanical
stress) interact in a very dynamic sense by regulatory processes. In the following, the intra-cellular
processes on the molecular level are described in more detail.

2.1.1. Intra-Cellular Processes

Important processes inside a cell are metabolic processes, signal transduction processes and gene regu-
latory processes.

Metabolism Metabolic processes describe the complete interactions of metabolites (e. g., proteins or
enzymes) by substance flow. Primarily, metabolic reactions are needed for the conversion of sub-
stances in the cell in order to store or release energy. Well-known metabolic processes, for exam-
ple, are glycolysis or the citric acid cycle.

Signal Transduction Signal transduction describes the communication between proteins, enzymes
and other parts within the cell by information flow. Signaling processes are very complex and
regulate mainly metabolic processes. Different phenomena like inhibition and activation, or more
complex patterns like feed-forward and feedback loops play an important role.

7

2. Modeling in Systems Biology – Fundamentals

Gene Regulation Gene regulation (or transcription) processes describe relations between genes, in
particular, transcription factor proteins and target gene products. Transcription factors regulate the
transcription rate of genes according to external signals.

A cell can be divided into substructures and subsystems such as organelles and complexes. Because of
its complexity even in subsystems, researchers introduce further abstract constructs such as pathways or
motifs1. In the remainder of this thesis the focus is on signal transduction systems and their inherent
processes.

2.1.2. Cellular Signaling

Cellular signaling is the transmission and flow of information within the cell. Mostly signaling processes
are started by an extracellular molecule that binds to a membrane receptor. The receptor transfers the
information from the environment to the interior of the cell by modifying intra-cellular molecules. This
process results in, for instance, changes in enzyme activity or gene expression.
Figure 2.1 depicts common signal transduction pathways found in an animal cell. Some of them (e. g.,
EGF receptor signaling or T Cell receptor signaling) are under extensive study and count among the
best-characterized intra-cellular systems.
Sometimes signals pass a cascade of events within the cell (e. g., MAPK signaling cascade, or cyclic-
AMP signal cascade). With the help of cascades the signal can be amplified in a stepwise manner; that is,
a small stimulus can result in a large response. Signaling is also involved in periodic biological processes,
such as the cell cycle regulation or circadian rhythms [71].
Signal transduction processes have a broad temporal scale ranging from milliseconds (e. g., for ion flux),
minutes (e. g., for protein- and lipid-mediated kinase cascades), hours, or even days (e. g., for gene
expression). The knowledge about cellular signaling results in a more holistic understanding of the intra-
cellular processes. Sophisticated models of integrated cellular subsystems such as signaling feedback
loops derived from knowledge of molecular interactions can be used to generate and test hypotheses. For
instance, in EGF receptor signaling several models have revealed important features of the network such
as modularity, redundancy and combinatorial interactions [36]. At the end it might contribute to medical
science by providing insights into cellular function and dysfunction.
As stated in Gilbert et al. [71]: “Of all biochemical networks, signaling networks exhibit the highest
degree of complexity. This is not only due to their non-linear network topology, but also because of the
different types of interactions that these proteins can undergo: protein associations, enzymatic catalysis
and reversible or irreversible protein modification, to name only the most common types.”
In this thesis the EGF receptor signaling and the T Cell receptor signaling are of particular interest (see
highlighted areas in Figure 2.1).

2.2. The Modeling Process

About a decade ago the mathematical modeling of cellular processes was rarely used in biology. As
a result of new technological advances (e. g., high-throughput measurement techniques) in screening
the intra-cellular processes, engineering methods, in particular modeling and simulation, are nowadays
important tools of research as in synthetic disciplines such as systems science, computer science or
engineering [204].

1A motif is a general principle that encodes basic topological patterns of processes in cells [6, 127]. Examples for motifs are
time-delays, feed-forward and feedback loops, or biological switches.

8

2.2. The Modeling Process

Figure 2.1.: Overview of common signal transduction pathways found in an animal cell. EGF (epidermal
growth factor) and TCR (T Cell receptor) signaling processes are of particular interest. TCR
signaling is only relevant for T Cells. Downstream events of EGF and TCR are highlighted
in green and red, respectively. Adapted from Wikipedia [206].

In most cases modeling describes the whole modeling cycle as described in Section 2.2.1 including setup,
analysis and simulation of a model – all of them are essential tasks in a project and an integral part of
systems biology. From this point of view systems biology is systems science applied to biology. It
combines experiment, theory, and modeling in order to understand cellular processes. More specifically,
systems biology studies the structure, dynamics, and emergent functionality of the complex system and
aims to understand the system as a whole.
The main purpose of modeling in systems biology is to organize, integrate and analyze the heteroge-
neous data from literature and experiments, and extract understanding about the cellular processes under
investigation. The collected knowledge is primarily pooled in models, which in most cases are described
by universal, mathematical equations.

2.2.1. The Process of Knowledge Generation

Research in systems biology, as in many other domains, is a strongly iterative and evolving process.
It is characterized by a very high integration of experiment, theory and computation [99]. Different

9

2. Modeling in Systems Biology – Fundamentals

flavors of an ‘optimal’ process of knowledge generation exist, e. g. from the experimental [5] and the
theoretical [2, 25, 73] point of view.
In this thesis the process of knowledge generation follows a theoretical or more systematic point of view
and includes software engineering strategies. The following three premises are focused on.

1. The process is accompanied by different visualization techniques that are essential in order to
support several steps.

2. The process is assumed as model-driven; that is, the knowledge and interpretation is based on the
model. In this sense, the model is the central integrator that summarizes the current knowledge
about a system under investigation.

3. The process focuses on a particular modeling approach – the modular modeling that results in
modular models.

The overall process is depicted in Figure 2.2. In the beginning a cellular system is investigated and
the problem, for example, a biological phenomenon, and corresponding tasks and aims are formulated.
The first step in the process is the gathering of external data that can be of qualitative or quantitative
type, for example, a-priori knowledge about the components, interactions and functions of the cellular
system. External data might be obtained from different sources such as experimental investigations,
computational prediction, human expertise, or public data repositories including a rapidly growing pool
of databases2 and peer-reviewed scientific literature. Often external data are in various scopes, time scales
and levels of granularity. Additionally, data noisiness generated by modern high-throughput techniques
poses significant problems [154, 184]. Consequently, based on the external data, several steps of data
mining, data integration and data validation must be performed.
When sufficient, relevant details are gathered, a first draft of the model is set up. The model setup
includes the careful analysis of the given data, the decision for the design of the model (specifying the
modeling approach including scope and level of detail), and the precise implementation (construction,
aggregation and calibration of the model). In some cases, several small (sub-)models or model parts (e. g.,
downloaded from different databases) must be converted into modules (with defined interfaces) for an
integrated larger model. After setting up the basic model, a testing cycle follows including verification
of topology or checking of equations, and if necessary a debugging step which, again, directly influences
the model design or the specific implementation.
Based on the model, novel and useful hypotheses can be formulated. Hypotheses and predictions can
be evaluated and cross-validated by further in-vitro, in-vivo or in-silico experiments. Cross-validation
can be done automatically by, for instance, parameter estimation that tries to fit the results of a model
simulation to the experimental data. Before performing in-silico experiments the modular model often
must be optimized and flattened in order to run in existing simulation frameworks [73, 156]. In many
cases, the experiments conducted give new observations that can strengthen or modify hypotheses or
discover new facts. The interpretation of generated data resulting in new requirements and these, again,
can be the input for an earlier stage in the overall process.
Such iterative processes of model review and refinement often introduce different model variants (or
a family of models) which can result in models of the same system but with different granularities,
time scales, parameter sets or even variations in the modular structure. If the basic model is changed,
usually all derived versions have to be changed. In order to avoid redundant work, techniques from
software engineering can be utilized [122]. These model variants must be managed in an efficient way,
for instance, analogous to the development of computer programs in software engineering.

2 96 databases were registered in 2001 in NAR (Nucleic Acids Research) compared to 1380 databases registered in 2012 [66].

10

2.2. The Modeling Process

Figure 2.2.: Knowledge generation in systems biology as an iterative sequence of tasks. The figure de-
picts how new hypotheses can be an input to the earlier stages in the process. The overall
impact of visualization is shown using circled numbers at different stages in the process.
Container indicates data types. The process is depicted as model-driven. Compiled from a
variety of sources [5, 25, 73].

Finally, new knowledge and insights might be generated. They can guide further research or lead to new
drug target strategies in medical science or a potential production process in industry.

As stated in ?]: “Having no possibility to adequately visually explore the large amounts of data which
have been collected because of their potential usefulness, the data becomes useless and the databases
become data ‘dumps’.” Thus, different visualization strategies guide the distinct stages of the iterative
process and primary support the generation of new knowledge and insights [183]. Major stages and their
associated visualizations are listed in detail below.

11

2. Modeling in Systems Biology – Fundamentals

1© The preparation of external data requires strong visual support. Huge databases such as KEGG,
BIOMODELS or JWS ONLINE provide visual interfaces for retrieving, filtering and exploring
experimental or theoretical knowledge.

2© The setup, editing and exploration of models is supported by tools providing different visualiza-
tion methods. This facilitates the visual representation of the model structure and dynamics, and
therefore a more intuitive and comprehensible modeling process.

3© The interpretation of results from in-silico experiments (e. g., data from qualitative analysis or
simulation) are often not trivial. Hence, the adequate visualization of such data (e. g., overlaid on
top of the network model) can lead to a deeper understanding.

4© Generated data from in-vivo and in-vitro experiments (e. g., omics data such as microarray data or
proteomics) performed by a variety of technologies can be visualized either directly in the related
instrument of the experimental setup or later, for example, in the context of the network structure
of the model.

Corresponding to the list above, in Figure 2.2 circled numbers indicate different stages in the process
of knowledge generation where visualization has a major impact. In this thesis, visualization challenges
and solutions of stages 2© and 3© are described and discussed in more detail. Stages 1© and 4© are not in
the scope of this thesis.

2.2.2. Types of Models

In this thesis an interdisciplinary research topic is discussed where in the different scientific domains
the term model is used in quite different ways. Thus, the meaning of a model depends on a certain
perspective, for instance, biology, mathematics or computer graphics. In general, a model is an abstract
representation of objects and processes that describes the structure and the behavior of a specific sys-
tem [105]. Thereby, a model focuses on the essential properties of the system relevant for the particular
modeling task.
In research there are a plethora of different model types such as stochastic models, cellular automata, or
Petri nets [106]. However, due to lack of space only model types relevant for this thesis are given and
described in the following (see also Figure 2.3 for a pictorial summary).

Mathematical/Computational Model A mathematical model describes objects and processes based
on mathematical equations. In contrast to mathematical models, a computational model bene-
fits from its systematic structure and the resulting exploratory power. For instance, a systematic
structure of the biological system like a modular approach can be easily exploited by graphical
computer tools [29].

Dynamic Model The traditional approach describing biological and chemical systems familiar to most
of the researchers is using algebraic or differential equations resulting in dynamic models. Several
predefined kinetics can be used, e. g., mass action kinetics or Michaelis-Menten kinetics. For
detailed information on dynamic modeling the reader is referred to Section 2.3.2.

Logical Model Another popular approach is using logical equations resulting in a logical model. It
describes components and their relations but no dynamics (e. g., kinetic data). More information
on logical modeling can be found in Section 2.3.1.

12

2.3. Modeling Approaches

Modular Model Computational models can be defined using a hierarchical and modular structure re-
sulting in modular models. They describe objects and processes on different levels and scopes,
encapsulated in units also called modules. Detailed information can be found in Section 2.3.3. In
contrast, a model without any modular structure is called a flat model or simple model.

Graphical Model A graphical model represents a mathematical/computational model in a diagram-
matic form. In systems biology often graphical models are used to depict elements and the rela-
tions between them. Most common graphical models to describe cellular processes are graphs and
more specifically networks. They are discussed in more detail in Chapter 3, Sections 3.2 and 3.5.1.

Biological Model A biological model does not describe the mathematical approach or the type of
representation, but rather the biological system behind it. In this thesis, mainly the domain of cel-
lular signal transduction is investigated. Hence, here ‘biological model’ means a model describing
signaling processes in the cell. Detailed information about specific signaling models is given in
Section 2.1.2.

Mental Model From each model type discussed earlier a mental model can be created. A mental model
is a very simplified version with general assumptions of the underlying model. Related to graphical
models and networks they are called mental maps. This special model type is further described in
Chapter 3, Section 3.3.3.3.

2.3. Modeling Approaches

As stated in Wiechert et al. [204], this is no unique way to model a given system – modeling is always a
creative activity in which a real system is interpreted in terms of mental concepts (e. g., mental models).
Basically, computational modeling3 can be done in various fashions like mechanistic-based (dynamic
modeling) or interaction-based (logical modeling). There are also approaches lying between the logical
and dynamic modeling like constraint-based or rule-based modeling. All of them differentiate in their
a-priori knowledge of the system and in their level of detail. The choice of the appropriate modeling
approach depends primarily on the specific modeling task. For an overview of different approaches
applied to systems biology the reader is referred to recent reviews [5, 71, 204] and the references therein.
In the following, first, two popular modeling approaches are presented: logical modeling and dynamic
modeling. Then the approach of modular modeling is introduced in detail.

2.3.1. Logical Modeling

Logical modeling represents a logical view of the system. It is the simplest view on a system of reactions
and probably used as a first approach in a modeling project. More generally, it is also called structural
modeling. When modeling large systems with few known kinetic mechanisms and parameters it is rea-
sonable to consider solely structural and stoichiometric information of cellular networks independently
of the kinetics. This more qualitative approach results in structural models that do not describe quantita-
tive and dynamic properties. They only answer qualitative questions. As stated in Mirschel et al. [129],
“for the setup of such models the literature at least in the area of systems biology offers plenty of infor-
mation, which is also better comparable than kinetic parameters, measured under different conditions”.

3It means here the process of pooling the knowledge into a model.

13

2. Modeling in Systems Biology – Fundamentals

(a) (b) (c)

(d) (e) (f)

Figure 2.3.: Different model types: (a) real biological system, (b) mental model, (c) mathematical model
using ODEs for a quantitative description, (d) mathematical model using logical equations
for a qualitative description, (e) graphical model of a dynamic system, (f) graphical model
of a logical system. Inspired by Klipp et al. [105].

Moreover, experimental data may be available only at discrete values, for example, a protein is active or
inactive.
The logical modeling approach used in this thesis and the associated theoretical framework were elab-
orated in Klamt et al. [104]. It facilitates modeling and analysis based on a qualitative description in
the form of logical equations. This approach provides on Boolean logic, but it is also possible to use
multilevel logic. The modeling framework is based on different representations of signaling networks:
interactions graphs and logical networks. In logical networks entities are combined with logical oper-
ators such as and, or and not. For analysis, methods of graph theory and structural analysis can be
used.

2.3.2. Dynamic Modeling

Dynamic modeling represents a continuous view of the system – it is a more detailed view and not only
requires information about the structure (relational data) but also the dynamics (kinetic data). Therefore,
it is also called kinetic modeling. Mechanistic-based methods are the classical way of modeling biochem-
ical reaction systems. Here, ordinary differential equations (ODE) or differential algebraic equations
(DAE) are used to describe and analyze the dynamics and kinetics of the model. When modeling spatial
information partial differential equations (PDE) can be used. Dynamic models can be either defined in
deterministic or stochastic form.

14

2.3. Modeling Approaches

In practice, often modelers encounter some problems when dealing with dynamic modeling. Kinetic
data are hard to find (widely distributed among scientific publication), access (hard to get experimental
design data) and unify (heterogeneous/ambiguous data, not standardized). For these reasons knowledge
of kinetic laws and parameters is rare and of uncertain nature. If accurate kinetic data are not available,
in some cases they can be substituted by standard kinetic laws. As described above, the accurate mecha-
nistic modeling is difficult or sometimes even impossible due to the lack of quantitative knowledge.
In contrast to logical modeling, this approach is not a broad, stationary map of many components and
their interactions but rather a very detailed description of (mostly a few) intra-cellular components [181].
Logical and dynamic modeling approaches are very popular in the modeling community. Both of them
can be combined with modular modeling which often results in a more enriched and systematic modeling
workflow.

2.3.3. Modular Modeling

Modular modeling is well suited to describing modular structures of intra-cellular systems [79]. This
is beneficial in order to model systems at different levels and granularity. Applying modular modeling,
complex systems can be decomposed into smaller, simpler subunits resulting in a hierarchical and nested
structure. Analogous to engineering disciplines4, these individual, reusable model parts can be studied in
isolation, and tested and characterized separately prior to their incorporation into larger systems [113].
This principle is illustrated in Figure 2.4 where the overall process can be described on various hier-
archical levels. For instance, basic or elementary units (e. g., transcription factor, target gene, binding
site, certain reaction) are the basic elements that cannot be further decomposed into parts. From these,
intermediate units that comprise specific network patterns (e. g., motifs like feed-forward loop) can be
composed. Complex units (e. g., pathways, signaling cascades, compartments) again consist of interme-
diate units and present units that are independent in some way. At the top level of the hierarchy these
complex units form the entire network.
Another example is the signaling EGF model published in Saez-Rodriguez et al. [164] and further de-
scribed in Section 2.5.1. On the highest level, it was decomposed into five distinct functional units
including a receptor and a MAPK cascade.

Figure 2.4.: Structural and hierarchical organization of a gene transcription network. From left to right:
basic unit, motifs (single input (SIM), feed-forward loop (FFL)), composite modules, com-
plex regulatory network. Adapted from Babu et al. [10].

The process of modular modeling results in modular models. A central component of modular modeling
is the module. The term ‘module’ is rather general and can be defined from different point of views, for

4The idea is to break down a complex (engineering) problem into smaller manageable subproblems.

15

2. Modeling in Systems Biology – Fundamentals

instance, biologically (physiologically) or theoretically motivated and for different hierarchical levels.
When different hierarchical levels are discussed, modules can have different complexity (cf. Figure 2.4).
Well-known examples of modules from systems biology are physical or spatial units (e. g., cell com-
partments such as cytoplasm or nucleus) and functional units where components contribute to the same
task such as pathways, cascades or protein complexes. They can be found in metabolism [157], cellular
signaling and gene regulation [79].

Common metabolic units. Elements that facilitate the same physiological/metabolic task can be
grouped. Well-known examples are the specific catabolic pathways for individual carbohydrates,
or metabolic functions, such as glycolysis.

Common signal transduction units. All elements of a functional unit are interconnected within a
common signal transduction system. The signal flow across the unit border (i. e., cross-talk) is
smaller than the flow within the unit. An example is the MAPK signaling cascade or the process
of receptor binding.

Common genetic units. The genes for all enzymes of a functional unit are organized in genetic cir-
cuits; that is, they are expressed in a coordinated manner. Known examples are the machinery for
protein synthesis or DNA replication.

Functional modules can also be motivated by a theoretical point of view. A promising property might
be retroactivity5 [41, 163]. From the implementation point of view, modeling intra-cellular systems in a
modular fashion has several advantages [73].

• The user works with comprehensible networks of modules rather than with reaction networks with
hundreds or thousands of parts. In most cases, it is easier to distribute tasks among different
modelers working on parts of the same system. That is, responsibilities and limitations are well
defined and documented.

• The interface of a module can be specified separately from its implementation. This leads to a sim-
plified exchangeability of modules with the same defined interface, but with a different granularity
or scope. In this way, a model part can be simplified or extended.

• It is easier to separately test a specific, simple-structured module with its input-output behavior in
a well defined test environment before several modules are combined into a larger system.

• The modular structure forms an inherent topological property of the model. This can be easily
visualized and help to guide the user, for example, to hide unnecessary details within modules or
navigation cues based on the modular structure.

As pointed out in Alberghina and Westerhoff [3], a major challenge is to find objective criteria for the
demarcation of modules. In literature, several approaches can be found. For instance, modules can be
created manually, calculated using computational power [162] or measured directly, for example, using
experimental techniques.
In summary, modular modeling provides a strategy to set up composite models where the detailed func-
tionality is encapsulated in modules and different abstraction levels. In this way, model complexity can
be managed, for example, by hiding it from the user [209].

5Retroactivity means, for example in cell signaling, an effect on the functioning of an upstream module that comes from a
downstream module [162]. Thus, ideally modules without retroactivity could be studied and analyzed independently of
each other.

16

2.3. Modeling Approaches

2.3.3.1. Reuse of Modules

In intra-cellular systems often units (i. e., group of elements) representing a known biological mechanism
that occurs repeatedly [29, 208]. As already pointed out, such units are, for instance, motifs that are
frequent in many systems. Once such units are found, they can be systematically analyzed, classified and
implemented as modules (e. g., in a specific library) by skilled modelers. Afterwards, these modules6

including their complex mathematical description can be reused. This has several advantages:

• It is feasible to easily build upon pre-defined functional components organized in libraries. There
is no need to start from scratch [209].

• Considerably, it simplifies and fastens the setup of large models because the module description
(relations, parameters, etc.) is defined once but can be used as many times as required within a
model [208]. In this way, specific details of biological concepts can be distributed within a larger
model.

• Reused modules have an inherent consistence. The information within the module must be checked
for correctness only once and can be used several times without further in-depth checking.

When considering models as composite modules that can be integrated, combined and adapted, the need
to reuse modules becomes essential [100].

2.3.3.2. Modular Modeling Concept

The modular modeling concept (MMC) [73] bases on the network theory [72, 124] and the idea of
hierarchical and modular modeling outlined in Section 2.3.3. Hierarchical aggregation of modules can
be used to set up more complex processes such as signaling cascades [110]. The most important modeling
entity of the MMC is the module. Modular models are mainly composed of modules.
The MMC is inspired by software engineering strategies. In particular these are: (i) work with com-
prehensible modules in order to manage complexity, (ii) define and document the responsibilities and
limitations of a module, (iii) test the modules separately, (iv) keep interfaces stable, and (v) reuse mod-
ules.

2.3.3.3. Flattening a Model

When setting up models with hierarchical and modular structure it is important to have methods that are
able to remove structure. The process of flattening converts a structured, modular model into a model
without hierarchical and modular structure. The explicit description of coupling elements (relations
among the submodules) is lost in the sense that they are implicit in the single large (flat or simplified)
model after converting. Hence, the information on how the model was composed is lost.
As highlighted already in Section 2.2.1, flattening a model is valuable since it allows optimized and
efficient model code to be generated for existing simulation tools7 which have no support for composition
or aggregation [156]. In modular models this can be done by obtaining a global DAE system generated
from all local equations of the modules. In some cases, algebraic equations are used to describe the
coupling of modules. They are simplified or removed in the process of flattening [124].

6They may appear across different models or several times in a single model.
7In contrast, in multi-scale modeling or agent-based modeling the hierarchical model structure is useful for simulation [156].

17

2. Modeling in Systems Biology – Fundamentals

2.4. Modeling Tools and PROMOT

Different software projects exist that provide modular modeling or related strategies mentioned in the
previous sections. A great deal of work on such systematic approaches has been done in software engi-
neering and other engineering fields. However, in the following, the overview is limited to tools devel-
oped for system biology. Several of these software projects are introduced first. Afterwards PROMOT, a
modeling tool that combines many of the systematic approaches, is described in detail.

2.4.1. Modeling Languages, Tools and Formats

In recent years many tools for solving systems of ODEs and DAEs were developed. Considerably fewer
tools are developed for the support of logical modeling. Even fewer tools are dedicated to modular or
object-oriented modeling. An overview of modeling tools in general can be found in Alves et al. [7]
and Kim et al. [98], or, with a focus on simulation, in Pettinen et al. [147].
From the diversity of these tools a few representatives are highlighted in the following sections. They
are divided by their major characteristics: modeling languages, specialized modeling tools, exchange
formats, and analysis/simulation tools. Software tools with intensive use of graphical representations are
discussed in Chapter 3, Section 3.6.

2.4.1.1. Modeling Language: MODELICA

MODELICA [61] is a general modeling language used in several commercial tools, for instance, in OPEN-
MODELICA [132] or DYMOLA [9]. MODELICA supports an equation-based modular specification of
arbitrary hierarchical DAE models and object-oriented methods. It is a general-purpose tool, not special-
ized to modeling in systems biology.

2.4.1.2. Modeling Tools: ANTIMONY, LITTLE B and E-CELL

ANTIMONY [180] focuses on the modular construction of models for systems biology. The construction
is performed using a text editor. No graph-based setup is provided. ANTIMONY is able to convert to
SBML models by flattening the modular model.
LITTLE B [123] is a modular modeling language that can be used to build mathematical models of com-
plex systems with a focus on systems biology. However, it lacks an appropriate graphical representation.
E-CELL [194] provides a modular approach for modeling where the complete model is composed of
compartments. These compartments are almost physically motivated; that is, a module represents a
compartment from the topology of the cell.

2.4.1.3. Exchange Formats: CELLML and SBML

CELLML [120] has been designed to support multi-scale modeling. It is specifically used for represent-
ing intra-cellular processes in systems biology [138]. CELLML models are based on ODEs. It facilitates
modular modeling by construction of model parts independently of each other and their later integration
into a core model. The modularity concept supports the use of building blocks, encapsulation and differ-
ent import mechanisms for easier integration. For established tools using CELLML the reader is referred
to Garny et al. [67].
SBML [86] is a community-driven quasi-standard for describing elements in biochemical networks and
its kinetics. The SBML consortium is currently working on an extension of the SBML syntax called ‘Hi-
erarchical Model Composition’ in order to describe modular structures of models, for example, include
models as subunits within other models.

18

2.4. Modeling Tools and PROMOT

2.4.1.4. Analysis/Simulation Tools: DIANA and CELLNETANALYZER

DIANA [109] and its predecessor DIVA [133] are intended for stationary and dynamic simulations and
analysis of higher-order DAEs mainly for engineering and cellular processes. DIANA is a flexible and ex-
tensible numerical toolbox. Major features are an object-oriented architecture, the handling of equation-
based models and the enhanced scripting facilities. DIANA is based on free numerical tools and hence
provides efficient and sophisticated methods for numerical solutions. However, there is no support for
visualizations.
CELLNETANALYZER [103] is dedicated to the structural and functional analysis of cellular networks.
CELLNETANALYZER is used for the analysis of metabolic but increasingly also for signaling networks.
Most analysis methods are performed on the network topology and do not consider kinetic mechanisms
and parameters. CELLNETANALYZER supports two modeling frameworks for signal transduction sys-
tems: interaction graphs and logical networks. Thereby, an interaction graph is underlying the logical
graph. Both are causality models and enable the computation of signaling pathways. The CELLNET-
ANALYZER format is used for the storage of logical models built up by CELLNETANALYZER and as
an exchange format for logical models. CELLNETANALYZER uses text boxes for visualizing elements
and their properties. Editing is performed by GUI dialogs. Additionally, it has the possibility to place a
background image for illustrating the respective model.

2.4.2. Modeling with PROMOT

The Process Modeling Tool (PROMOT) [130] is a general computational tool for modeling processes in
complex technical8 and biological systems9. It facilitates the intuitive setup and editing of complex math-
ematical models. PROMOT supports several concepts to work with these complex models in an efficient
manner. It facilitates a combination of the MMC and object-oriented modeling. Hereby, the modular
structure of processes is defined and presented by hierarchical levels with varying organization and ab-
straction. The modular model structure consists of elementary building blocks (modules) organized in
flexible modeling libraries, and concise interfaces. Modules which have been proven to work can and
should be re-used. In contrast to E-CELL where modules are physically motivated (e. g., compartment),
in PROMOT the definition of modules is more general.
Modeling with PROMOT is equation-based. Thus, the equations described in the model are used to
describe, manipulate, analyze and optimize the system10. In this sense, PROMOT has a similar approach
as MODELICA. In PROMOT dynamic modeling, based on a set of ODEs, algebraic equations and Petri
nets (for event handling), is provided in order to describe the behavior of the system. In addition to the
kinetic modeling, PROMOT also supports a logical modeling formalism elaborated in Klamt et al. [104],
which results in a qualitative description of the model [165]. Spatially distributed systems and stochastic
modeling is not supported.
Models can be set up either text-based using the Model Definition Language (MDL), or diagrammatically
using a graphical editor. Since both methods work directly on the same data representation, the modeler
can switch between these two ways of modeling. MDL is a declarative, object-oriented language used by
PROMOT, in particular as storage format of libraries and models. More details on the graphical setup of
models in PROMOT can be found in Chapter 3, Section 3.6.3.

8Applications in process engineering are, for example, reaction and separation systems, membrane reactors [125] catalytic
reactors and fuel cells [78].

9Applications in systems biology are, for example, intra-cellular reaction systems such as metabolic systems like E. coli or
yeast, and complex signal transduction processes [110, 164].

10Mechanistic modeling can also be done based on reactions. For example, SBML has a reaction-based approach.

19

2. Modeling in Systems Biology – Fundamentals

PROMOT was designed for the modeling of engineering systems that incorporate a natural modular and
hierarchical structure. For instance, elementary modules can be assembled into units which again can be
connected to submodels (modules) on the next-higher hierarchical level, etc. Hence, the entire system is
composed of modules. This concept was transferred to cellular systems [110] as depicted in Figure 2.5.

Figure 2.5.: Hierarchical and modular modeling with PROMOT. The module cycle encapsulates all
elements that have the same functional concept. This results in a submodel (module) that is
connected to other modules (e. g., input or output) at the highest organization level.

A known extension to modular and hierarchical modeling is the object-oriented concept using strategies
from software engineering including abstraction, encapsulation, aggregation, and multiple inheritance.
A powerful feature is abstraction where an abstract description is defined and then detailed instances are
generated. For example, the user can set up a module describing a general enzymatic reaction. In a next
step the main structure and behavior can be inherited which results in specialized types for reactions
with different parameters and kinetics [29]. This concept can also be utilized for the generation of model
variants. Class derivation can be used to quickly exchange kinetic laws and parameters while keeping
the interface structure and the connectivity fixed [204].

2.4.2.1. The Modeling Workflow

The modeling workflow using PROMOT follows the general scheme depicted in Figure 2.2 and is illus-
trated in Figure 2.6. First, knowledge about a system (external data) must be imported into PROMOT.
This can be done either by building up a model from scratch or by importing from several external
resources.
A model can be set up from scratch using basic modeling entities taken from a standard modeling library
or knowledge base11. This is analogous to stages 2© and 3© in Figure 2.2. Data import/integration can
be performed through a generic SBML parser, or a more specific CELLNETANALYZER parser depending
on the particular modeling approach. When the setup is finished, the model can be exported to different
analysis and simulation tools, for example, DIANA [109], MATLAB or CELLNETANALYZER [103].
Before export, the model is flattened and optimized for efficient use in the respective tool. Finally,

11 PROMOT provides a standard modeling library for each modeling approach (cf. Section 2.3). A knowledge base is a
representation of the existing biological understanding. It also encodes the current understanding and expertise of the
modeler.

20

2.4. Modeling Tools and PROMOT

externally generated data can be loaded and visualized in PROMOT and may lead to the refinement of
the given model. In PROMOT a model consists of different basic elements that define the structure of the
model – modules, terminals and links.

Figure 2.6.: Schematic view of the modeling workflow in PROMOT. A model can be set up either from
scratch or using the import functionality (stage 1©). Output from PROMOT are hypotheses
in the form of model variants (logical/dynamic models), which can be evaluated by different
computational methods, for example, analyses or simulation (stage 2©). New-generated
data can be visualized, again, in the context of the network model (stage 3©). Parts taken
from Mirschel et al. [129].

2.4.2.2. Modules, Terminals and Links

Modules are the most important modeling entities and are used to encapsulate a group of modeling
elements which contain, for instance, reactions, species and/or signaling parts. They can be divided into
elementary and composite modules. Elementary modules do not contain submodules, whereas composite
modules have a complex structure with inner submodules. The coupling of modules is facilitated through
special interface objects called terminals [73].
A terminal12 is an interface for coupling one module to another. Through terminals, part of the inner
state of a module is made accessible to the exterior part of the system [73]. Without terminals a module
is separated from the model. It facilitates efficient modification and model variants by using modular
plug-and-play components using standardized interfaces.
A link connects two or more terminals and the defined variables. In dynamic models the direction of
information flow is encoded directly within the behavioral description of the module. In a biological

12In MODELICA terminology an interface is called a connector. It is similar to ports known from graph theory.

21

2. Modeling in Systems Biology – Fundamentals

context a link between two entities implies a certain type of interaction such as stimulatory, inhibitory or
catalytic.

2.4.2.3. Architecture

PROMOT is designed as a server-client architecture. The communication between server and client is
provided via a CORBA middleware [135]. The PROMOT server (written in LISP) performs the manage-
ment and manipulation of models. The client which is implemented as a GUI (written in JAVA) displays
the modeling library and the model itself and facilitates the interaction with the modeler. The GUI can
be divided into the Class Browser (management of models and modeling libraries) and Visual Editor
(generic graphical setup and editing of models). The detailed architecture is not discussed here since
the focus is on visualization. For further information the reader is directed to Appendix A containing
diagrams depicting the general architecture and class structure.
For a summary of features and functions of PROMOT, and also for more detailed information the inter-
ested reader is directed to the given literature [73, 129, 130, 165].

2.5. Application to Models

Throughout this thesis three different models of well-studied signaling systems are used to illustrate the
developed concepts as well as to show the successful application of the described methods. In particular,
the models are two Epidermal Growth Factor Receptor (EGF, EGFR/ErbB) models and the T Cell
Receptor (TCR) model. The models describe intra-cellular signal transduction processes of different
functions and at different levels of detail. These models are amongst the best-characterized systems in
signal transduction. For more detailed information about the models and the biological mechanisms
behind them, the reader is referred to the literature [164, 166, 167].

2.5.1. The EGF Receptor Models

The EGF Receptor signaling network is the best-studied system in mammalian cells. Its growth and
differentiation processes are involved in human cancer; some potential drug targets within this network
are already located. In recent years the knowledge about the EGF Receptor signaling has increased
to a point that a description in terms of an integrative systems biology approach is feasible [36]. In the
following, two EGF Receptor models, EGF and EGFR/ErbB, are described. They differ in the modeling
approach, scope and the level of detail. Important pathways of the EGFR/ErbB signaling are illustrated
in Figure 2.7.
The EGF model, developed by Saez-Rodriguez et al. [164], uses several ODEs allowing a dynamic
characterization of the signaling behavior. This allows a very detailed description of the biochemical
processes involved in the EGF Receptor signaling (e. g., phosphorylation of proteins using kinetic pa-
rameters). The model describes the activation of the mitogen-activated protein kinases MAPK signaling
cascade by EGF. In more detail, it includes the binding of the EGF ligand on the erbb1 receptor, the
formation of signaling complexes by interaction of several signaling proteins (namely the kinases shc,
grb2 and sos), the activation of a signaling intermediate called ras and the initialization of the MAPK
cascade as the core unit involving the kinases raf, mek and erk. It is a modularized version of the
EGF model from Schoeberl et al. [173]; that is, important signaling units are encapsulated into modules.
In contrast to the Schoeberl model, the EGF model also includes a detailed description of the lysoso-
mal degradation and the internalization of protein erbb1 because this is considered as important for
the dynamic behavior of the overall EGF Receptor signaling. The EGF model consists of 73 modules
(including five high-level components) on five hierarchical levels. The internalization is considered in

22

2.5. Application to Models

Figure 2.7.: Network of the EGFR/ErbB signaling depicting the most important pathways. The signal-
ing network is divided into (a) an input layer, (b) a signal-processing layer and (c) an output
layer. The input layer shows the ligands outside the cell and the receptor dimers at the cell
surface. The intermediate layer comprises all signaling processes within the cell includ-
ing enzyme activity and different cascades. The output layer points to different biological
mechanisms like apoptosis or growth. Taken from Yarden and Sliwkowski [210].

all main modules. This results in a duplication of nearly all signaling steps described above (i. e., inter-
nalized and non-internalized) and an increased complexity of the model. This model is most suitable for
illustrating the general concepts outlined in this thesis because of its complex hierarchical and modular
structure.

The EGFR/ErbB model, developed by Samaga et al. [167] applies a qualitative formalism of the EGF
Receptor signaling. Here, interactions of species are described in the form of logical equations. In
contrast to the dynamic EGF model, it describes the processes in less detail but with a broader biological
scope. For instance, the model involves the complete ligands family, a variety of receptors (including
all four known EGF Receptor types), some players of the transcription level (the activated signaling
molecule erk can translocate to the nucleus and there regulate gene expression) and additional signaling
pathways such as pi3k/act or jnk/MAPK. The model includes two main modules describing the
overall network structure and the combinatorial complexity formed by the interplay of the 13 growth
factors and four receptor types at the uppermost layer. It comprises 104 species and 204 interactions.

23

2. Modeling in Systems Biology – Fundamentals

2.5.2. The T Cell Receptor Model

The T Cell Receptor (TCR) model [165, 166] is described by a logical formalism using qualitative
data. The model describes the activation of T Cells via the T Cell Receptor, the CD4/CD8 co-receptors,
and the accessory signaling receptor CD28. Particular signaling steps are the activation of the kinases
Lck, Fyn, ZAP70, and the final activation of MAPK signaling cascades. The TCR model comprises 94
nodes and 123 interactions.

Figure 2.8.: Network of the main signaling paths triggered by T Cell Receptor activation. Adapted
from Saez-Rodriguez [161].

2.6. Conclusions

The modularity concept and its consequent implementation in the modeling process can bridge the biol-
ogy with its often unstructured information over to synthetic disciplines such as computer science and
engineering [79]. According to Aldridge et al. [5] genes, cells and organisms represent useful layers of
abstraction but the intra-cellular processes are difficult to define and abstract. With the help of modularity
concepts, a much greater insight into these processes can be expected.
As depicted in Figure 2.2, besides modeling concepts to systematically describe the biological system,
research in the field of systems biology requires powerful computing tools for efficient and compre-
hensible editing, visualization, validation, analysis, exchange and integration of models and their parts.
Most of the languages, tools and formats currently in use do not provide a modular description or setup
of models. Some of the exceptions are described in Section 2.4. However, they often lack support for

24

2.6. Conclusions

the domain of systems biology or a method to define modules of general granularity or scope. A tool
dedicated to modular modeling independent of the domain and scope is PROMOT.

25

2. Modeling in Systems Biology – Fundamentals

26

The graphical representation of biological networks is a
topic that has been largely neglected, and its importance
has only recently been recognized because of the growing
need to understand large scale biological networks depicted
by genome-wide analysis and other comprehensive
measurements.

Hiroaki Kitano [102] CHAPTER 3

Graphs and Visualization in Systems Biology – Fundamentals

In many scientific and engineering domains ranging from physics to geographic information systems
to software engineering, complex relational data structures are an integral part of day-to-day research
and therefore have to be modeled and visually represented. Today, more and more applications can be
found in the areas of modern bioinformatics, computational biology and systems biology. Especially
in the latter disciplines a huge amount of relational data are produced due to technology advances and
integration efforts.
For describing biological entities and their complex relationships, graphs can be used. Graphs are high-
level constructs that provide a very intuitive and common representation, and therefore allow the user to
explore and analyze the underlying data items and their relationships in convenient and comprehensible
ways. Furthermore, powerful methods from graph theory can be used to analyze the data in a systematic
manner. In order to elucidate the properties of complex systems the drawing of graphs plays a central
role. Using the graph metaphor as a visual interface, the large and complex structure of systems can be
visually depicted and, if necessary, explored further. The work of Di Battista et al. [45], Díaz et al. [46],
Herman et al. [81], and von Landesberger et al. [201] provided comprehensive surveys on theory, layout,
visualization and navigation of graphs.
In this chapter the fundamentals of graphs including different graph classes, theoretical properties and
background information on how graphs can be drawn are introduced. In this context, important layout
strategies are given. In the second part, different visualization aspects and techniques are presented. The
focus is on information visualization, perceptual and cognitive principles, visual interfaces and interac-
tive exploration. A final section on visualization tools for systems biology complements this chapter.

3.1. Graph Theory

Graphs are commonly used to represent data items (vertices) and relationships between them (edges).
Relations can be subdivided into adjacent relations – correlations between pairs of elements, and inclu-
sion relations – hierarchical correlation among elements. For the representation of biological systems
different graphs are in use. Hu et al. [84] provided a classification which differentiates graphs according
to their structure into simple graphs, multigraphs, compound graphs, metagraphs and hypergraphs. In
Figure 3.1, examples of the different graph classes are given. Whereas simple graphs and compound
graphs are applied frequently, hypergraphs are rarely used in systems biology. Also metagraphs are ap-

27

3. Graphs and Visualization in Systems Biology – Fundamentals

plied rarely but they seem to have some potential [84]. Furthermore, according to Di Battista et al. [45]
and more recently von Landesberger et al. [201] graphs can be distinguished into dynamic and static
graphs. In dynamic graphs the graph structure, the properties of vertices and edges, or both can be
affected depending on time. Contrary, static graphs do not change over time.

(a) (b) (c) (d) (e)

Figure 3.1.: Classification of graphs currently used in systems biology: (a) simple graph, (b) multigraph,
(c) compound graph, (d) metagraph and (e) hypergraph. (a) and (b) depicts graph classes
without any hierarchy whereas (c), (d) and (e) shows graphs that are able to represent inclu-
sion relations; dark boxes depict subgraphs. Adapted from Hu et al. [84].

In the following section graph classes important for the area of systems biology are briefly introduced.
Thereby, graph classes describing hierarchical structures are in focus.

3.1.1. Graph Classes

Simple graphs are the smallest common base for all classes of graphs and are the simplest form of a
graph. They do not have any hierarchy, no multiple edges between pairs of vertices and no loops1 (see
Figure 3.1a). Multigraphs are an extension of simple graphs and allow multiple edges between pairs of
vertices and loops (see Figure 3.1b).
Certainly, there are many possible extensions to this very basic concept. When graphs become huge
and more complex, their handling can be eased by introducing a hierarchical structure, for instance,
decomposing the graph into several subgraphs and, if necessary, decomposing each of them into further
subunits2 In this way, a graph can be created which describes model components at different levels of
organization and abstraction. That results in clear and small subgraphs which are more manageable and
comprehensible (cf. Section 2.3.3). The process of decomposition leads to an inclusion tree encoding
the hierarchy.
A compound graph extends the multigraph approach by subgraphs. Each of the vertices can have any
number of subgraphs. However, a subgraph may belong to only one supergraph. In Figure 3.1c and Fig-
ure 3.2d, two examples are shown. The compound graph facilitates the unification of a graph (network)
and a tree (hierarchy) that results in a single representation; it allows subgraphs which can be nested.
The nested subgraphs of the compound graph form the hierarchical structure, while the edges represent
relations between subgraphs. Compound graphs can be further differentiated into cluster graphs and
nested graphs. A cluster graph is a compound graph where edges are only allowed between leaves of the
decomposition tree. In contrast, a nested graph has edges only between children of the same parent. A
subgraph in a compound graph can also have defined ports for interfacing to other subgraphs. By using
ports in visualization, additional constraints on how subgraphs are connected can be defined. The ports
of a vertex are children of that corresponding vertex. An edge connects a source port and a target port.

1Edge which starts and ends on the same vertex.
2There exist various ways to decompose a given graph, for example, using predefined hierarchical structure, or clustering

based on graph properties.

28

3.1. Graph Theory

Compound graphs do not allow an overlapping of subgraphs. Thus, a vertex cannot belong to different
subgraphs of the same hierarchical level.
However, for some modeling tasks an overlapping may be useful. This restriction can be solved by
metagraphs. Metagraphs like compound graphs facilitate adjacent as well as inclusion relations (see
Figure 3.1d). Hypergraphs represent a generalization of different graph classes. In hypergraphs individ-
ual edges, called hyperedges, can connect to any number of vertices (see Figure 3.1e).
The transformation of simple graphs to hierarchical graphs (introduction of hierarchy, clustering) and
vice versa (removal of hierarchy, flattening) is an important topic. Especially for the latter, only limited
research has been carried out. In the following section important theoretical properties of graphs are
presented.

3.1.2. Characteristics of Graphs

A graph G = (V, EG) is defined by a finite set of vertices V and a finite set of edges EG. An edge
e ∈ EG is an (un-)ordered pair of vertices (u, v) with u, v ∈ V . A subgraph GS = (V, EG) is a graph
whose sets of vertices and edges are subsets of G. An inclusion tree T = (V, ET , r) is a rooted tree.
For every vertex u ∈ V , except the root vertex r, there exist a unique vertex v ∈ V , called the parent of
u, such that (u, v) ∈ ET . If u has no child, u is called a leaf of the tree.
A directed graph (or digraph) is defined by a set of vertices V and a set of ordered pairs (u, v) with
u, v ∈ V . The vertex u is the source vertex and v the target vertex of the edge. Directed graphs represent
structures having a general flow (e. g., of information or direction). In contrast, undirected graphs are
defined by unordered pairs of vertices.
A compound graph GC = (G, T) is described by a (un-)directed graph G = (V, EG) and an inclusion
tree T = (V, ET , r) that share the same set of vertices. The elements of EG are called adjacent edges;
those of ET inclusion edges. A cluster graph GCL is a specialized compound graph with GCL ⊆ GC ,
where adjacent edges of E are only incident to leaf vertices of T . A port p ∈ P is a special vertex which
is an interface of GS to the exterior. A terminal cluster graph GTCL is a specialized cluster graph GCL

where ports exist GTCL = (V, P, E), with P ⊆ V . Every compound graph GC can be transformed
into a terminal cluster graph GTCL where each time an edge is intersecting the border of a subgraph a
port p ∈ P is inserted.
Two vertices u and v are called adjacent if they share a common edge e = (u, v). The degree k of a
vertex v is the number of adjacent vertices. For directed graphs the degree can be further differentiated
into in-degree and out-degree. The in-degree kin of a vertex v is the number of adjacent nodes with v as
the target vertex. The out-degree kout of a vertex v is the number of adjacent nodes with v as the source
vertex. The sum of kin and kout is the degree k of the vertex v in the underlying undirected graph. A
vertex v with kin = 0 is called a source, as it is the origin of each of its edges. Similarly, a vertex v
with kout = 0 is called a target. The degree is equal to the number of direct neighbors of a vertex v.
The neighborhood of a vertex N(v) is a subgraph GS with a set of vertices adjacent to v. GS does not
include v itself.
The size of a graph |G| defines either the number of edges |E|, or more commonly, the number of vertices
|V | in G. A path on a graph G is a sequence of consecutive vertices and edges v1, e1, v2, . . . , vn−1, en,
vn with ei = (vi−1, vi), 1 ≤ i ≤ n. vi are vertices while ei are edges of the graph such that vertices and
edges adjacent in the sequence are incident. The length n of a path is the number of edges |ei| traversed.
A shortest path between two vertices u and v in a directed graph is a path from the source vertex u to the
target vertex v where the number of edges is minimal. The hierarchical level LT of a vertex v in T is the
length of the path between the root vertex r and the vertex v. By convention LT (r) = 0. The depth of
T is the maximum of LT for all vertices in T .

29

3. Graphs and Visualization in Systems Biology – Fundamentals

A drawing of a graph D is a representation of the graph in (usually 2D) Euclidean space D : G → R
2,

including the drawing of the underlying graph G (and of the inclusion tree T). Each vertex of G is
represented as a node; each edge (u, v) is represented as a curve between D(u) and D(v).

3.2. Graph Drawing

One important subarea of graph theory is graph drawing where relational structures (e. g., protein A binds
to protein B) modeled by a graph are presented in a visual manner. This has several advantages: Using
visualization the powerful human perception system can be used. It processes visual representations
more comprehensible as formal descriptions such as formula or text lists. Furthermore, visual data
mining is often more effective because similarities, correlations or interrelations in complex graph data
can be found faster. Finally, a ‘good’ visualization results in an increase of usable information that can
help solve the investigated problem.
Exemplarily, different graphical representations of a compound graph are shown in Figure 3.2. For
instance, Subfigures 3.2a and 3.2b depict a hierarchy of vertices in the form of a tree without adjacent re-
lations. In contrast, Subfigures 3.2c-3.2e depict adjacent and inclusion relations, whereas Subfigures 3.2d
and 3.2e additionally encode layout information.
For the purpose of visualizing graphs, nodes and edges have visual properties like position, color, trans-
parency or line width. In Figure 3.3, an overview of visual properties is given. How these visual
properties can be applied in a useful manner using perceptual and cognitive principles is discussed in
Section 3.3.3. In the following, different graph layout methods are introduced.

3.2.1. Graph Layout

The layout of the graph is not defined by the graph itself. There are many possible drawings for a partic-
ular graph definition. Hence, the problem in graph layout is finding appropriate 2D- (or 3D-)coordinates
for the components of a given graph. With an adequate layout the user has an improved understanding
of complex data encoded with the graph while with a poor layout the user may not comprehend the
important aspects of the data.
A layout defines a position for each node and the route for each edge. The route is in the simplest case
a straight line between two nodes. The layout can be done manually. In small graphs manual layout is
generally straightforward; but it is a difficult task in large graphs and even more challenging in complex-
structured graphs. Then, it is often a tedious and error-prone process. A computed or (semi-)automatic
layout would be more convenient.
The automatic layout of graphs is a well-studied problem and a large research area. An extensive survey
of proposed methods is beyond the scope of this thesis. Herman et al. [81] provided a profound overview
of work on visualizing graph hierarchies. A more general overview of graph drawing problems can
be found in the books by Di Battista et al. [45] or Kaufmann and Wagner [94]. A review of available
methods in graph drawing related to molecular biology was provided by Uetz et al. [199].
Graph layout methods try to satisfy specific aesthetic criteria [143]. The compliance with different
criteria is a requirement to obtain aesthetically pleasing drawings of a graph. Aesthetic criteria are
needed for quality measurements and performance evaluation. They are investigated in the following.

3.2.1.1. Layout Aesthetics

For finding suitable positions of nodes and edges one or more layout aesthetics can be considered. They
can be described and measured by several criteria. A list of relevant aesthetic criteria is given below,
taken from several sources in literature, for example, [45, 94, 143] and more recently [16].

30

3.2. Graph Drawing

(a)

(b)

(c)

(d) (e)

Figure 3.2.: Different views of the same hierarchical graph with adjacent relations (drawn as solid lines)
and inclusion relations (drawn as dashed lines): (a) tree browser view (2D, explicit repre-
sentation of inclusion relations, no adjacent relations, no data layout), (b) tree view (2D, ex-
plicit representation of inclusion relations, no adjacent relations, no data layout), (c) arc tree
(2D, implicit representation of inclusion relations, adjacent relations, no data layout) [136],
(d) nested graph view (2D, implicit representation of inclusion relations, adjacent relations,
data layout) and (e) three-dimensional view (3D, explicit representation of inclusion rela-
tions, adjacent relations, data layout). Figure inspired by [54].

31

3. Graphs and Visualization in Systems Biology – Fundamentals

(a) (b)

Figure 3.3.: Typical visual properties of nodes and edges. (a) Properties like center point defining the
position by x- and y-coordinates; (b) properties like node fill color or edge line width. The
figure is inspired by Droste et al. [50].

C1. Vertex-overlap reduction: The number of overlaps of nodes should be minimized in order to get a
clear and unambiguous graph representation.

C2. Edge-crossing reduction: The number of crossings of edges should be minimized in order to get a
clear and unambiguous graph representation.

C3. Area reduction: The drawing area should be minimized. This criterion is mainly motivated by the
limited screen real estate.

C4. Edge-length uniformness: The length of edges should be relatively small. This results in graphs
with minimal area. Furthermore, deviation in edge lengths should be small for more comprehen-
sible graphs.

C5. Edge-bends reduction: The total number of bends as the sum of all edges in the graph or per edge
should be minimized. Edges with many bends are difficult to read.

C6. Angular resolution: The angle between two straight edges incident to the same vertex should be
maximized.

C7. Symmetry: The more balanced (axial and rotational) a graph is, the better its readability. To im-
prove the comprehension of graphs, equal things should be drawn the same way (e. g., isomorphic
subgraphs).

C8. Vertex proximity: In order to preserve structural proximity the graph should have a small geometric
distance between adjacent vertices.

C9. Vertex inclusion: Child vertices are within the area of their parent vertices. Child and parent vertex
do not overlap. Thus, the hierarchical structure is encoded implicitly.

32

3.2. Graph Drawing

C10. Vertex-even distributions: The vertices should be evenly distributed among the layout area.

It is not possible to optimize all given criteria at the same time due to conflicts or even incompatible com-
binations. For instance, the reduction of bends or edge crossings (C2) contradicts the minimization of
the drawing area (C3). Thus, the aesthetic criteria have to be prioritized according to the semantics, rele-
vance and the application area. Figure 3.4 depicts different criteria prioritization of the same underlying
graph that results in completely different layouts.

(a) (b) (c)

Figure 3.4.: Drawing conventions and rules optimized for a particular task for the same graph: (a) criteria
C2 and C5, (b) criterion C4, and (c) orthogonal edges.

In addition, drawing aesthetics that are very effective when small graphs are involved tend to be less
useful in the case of large graphs or even less so on structured graphs. For instance, the criterion of edge-
crossing reduction (C2) is often suitable for small graphs but very hard to compute for large graphs with
many relations. Also, there are different studies for ranking the importance of graph aesthetics [152].

3.2.2. Layout Strategies

For some tasks (i. e., same or identical set of criteria) widely used layout strategies have been established.
For instance, the criterion of orthogonal edges results in an orthogonal layout.
In the following sections, first standard layout strategies are introduced. These are in particular hier-
archical, orthogonal and force-directed methods. Thereafter, it is discussed how the basic concept of
force-directed methods can be extended or refined for application to compound graphs.
Further popular approaches such as tree graph drawing, radial [207] or circular drawing [95, 179] are not
discussed in this thesis. For more detailed information on standard layout methods, the interested reader
is referred to Tamassia [191], Di Battista et al. [45] and Kaufmann and Wagner [94].

3.2.2.1. Layered Graph Drawing

Methods for layered graph drawing (also known as hierarchical graph drawing) place nodes on several
parallel horizontal layers while, among other things, trying to minimize the number of crossings (C2)
or the area of the layout (C3) as depicted in Figure 3.5b. They are mainly applied to directed graphs.
The most widely used method for drawing these layered graphs was proposed by Sugiyama [190]. This
method can be divided into four basic steps: (i) cycle removal, (ii) assignment of vertices to levels, (iii)
edge crossing reduction, and (iv) assignment of coordinates to nodes.

3.2.2.2. Orthogonal Graph Drawing

Orthogonal layout methods place nodes on virtual grid points and edges are aligned with the grid using
only horizontal and vertical polyline segments. See Figures 3.4c and 3.5c for examples. Orthogonal

33

3. Graphs and Visualization in Systems Biology – Fundamentals

(a) (b) (c)

Figure 3.5.: One compound graph can be represented by many different drawings. Well-known layout
methods are applied to the graph from Figure 3.2. (a) Circular layout with overlapping
subgraphs, (b) hierarchical layout, and (c) orthogonal layout. Layouts are created using the
software yEd [205, 211].

layout methods have been developed for undirected graphs. These methods try to optimize several draw-
ing criteria for instance maximization of the angle between adjacent edges (C6), minimization of edge
crossings (C2) and minimization of drawing area (C3). The methods can be divided into three phases
according to the topology-shape-metrics approach [191]: (i) planarization (topology), (ii) normalization
and orthogonalization (shape) and (iii) compaction (metric).

3.2.3. Methods on Physical Analogies

Methods on physical analogies interpret a graph as a physical system with forces (e. g., defined by repul-
sive particles or a spring model) between nodes. They try to minimize the overall energy of the system
(equilibrium state) in order to get an adequate drawing. Methods on physical analogies are based on
position and distances, not direction; that is, they can be applied to both directed and undirected graphs.
Two physical analogies exist – force-directed placement [53] and energy-based placement [92]. The first
approach minimizes the energy in the system by modifying the vertex positions (forces between vertices)
iteratively whereas the second minimizes the energy in a direct manner [94].

3.2.3.1. Basic Concept and its Extensions

The method of Eades [53] is based on the spring-embedder model where repulsive (spring) forces
between all pairs of vertices and attractive forces between adjacent vertices are defined. The spring-
embedder initially complies several aesthetic criteria: uniform edge lengths (C4), as much symmetry as
possible (C7), minimization of edge crossings (C2) and even distribution of vertices (C10).
The method of Fruchterman and Reingold [62] extends the spring-embedder by the concept of tem-
perature. The global temperature controls the displacement of vertices, meaning that with decreasing
temperature the distance which a vertex can move also decreases. This is similar to the more general
concept of simulated annealing [40].
Subsequent works focused on extending the functionality and improving the quality of force-directed
methods with respect to new heuristics such as detection of oscillations and rotations on the entire graph,
an additional gravity force to keep unconnected elements from drifting apart, an improved concept of
temperature (local instead of global) [59], directed edges [189], node overlap removal [118] or large
graphs with thousands of vertices [202].

34

3.2. Graph Drawing

3.2.3.2. Extension of Force-Directed Methods to Hierarchical Graphs

Several force-directed methods for the application on compound graphs have been the subject of consid-
erable research. Different strategies for how these hierarchical structures can be handled exist [139]. In
general, existing methods for drawing undirected compound graphs based on force-directed algorithms
can be divided into the following two classes: local and global methods.
Local methods, as described in Bertault and Miller [22], traverse the inclusion tree in level order and
calculate the layout for each subgraph of the compound graph separately. The advantage of local methods
is the independent calculation of each subgraph. Consequently, the forces have to be calculated in their
local context, which reduces calculation costs. However, the relationships between nodes of different
subgraphs are not taken into account which results in additional edge-edge crossing and long edges
between different subgraphs.
Contrary, global approaches consider the complete compound graph during the layout computation. Con-
sequently, all relationships between nodes of different hierarchical levels are considered. In Eades and
Huang [55] an extension of the spring-embedder model where additional forces are implemented for
different types of edges (internal, external) are presented. A further global method is introduced in Do-
grusoz et al. [48]. There, various optimizations are applied to enhance the layout quality and to improve
the runtime performance. The expensive calculation of the repulsive forces of all nodes is only performed
between nodes of the same subgraph. The use of the skeleton technique, for example, as described in Do-
grusoz et al. [48] where initially only the coarse structure of the graph (also referred to as skeleton graph)
is laid out, leads to a further optimization. Finally, the layout of the complete graph based on this coarse
structure is determined.

3.2.3.3. Advantages and Disadvantages

Force-directed methods have several advantages: They are very intuitive because the layout process is
analogous to common objects in the physical world. Their basic procedure is easy to understand and
implement. They often produce good-quality results for at least medium-sized graphs. They have an
inherent flexibility and can be easily adapted and extended. Furthermore, they are able to work in an
interactive manner; that is, the user can follow how the graph layout evolves over time.
Significant drawbacks of force-directed methods include a high runtime, typically O(n3), with the cost
of computation for all forces in O(n2) and number of iterations in O(n). They produce a graph with
minimal energy which can also be, of course, a local minimum. The problem of poor local minima
becomes more important as the number of vertices of graphs increases. Further discussions about their
advantages and disadvantages can be found in Di Battista et al. [45].
Global methods solve the disadvantages of local methods considering the relationships between nodes
of all hierarchical levels. Their main disadvantage are the high computational costs through taking into
account all nodes of the compound graph in each single layout step.

3.2.4. Domain-Specific Knowledge

Many models in systems biology have been visually represented using standard graph layout methods.
These approaches only take into account the topological information given by the graph structure and do
not fit very well with common representations of signal transduction networks [28].
In order to obtain an improved representation of the properties of the modeled system, domain-specific
knowledge must be included in the layout process. In systems biology such contextual information
includes subcellular localization, functional annotation, or the direction of a particular cellular process.

35

3. Graphs and Visualization in Systems Biology – Fundamentals

3.3. Visualization Principles

Visualization is the process of transforming data into a visual form; that is, transforming the abstract and
symbolic into the geometric dimension. Thereby, the highly efficient human perception can be utilized
to comprehend huge amounts of data. In Dwyer [52], two main purposes of this process are stated:
communication and investigation.
Communication refers to the process of conveying knowledge about data to diverse communities. This
practice is also described as visual explanation [198]. Visual explanation is of specific importance for
successful work in interdisciplinary teams because this defines a common language for direct commu-
nication about the data, for example, computational models without the need for in-depth mathematical
knowledge.
Investigation means the visual exploration of a dataset by applying various analysis and visualization
techniques. This process refers to the area of visual analytics. Visual analytics combines visualization,
data analysis and human factors. For that, computers handle huge datasets and generate visual represen-
tations; in addition, humans search for pattern and interpret the data. In this decision-making process
human factors (e. g., powerful visual channel) play a key role [96]. In this sense, visual analytics supports
the user in finding hidden relationships, identifying unexpected (structural) properties or characterizing
issues with the data itself, for example, detecting outliers or anomalies.
Both purposes of visualization can be greatly supported by using interactive animations and interactive
elements where the user can interact with the data in an immediate and creative way. However, it is
challenging to provide visualizations with transparent interaction mechanisms in order to facilitate an
effective transfer between the user and the investigated datasets [97]. By appropriate visualizations the
user is enabled to analyze, interpret and translate the data into meaningful models and hypotheses, and
finally might generate new insights.
The following sections provide an overview of visualization in systems biology. In this context, the
research area of information visualization is discussed. This includes the visualization pipeline as a
conceptual framework on how graphical representations are created in general, the research on cognitive
principles and visual interfaces. In more detail the visualization of modular models is motivated and
described. Finally, visualization tools dedicated to systems biology research are reviewed.

3.3.1. Information Visualization

An important research area is information visualization. It provides concepts and methods to facilitate
computer-supported, interactive, graphical representations of abstract data [31] using the capabilities
of the powerful human visual and cognitive system3. Thus, the visual perception has the ability to
process many different pieces of complex and highly structured data at the same time. Information
visualization facilitates the visual exploration, which is an important part of the analysis of large datasets.
The graphical representation of these datasets is as compact as possible. As stated in Shneiderman [177],
“Effective information visualizations enable users to make discoveries, decisions or explanations about
patterns (e. g., correlations, clusters, gaps, or outliers), groups of items or individual items.” The design
process in information visualization consists of different data transformation steps – from raw data to
graphical data. These steps are outlined in the following section.

3.3.2. The Visualization Pipeline

The aim of the process of creating graphical representations is to present raw, mostly abstract data in
different perspectives that are more used to humans. A conceptual framework [31], also known as the

3According to Ware [203], 40% of a human’s cortical activities are dedicated to processing visual signals.

36

3.3. Visualization Principles

visualization pipeline, is depicted in Figure 3.6. Thereby, the data has to undergo several step-wise trans-
formations. At the beginning of the pipeline, raw data are used as input while at the end the visualization
serves as a visual output. The pipeline4 consists of four main transformations [35]:

1. Data Analysis
Data are prepared for visualization (e. g., by interpolating missing values, or correcting erroneous
measurements). Usually, this is computer-centered and provides little or no user interaction.

2. Data Filtering
Selection of data portions (focus data) to be visualized. Usually, this is user-centered.

3. Data Mapping
Focus data are mapped to geometric primitives (e. g., points, lines) and their properties (e. g., color,
position, size) encode the underlying information. This is the most critical step for achieving
expressiveness and effectiveness. Based on the same data, different data mapping functions yield
in a high variety of resulting visual representation.

4. Data Rendering
Geometric data are transformed to visual data, for example, images or visual representations.

Figure 3.6.: The visualization pipeline describes the fundamental process of generating a graphical rep-
resentation – actually a step-wise transformation from raw data to graphical data. Containers
are data types; rounded rectangles are processes. User interactions can trigger changes at any
step in the pipeline. Taking into account these interactions, the pipeline can be described as
a feedback process. Adapted from dos Santos and Brodlie [49], see also Card et al. [31], Chi
[35] and Janecek [88].

The steps ‘Data Analysis’ and ‘Data Filtering’ operate on the data and their values, whereas the opera-
tions of the steps ‘Data Mapping’ and ‘Data Rendering’ perform on the view [35]. In order to control the
visual output, highly interactive environments allow the user to manipulate the visualization process, for
example, modify model structure, set different filter methods, change mapping functions, and generate
different views by interactive zooming. These interaction mechanisms feed back information and force
modifications of the different steps (see Figure 3.6). In this way, the visualization can be tailored to the
modeling task or individual preferences.
In practice, each research topic discussed in this thesis is closely related to the visualization pipeline and
its specific steps in order to generate adequate visual output. For instance, the question of how complex
structures of modular models can be explored and navigated is strongly correlated to the steps ‘Filtering’,
‘Mapping’ and ‘Rendering’, and the specific user interactions associated with them.

4Several flavors of the visualization pipeline exist, which differ according to the specific intended application.

37

3. Graphs and Visualization in Systems Biology – Fundamentals

3.3.3. Perceptual and Cognitive Principles

General principles of the human cognitive and perceptual system are very important in the area of (graph)
visualization, particularly when dealing with complex datasets. Some commonly accepted research re-
sults are described in the following sections.

3.3.3.1. Preattentive Processing

Preattentive processing of visual information is performed automatically on the entire visual field, detect-
ing basic features of objects in the display. Such basic features include color, closure, line ends, contrast,
curvature and size. These simple features are extracted from the visual display in the preattentive system
and later joined in the focused attention system into coherent objects. Preattentive processing is done
quickly5, with little effort and in parallel without any attention being focused on the display [196].
When displaying information, it is often useful to be able to show things at a glance. Here, preattentive
processing plays an important role. Examples of preattentive features6 are shown in Figure 3.7. Remark-
ably, the ‘connect’-feature that is commonly used in graphs is more dominant than, for instance, shape,
color or size [144]. This is illustrated in Figure 3.7d.

3.3.3.2. Visual Cues

Working with large biochemical networks requires not only information visualization techniques, but
also visual cues that were adapted from the human visual system. Different preattentive visual cues are
color (hue, saturation and value), shape, texture, size (width and length), intensity and blink. Another
phenomenon is that the combination of visual cues is more than sum of its parts. There are three data
types that can be visualized7:

1. categorical (nominal, discrete, qualitative),
(e. g., kinase, phosphatase, transferase, � > 12 hues, ⊕ ≤ 12 hues),

2. ordered (ordinal, discrete, qualitative),
(e. g., small, medium, big, � hue, ⊕ saturation/brightness), and

3. continuous (quantitative),
(e. g., 2mm, 4mm, 6mm, � rainbow color maps, ⊕ interpolate between two colors).

Bertin [23] identified and classified a basic set of visual variables according to the scale of information
that they are most appropriate for encoding (i.e., categorical, ordered, and continuous). Figure 3.8 shows
a summary of Bertin’s classification, modified to include more recent research (for more detailed infor-
mation see Janecek and Pu [89] or Qeli [153]). The most effective visual cue for presenting quantitative
information is the property position [37]. For this reason, position is almost always used by visualization
techniques to encode the relationships between the primary data values.
One of the problems of information visualization is its inability to formulate precise criteria for the
effectiveness of graphical representations. Such a formulation is difficult since the effectiveness depends
largely on conventions and the perceptual capabilities of the viewer. Figure 3.8 presents a ranking of
encoding techniques according to three types of data to be displayed.

5Typically, tasks that can be performed on large multi-element displays in less than 200 to 250 milliseconds are considered as
preattentive.

6Features are based on Gestalt principles [74] such as law of similarity, law of proximity or law of connectedness.
7� indicates negative examples, whereas ⊕ lists positive examples.

38

3.3. Visualization Principles

(a) (b) (c) (d)

Figure 3.7.: Examples of different preattentive features – shape (curvature), color (hue) and size. (a) The
letter ‘O’ can be detected preattentively because it has a different shape. (b) The red circle is
easy to find because color is a preattentive feature. (c) The two bigger squares are recognized
preattentively. (d) Connectedness is more dominant than shape, color and size.

Figure 3.8.: The relative effectiveness of visual cues for representing three different data types – categor-
ical, ordered, and continuous data. Data types with one white star are not applicable; data
types with one black star are less effective for the visual cue and, therefore, not relevant for
the encoding task. Data types with three black stars are the most effective. Diagram adapted
from Janecek and Pu [89].

3.3.3.3. Mental Map

When working with graphical representations, usually users build a mental model or mental map of the
visual information they consume. The mental map refers to an internal cognitive structure representing
the underlying understanding of the visual information by the user. The concept of the mental map was
first described by Tolman [192] and later introduced to diagrams by Eades et al. [56]. In interactive tools
where complex visualizations frequently change over time, it is not useful to recapitulate the unchanged
information but rather concentrate on the changes between successive visualization states. This will
lead to an immediate capturing of the modifications and finally to an improved understanding of the
visualization over time. It is essential to keep the mental model consistent throughout the interactive
visualization – otherwise confusion or misleading may occur.

39

3. Graphs and Visualization in Systems Biology – Fundamentals

A popular area where mental maps are intensively discussed is graph drawing. Interactive graph drawing
changes the properties of graphs over time, for instance node positions. A consistent mental map allows
the user to immediately understand the modifications between two graph states [115]. An example is
shown in Figure 3.9. Of course, other visual graph properties can change over time as well, for example,
size or color. In these cases the preservation of the mental map is also essential.
For preserving the mental map in a more formal way it is important to provide different constraints that
can be added to the visualization. The following constraints and guidelines are relevant:

• Distort the graphical representation as low as possible.

• Geometric and spatial constraints such as orthogonal ordering (describes the alignment of ele-
ments), proximity relations (describes the distance between elements) or topology (depicts the
regions in space) are essential [131].

• Use animated transition between visualization states, for example, nodes are moved to new posi-
tions. Thus, the user can recognize the changes.

• Landmarks should be used frequently.

(a) (b) (c)

Figure 3.9.: Mental maps in graph drawing. (a) A simple graph drawing is shown using a force-directed
layout. (b) When adding another node and running the layout algorithm again, the mental
map is destroyed and leads to confusion. (c) In contrast, a consistent mental map supports
the understanding of changes over time.

However, when the number of elements in the visualization and also the number or frequency of modifi-
cations increase, the problem of preserving the mental map becomes more critical. In this case, the user
may be confused and misled. In the field of systems biology, preserving the mental map is crucial, but
also a challenge.

3.3.4. Interactive Exploration

The support of interactivity is as important as the underlying visual representation of abstract data. The
visual exploration can be used when the modeler has little or no knowledge about the data (e. g., the
modeler is not familiar with a particular pathway), or the exploration goals are not clearly determined.
Interactive exploration is a key element for managing the complexity of modular models. In particular,
this involves the exploration of and interaction with the complex model structure. For instance, the
modeler can interactively navigate in the model or zoom into different parts (e. g., modules) by focusing
on a specific element. Thereby, each structural element can be used as an input target for controlling
navigation and exploration tasks. Well-designed interactions preserve the mental map, help overcome

40

3.3. Visualization Principles

the difficulties of perception and comprehension, and facilitate reinspection by focusing on specific parts
and switching of perspectives. Most of the interaction and exploration techniques can be improved by
adding animated transitions.

3.3.4.1. Animated Transitions

Animation is necessary to create smooth transitions between different visual states. Hence, animated
transitions preserve the perceptual continuity [159] and can be used as a visual cue to effectively express
processes such as camera motions, zooming operations, changes of visual properties over time or alter-
ations in graph layout. Animation is a very strong visual cue – physiologically more effective than color
or shape [13]. It is also recognized as a preattentive feature [196, 203]. In general, animation can support
the comprehension of complex visual systems [17].
A smooth transition from one visual state to the subsequent one is necessary in order to preserve the
mental map [131], and thus reduce the cognitive effort and let the modeler focus on the changed entities.
This also results in an improved understanding of changes in the modular model. In contrast, abrupt
transitions would cause disorientation, confusion, misleading or annoyance of the modeler.
In the following, different transitions are summarized that can be supported by animations.

• Navigation/exploration: Visual transitions can be used to animate the navigation steps from node
to node within a modular model. Hence, the user has the experience to zoom through the model
while it is being explored. The zooming operation is achieved by (linear or non-linear) interpola-
tion of the clipping rectangle of the view between the start and end node.

• Time-dependent changes of visual properties: For the interpretation of omics data (e. g., from time
series) animated transitions are often used to depict the next condition after a predefined time
interval [69]. This leads to a visual depiction of the overall dynamics of the model by animating
several visual properties of the species nodes.

• Graph layout: Animations can guide the layout process by transitions of the node translations that
allow the user to more easily follow the changes in layout. Some classes of layout algorithms
(e. g., force-directed layout approaches) facilitate an intrinsic animation effect because the nodes
are moved iteratively during the layout process.

Special properties of an animation are the duration and the frequency. In literature [17, 32, 33] usually a
suitable time in the range of 0.3–1.0 seconds is proposed. Bartram et al. [12] stated that five frames per
second are sufficient to produce a smooth transition. However, the appropriate duration of the transition
depends on the application domain and the specific purpose. As stated in Cockburn et al. [39], some-
times “rich cues to maintain comprehension and orientation throughout the animation, demanding longer
animated periods and more detailed representations throughout the transition” are needed.
Animated transition can be uniform and non-uniform. Uniform means for each time interval the same
amount of changes is performed. In contrast, non-uniform animations can be divided into different
patterns such as slow-in/slow-out, fast-in/slow-out or slow-in/fast-out. Typical uniform and non-uniform
animation functions are depicted in Figure 3.10a. An optimized version8 of the general slow-in/slow-out
animation function is shown in Figure 3.10b. There, the non-uniform animation function is approximated
by splitting the function into two simpler subfunctions. This is important for performing animations in
real-time.

8Optimized in terms of computational power.

41

3. Graphs and Visualization in Systems Biology – Fundamentals

(a) (b)

Figure 3.10.: Uniform, non-uniform and optimized functions for animated transitions. In (a) different
uniform and non-uniform animation functions are depicted: standard uniform function
(red), slow-in/fast-out (blue), and slow-in/slow-out (green). Additionally, in (b) an ap-
proximation of the given slow-in/slow-out function (green) is shown. Only the top (orange)
and bottom (purple) parts of the function are used for animated transitions.

3.4. Visual Interface Schemes

Since modular models are highly complex, not all information can be displayed on the screen at the same
time (e. g., display trade-offs such as size or resolution). In most cases, the displayed information is still
too complex to be comprehensible to the user. Thus, only the essential information in a given context can
be presented. Visual interfaces that contextualize information play an increasingly important role in how
information is accessed, analyzed and understood. They distinguish between detailed information (fo-
cus) and overview information (context). Besides more general interface approaches described in Alves
et al. [7], different specialized strategies exist that support the contextualization of focused informa-
tion. Following the comprehensive review in Cockburn et al. [39], visual interfaces can be divided into
Overview+Detail using a spatial separation, zooming using a temporal separation and Focus+Context
using an integration of focus and context into a single view. In the following, these visual interfaces are
introduced and described in more detail.

3.4.1. Overview+Detail Interfaces

Overview+Detail interfaces [150] are characterized by presenting the details together with an overview
of the entire model. The information is separated in space – typically by multiple windows or views [15].
Thereby, focus and context information are shown simultaneously.

42

3.4. Visual Interface Schemes

3.4.2. Zooming Interfaces

Zooming interfaces provide functionality in order to magnify (i. e., zoom into the focused information) or
demagnify (i. e., zoom out for contextual information) the model. Thereby, transitions between different
zoom states help to preserve the mental map of the user. Zooming is applied mostly in discrete steps,
rarely in continuous, smooth animations. Zooming can be distinguished into two types – geometric
zooming and semantic zooming. Using geometric zooming only the size of elements is altered, but the
appearance of the elements remains unchanged. In contrast, applying semantic zooming the Level Of
Detail (LOD) of elements (e. g., appearance, content or overall presence) is adjusted to the current zoom
level. One important representative of zooming interfaces is the Zoomable User Interface (ZUI). In their
simplest form ZUIS are interfaces with detail only. They allow zooming and panning [83]. ZUIS are
based on the idea of an unlimited information space. Thereby, it is possible either to zoom in to or out
from a single information object or the complete network or both, and to scale the information to be
viewed in a very flexible way. ZUIS feature several methods known from information visualization such
as semantic zooming, panning or smooth animations.

3.4.2.1. Space-Scale Diagrams

Space-scale diagrams [65] are the theoretical concept for the detailed description of ZUIS. The user
has a fixed-sized viewing window that can be moved through the 3D space (see red-bordered rectangle
in Figure 3.11a). In this zooming pyramid, a point in the drawing is transformed to a ray, a circular
region is transformed to a cone, and a rectangular region becomes a pyramid, respectively. In this way,
all possible sequences of Pan+Zoom can be achieved. When the user performs a zoom-out (i. e., move
the viewing window on the z axis downwards) more elements can be represented. For a zoom-in, the
viewing window has to be moved upwards, respectively. Moving the window on the x, y plane with
constant view scale, a classical pan operation can be performed. As depicted in Figure 3.11b, different
views are generated by Pan+Zoom operations of the viewing window.

3.4.2.2. Semantic Zooming

In contrast to geometric zooming, semantic zooming does not provide a scaled version of a visible object
when zooming, but rather a different representation of the object. As depicted in Figure 3.12, an object
can be completely changed by a zoom operation. Thus, semantic zooming defines varying information
to be displayed based on the scale. The exact representation depends on the meaning in a specific
application or domain; that is, semantic zooming is not generic.
Several reviews exist on the evaluation of ZUIS (e. g., Hornbæk et al. [83]). Most give controversial
results on ZUIS, but they agreed that ZUIS can be effectively applied when the domain and the structure
of the model data are considered.

3.4.3. Focus+Context Interfaces

The interface schemes described above provide focus9 with disjoint context, either spatial or temporal.
In contrast, the Focus+Context interface integrates both, focus and context information, in a single visu-
alization. The user is focusing on a local area of interest while an overview of important aspects of the
context is still provided. In this way, elements can have different sizes and LOD (analogous to semantic
zooming). A definition of Focus+Context is given in Card et al. [31]:

9A focus means a location in the structure of the visualized model that is of temporary importance for the user [171].

43

3. Graphs and Visualization in Systems Biology – Fundamentals

(a) (b)

Figure 3.11.: Basic concept of space-scale diagrams. The viewing window with constant size is colored
in red. (a) Zooming pyramid with different zooming levels. Only a zoom operation is
necessary to transform the view from w1 to w3; to obtain w2 only a pan operation must be
performed; (b) different views generated by Pan+Zoom operations. Adapted from Furnas
and Bederson [65].

(a) (b)

Figure 3.12.: The basic concept of semantic zooming applied to a space-scale diagram. The viewing
window with constant size is colored red. (a) Zoom in a line, with standard geometric
zooming (left), and with semantic zooming (right). (b) Different views are depicted: (1)
too far, see nothing, (2) zoom in, see dashed line, (3) get closer, see solid line, and (4) get
too close, see nothing. Adapted from Furnas and Bederson [65].

“Focus+context start from three premises: first, the user needs both overview (context) and detail
information (focus) simultaneously. Second, information needed in the overview may be different
from that needed in detail. Third, these two types of information can be combined within a single
(dynamic) display, much as in human vision.”

44

3.5. Networks and Modular Models

Fisheye Views (FEV) [64] is the most popular Focus+Context technique10. According to Card et al. [31]
and Carvalho et al. [34], FEV have the following main characteristics: (i) the modeling task requires
both, detailed and overview information, (ii) information needed in overview and detail are different,
and (iii) detailed and overview information are combined within a single visualization, analogous to
the perception of the human vision system11. Additionally, with FEV multiple foci can be supported.
Robinson and Flores [160] emphasized that a Focus+Context technique is effective for understanding
complex structures of biological data, for example, by supporting the user to maintain the orientation.

3.5. Networks and Modular Models

According to Chapter 2, Section 2.2.1, in systems biology researchers are faced with the acquisition of
a tremendous amount of data. After acquisition, raw data must be compared, categorized, consolidated
and summarized in order to provide comprehensible information about the underlying system. With
increasing frequency large, interconnected and highly structured models that become hard to understand
and navigate are the result of that processing step. Since models are growing in size and complexity it
is evident that adequate visualization techniques are needed [69]. In the following, the visualization of
networks and modular models is discussed.

3.5.1. Cellular Networks and their Visual Representation

In the context of systems biology, it is widely accepted to represent biochemical systems and their rela-
tional structure as networks. In order to analyze them, techniques from graph theory are applied. With
that, the general graph in the form of a network is applied where nodes correspond to reactants like
substances, co-substances, enzymes or signals, and directed edges (links) correspond to relations be-
tween them such as reaction, regulation, flux or transduction. The network can be added with the edges
representing the direction of the reaction or undirected (edges without a direction) or mixed.
However, the semantics of nodes and edges depend on the application area and particular network type.
Another possible constellation is a network with three different types of nodes. The nodes of the first
type correspond to reactants in the classical sense as described above. The nodes of the second type
represent events of functional regulation, chemical reactions or protein-protein interactions. They can
have physical meaning or denote general associations. Nodes of the third type represent complex nodes
such as complexes, functional units or other modular components.
Basic network types popular in systems biology research correspond to the important types of processes
in cells: metabolic networks, signaling networks and gene regulatory networks (cf. Chapter 2, Sec-
tion 2.1). An additional important network type is the Protein-Protein-Interaction (PPI) network. It is
used to describe interactions of the level of proteins, for example, a binding between two proteins or a
phosphorylation of the bound proteins.
In metabolic networks nodes represent chemicals (e. g., substrates, metabolites), in signal transduction
and gene regulation nodes represent species such as genes, proteins (e. g., receptors, effectors, ligands or
kinases). In metabolic networks edges represent biochemical reactions, in signal transduction and gene
regulation edges often represent signal and information flow (e. g., through physical interactions such
as binding, or activation for positive and inhibition for negative control). In PPI networks, proteins are
represented by nodes and each interactions between a pair of proteins is denoted by an edge. Starting

10FEV based on the same idea as fisheye lenses in photography; that is, the objects in focus are enlarged while objects in the
surrounding are reduced in size.

11The attention of the user is naturally focused on objects in the foreground, but the user is still aware of the surrounding
objects in the background.

45

3. Graphs and Visualization in Systems Biology – Fundamentals

from these basic network types, various subtypes are applied in research such as enzyme-enzyme relation,
ligand-receptor relation, or gene expression interaction. Many of them describe binding and modification
processes.
However, the strict division of cellular networks into the major types mentioned above becoming less
important in future research because entities and related processes are tightly interconnected, for instance
often the same molecule participates in signal transduction as well as in gene regulatory processes [80].
For visualizing cellular networks, different formalisms and graphical notations are used. Some important
representatives are Petri nets [106], Molecular Interaction Maps [107], Process Diagram Notation [101]
and more recently SBGN [114]. They represent networks using nodes and edges. Thereby, often groups
of similar entities (e. g., kinase, phosphatase) are established.
So far, many static representations have been used [68, 107, 126, 137]. These schematic diagrams are
usually of a high quality and reflect the diagrams often found in published books, but are expensive to
create and update, and do not provide interactive exploration. This results in information overflow and a
very limited view of the data. In contrast, dynamic representations facilitate interactive techniques such
as multiple views, zooming or smooth animations. They solve most of the ‘static’ problems. However,
they are frequently applied to simple, unstructured data.
Furthermore, heterogeneous data gathered by highly interdisciplinary working teams must be integrated
and communicated in an appropriate and efficient way. For example, a working team integrates biological
knowledge in the form of a complex model. This model has to be communicated to and finally explored
by other teams. Here, visualization is even more appropriate because it defines a common language for
direct communication and exchange, for example, between experimentalists and modelers. For instance,
it can provide an understanding of complex models without the need for in-depth mathematical knowl-
edge. Visualization also assists the interpretation of biological concepts and the solving of problems by
presenting different ways and different view points. The visualization of complex cellular systems can
assist the development of mental models that allow researchers to set up, access and analyze biochemical
information in an efficient way and potentially in the end provide new insights.

3.5.2. Visualizing Modular Models

As already stated in Chapter 2, Section 2.3.3, modular models are characterized as having an inherent
unitized and hierarchical structure. They describe model components at different levels of organization
and abstraction. In order to visualize modular models of cellular systems and their rich structures, a
compound graph as discussed in Section 3.1.1 can be utilized. The structure of the network and its
associated information implies layout information (e. g., nesting relationships). This information can be
used to efficiently visualize and analyze modular models and, thus, help to understand their properties.
An example is depicted in Figure 5.1.
Regarding the visualization of modular models two aspects are important: (i) how to handle and charac-
terize different views, and (ii) how to visually explore and navigate in modular models. Both aspects are
discussed in the following sections.

3.5.2.1. Views of Modular Models

Modular models and their visualization are based on hierarchical graphs which can be used to visually
describe adjacent and inclusion relationships. This graphical model can be characterized by different
views (see Figure 3.13). For instance, abstract or specialized views can visually describe the model –
either by representing different model parts, or different visual property sets mapped on the respective
model (cf. ‘Mapping’ step in Section 3.3.2). Views are the final result of the visualization pipeline and

46

3.5. Networks and Modular Models

are directly presented to the modeler. Some of these views relevant for the thesis are discussed in the
following.

View Level In graph theory the hierarchical level LT is an important characteristic (cf. Section 3.1.2)
but also its visual counterpart – the view level. The view level indicates the current hierarchical
level of a particular module (node) that is being visualized. By definition, the module representing
the model (the root node) is the first view level (top view level). In most cases this is the most
abstract view level. Furthermore, detailed view levels are strongly associated with hierarchical
levels. For an example, see Figure 3.13a. According to nodes, edges can also have a view level
which is defined by the minimum of the view levels of its end nodes.

Global and local view A global view is a high-level representation of the entire model and provides
information at a glance about the network. Hence, it is a view with the lowest level of detail.
ZUIS naturally support global views by zooming out to the overall context (see Figure 3.13a).
In contrast, a local view is used to show a subset of the model (i. e., concentrating on detailed
information). Thereby, the context is often lost (see, for example, Figure 3.13d).

Multiple views and integrated view In many systems biology applications, multiple views exist to
show the same model with different LOD, for example, Overview+Detail interfaces applying a
context view and a detailed view. Multiple views can also be used to show only a portion of the
model in each individual view. Then multiple detailed views are used. An example is discussed in
Section 3.6.3. Multiple views need a lot of space on the display and must be linked by appropriate
interaction techniques in order to relate the data in the separate views.

Multiple views can be aggregated to a single view – an integrated view [97]. Integrated views need
less space compared to multiple views and improve the process of relating the data portions. By
applying an integrated view the cognitive load can be reduced. However, the use of multiple and
integrated view depends mainly on the type and structure of the model data.

Standard view Standard views are predefined sets of parameters or rules, which produce similar visu-
alization results in the same semantic situations. They are useful for building a mental map and
reducing the cognitive load of the user. The global view is the most prominent standard view.
Other forms of standard views are discussed in Chapter 6, Section 6.2.5.

3.5.2.2. Strategies for Navigation and Exploration

Due to the increasing amount of data in the form of graph structures, techniques for the interactive in-
teraction with the structure become more and more important [201]. Those representations effectively
permit users to navigate and orient themselves in a biological model. Especially, the proper understand-
ing of global and local structures is an essential aspect in many analysis tasks. In particular, this applies
to modular models whose structure forms an inherent topological property. This property cannot only
be used as a graphical model for representation purposes, but also for navigation and exploration. In the
latter case, the hierarchical structure and explicit decomposition of the model facilitates rich cues for ex-
ploring the model and its subunits. However in the past, navigation and exploration has been facilitated
through standard operations like panning, scaling, or scrolling. All of these techniques were originally
developed for flat or quasi-flat network models and do not consider the special hierarchical structure.
A suitable solution is the ZUI that is dedicated to the navigation in hierarchically structured models. For
that purpose it provides flexible zooming techniques, in particular semantic zooming (cf. Section 3.4.2).

47

3. Graphs and Visualization in Systems Biology – Fundamentals

(a) (b)

(c) (d)

Figure 3.13.: Different views of the same modular model taken from Figure 3.2b. Nodes and their inclu-
sion relations are represented as a tree structure. Nodes within the dotted area are visible
in the specific view; transparent nodes (outside the dotted area) are not visible. (a) Global
view where all nodes are visible. The hierarchical level LT is annotated, (b)-(d) local views
whereas (b) is a more detailed view of (c), and (d) is one of the most detailed views possible
in the model.

However, the navigation and spatial orientation is difficult to control, for example, when applying zoom-
ing operations [65]. Thus, it is essential that operations such as navigation, exploration or zooming guide
the user by reflecting the topology and the properties of the modular model. This assumes to know the
current position of an element in the global context of the hierarchy, and change the focus accordingly.
While navigating, the network is displayed by a sequence of different views that are determined by the
navigation path or focus path. For instance, a seamless zooming operation leads to frequent changes in
context. In extreme cases, each step is a completely new view [158]. Therefore, in order to preserve the
mental map it is important to allow only slight changes from one to the subsequent view.
Furthermore, modular models provide the framework for viewing the data at various levels of detail.
In combination with ZUIS, users can align the appropriate level of visual abstraction with the current
modeling task. For visual abstraction the user can zoom out; for visual specialization the user can zoom
in.

3.6. Tools for Visualization

There is a huge variety of successful visualization tools12 – however, there are too many to be listed here.
Instead, this section summarizes the most notable tools that have been developed for network visual-
ization and exploration of complex datasets in systems biology research. Thereby, the focus is on tools
which support either modular models, ZUIS, or both. First, relevant tools are divided into two main

12A comprehensive overview of visualization tools in systems biology can be found in recent literature [69, 128, 145, 170, 188].

48

3.6. Tools for Visualization

categories – ZUI toolkits and visualization tools for systems biology – and then described in detail.
Thereafter, the graphical user interface of PROMOT is introduced.

3.6.1. ZUI Toolkits

PAD++ [19] and its predecessor PAD [146] were, in fact, the first developments of a ZUI in the form of a
general software framework. PAD implements the novel concept of semantic zooming. A further toolkit
is JAZZ [20]. It is based on the main ideas of PAD++ and complements it with a 2D scene graph13 that
clearly eases the development of complex ZUIS. PICCOLO [18] and its community-based approach PIC-
COLO2D [148] are based on the JAZZ toolkit; both use scene graphs as their basic structure. PICCOLO2D
is a multi-purpose and very generic toolkit, and allows rich forms of semantic zooming to be imple-
mented. Very similar to the basic concepts of PICCOLO2D is ZVTM [149]. These research projects
were the fundamental basis for several applications using ZUIS like SHRIMP [185], CYTOSCAPE [174]
or GUESS [1].
From an engineering point of view (e.g., software engineering), approaches such as Koth and Minas
[108], Jacobs and Musial [87] or more recently Frisch et al. [60] use ZUIS including semantic zoom-
ing and Focus+Context techniques to navigate in abstract structures such as UML diagrams depicting
packages and class structures. A similar approach is implemented in SHRIMP [185] where a ZUI for
visualizing and explore hierarchical networks such as ontologies is implemented.

3.6.2. Visualization Tools for Systems Biology

Many tools designed for the visualization of biological data exist. A review and evaluation of general-
purpose visualization tools for systems biology can be found (e. g., in Saraiya et al. [170] or Cline
et al. [38]). Some popular software tools are CELLDESIGNER [63], CYTOSCAPE[174], EDINBURGH

PATHWAY EDITOR [182], GSCOPE [195], OMIX [50], ONDEX [112], PATIKA [43], VANTED [91], or
VISANT [85]. All of them can be used for visualizing biological data as graphical networks and fa-
cilitate visual setup and editing of models. Some are designed for specific pathways only, while others
support general biological networks. In Table 3.1, features of these tools are compared with a focus on
visualization methods relevant for this thesis. In the following, the tools mentioned above are described
in more detail.

CellDesigner CELLDESIGNER is designed for drawing biochemical and gene-regulatory networks. It
extensively supports quasi-standards such as SBML or SBGN [114]. By using some interfaces that
integrate tools like COPASI [82], SBML ODE SOLVER [121] or SBW [21], CELLDESIGNER, is
capable to perform simulation tasks on the defined networks.

Cytoscape CYTOSCAPE is a general-purpose visualization tool for complex networks and also allows
the drawing and manipulation of cellular networks. Different attribute data can be overlaid with the
network. For that, CYTOSCAPE provides a powerful mechanism for mapping from arbitrary data
attributes to visual properties. Different standard layouts are supported. CYTOSCAPE provides an
interface for plug-in development.

Edinburgh Pathway Editor This tool is dedicated for setup drawing and manipulation of biological
networks such as signaling or metabolic pathways. The editor supports several notations including
SBGN and CYTOSCAPE notations and is also capable of describing a logical formalism.

13Scene graphs provide a framework for the development of 2D structured graphics, in particular ZUIS.

49

3. Graphs and Visualization in Systems Biology – Fundamentals

GSCope GSCOPE facilitates the visualization of biological pathways. It is specialized in statistically
analyzing microarray data and shows the results in a network context. Unfortunately, GSCOPE

is not accessible on the internet anymore. However, it has interesting features including a fisheye
viewer for Focus+Context visualization and a clipped viewer for local link structures (up-down
cascades). GSCOPE also provides subgraphics such as heatmaps and line charts, for example, for
the depicting of time-series of microarray data.

Omix OMIX is an editor for drawing biochemical networks. Thereby, visualizations of network com-
ponents and also their animation can be defined in a flexible manner using the scripting language
OVL. Additionally, OMIX allows a 3D visualization of networks on different levels. A semi-
automatic layout tool provides book-style drawings of metabolic pathways. Plug-ins for additional
functionality can be integrated via an advanced interface.

Ondex The focus of the software ONDEX is on integration and visualization of diverse datasets from
biology. For that, many formats and access methods for databases, and the composition of work-
flows are provided. Network graphs are used to integrate, visualize and analyze the integrated data.
Ondex also supports standard layout methods. A plug-in mechanism is also provided.

Patika PATIKA is a pathway visualization and analysis framework. It consists of a comprehensive
database and different tools (e. g., editors for the manipulation of pathways). PATIKA provides
a sophisticated layout for hierarchically organized networks. This layout algorithm is mainly in-
tended for signal transduction.

Vanted VANTED provides a graph-based editor capable of integrating diverse data gathered from re-
search in systems biology. This data (time series, different environmental conditions) can be sta-
tistically analyzed in the context of the graph depicting the biological processes. Subgraphics can
be used to depict multi-dimensional data. For analysis purposes, VANTED provides several layout
methods. It also supports quasi-standard formats such as SBML and SBGN.

VisANT VISANT is a tool specifically built for integrative visual data-mining of biological pathways
and networks. Different analysis methods are provided like comparison of two datasets or search
for functional modules. Results of the various analyses and also integrated data (e. g., gene expres-
sion data) are used to highlight portions of the network accordingly. In order to illustrate functional
modules, VISANT uses metagraphs to structure the network.

As seen in the previous list and in Table 3.1, the tools differ in their visualization features which is
motivated in their different purposes. Mostly all of them do not provide a modular approach for model
setup and do not deal with hierarchical structures, for example, navigating in hierarchical networks.
They rely on flat or quasi-flat network models, i. e., the underlying model is defined in a flat manner.
Sometimes the modeler can arrange elements hierarchically in the diagram but these cues are not used
to support structured navigation in the diagram. Often there is one single flat view for all elements in the
model at a time.
As depicted in Table 3.1, Pan+Zoom operations, for example, magnify and move the graphical network
is a widely used technique. There, the zoom operation means standard geometric zooming and is often
limited to discrete steps [158]. Seamless zooming in the sense of full flexibility in scaling and zooming
(including semantic zooming and animations) is rarely used. Moreover, the used zooming techniques
are limited to flat networks and do not consider the structural properties of the model. One of the tools,
GSCOPE, provides Focus+Context techniques to zoom into details while keeping the less detailed con-
text intact. This is facilitated by a fisheye view projected on a parabolic surface. However, no hierarchical
network is supported.

50

3.6. Tools for Visualization

Feature/Tool CD CY EP GS OM ON PA PR VA VT

Versioning & Availability
Version 4.2 2.8.2 2.0 2.0 1.4.24 0.4 2.1 0.8.4 2.0 3.91
License c© LGPL GPL c© c© GPL GPL GPL GPL c©

Graphical User Interface
Text Editor · · · · · · · � · ·
Diagrammatic � � � � � � � � � �

Information Visualization
Pan+Zoom � � � � � � � (�) � �
Focus+Context · · · � · · · (�) · ·
Seamless Zooming · · · · � � · (�) � ·
Semantic Zooming · · · · · · · (�) · ·
Levels Of Detail � · · · � � · (�) · ·

Overview+Detail � � � � � � · (�) · ·
Integrated View · · · · · · · (�) · ·

Modularity
Hierarchy · � · · · Metagraph � � ClusterID Metagraph
Nested Graphs · · Parenting · · · � (�) · Metagraph

Layout and Styles
Visual Styles SBGN � � · � � · (�) � ·
Graph Layout � � · � � � � (�) � �

Table 3.1.: A comparison of visualization features of tools for systems biology. (CD) CELLDESIGNER,
(CY) CYTOSCAPE, (EP) EDINBURGH PATHWAY EDITOR, (GS) GSCOPE, (OM) OMIX,
(ON) ONDEX, (PA) PATIKA, (PR) PROMOT, (VA) VANTED, (VT) VISANT. ‘�’ – feature
is available; ‘·’ – feature is not available; ‘(�)’ – feature is provided in VISUAL EXPLORER;
c© – software is available under non-commercial license; LGPL, GPL – software is available

under the given open-source license. Add-ons/plug-ins are not considered.

In most tools visual mapping is restricted to some visual properties (e. g., color, line thickness) and
not very flexible. Often, the visual mapping is hard-coded and cannot be easily changed by the user.
Two exceptions are CYTOSCAPE and OMIX whereas OMIX requires programming skills for defining
customized representations. The majority of the tools provide a variety of automatic layouts which
results in different options to lay out cellular networks. Some of them offer specialized layout methods.
For instance, in PATIKA layout methods are applied to hierarchical networks.

Although these tools provide a large number of methods for network visualization, the majority do not
support hierarchical decomposable diagrams which is a prerequisite for visualizing modular models.
Instead, they provide support for flat views of the model, sometimes in combination with overviews,
trees that represent a view of the structure, or navigation scrollbars.

51

3. Graphs and Visualization in Systems Biology – Fundamentals

3.6.3. Visualization with PROMOT

As already mentioned in Chapter 2, Section 2.4.2, modeling in PROMOT is supported by two different
editor types – a text editor for editing of MDL syntax, and a graphical editor, called VISUAL EDITOR,
for editing the model in the network context. VISUAL EDITOR facilitates the graphical setup and ma-
nipulation of a modular model in a strongly structured manner. It uses a compound graph with ports (cf.
Section 3.1.2) where nodes represent elementary modules, composite modules and terminals, and edges
represent links. Submodules are always in the bounds of their parent module. Terminals are located close
to the border of the module as depicted in Figure 3.14b.
VISUAL EDITOR represents each module in a separate window. This simplifies the editing of small and
local changes because only a few windows (with modules) need to be opened. However, it is difficult to
perform more complex editing operations or to show the function of a set of modules in relation to the
overall structure. In this case, many different windows need to be opened. In the VISUAL EDITOR, this
results, on the one hand, in higher visual complexity because of multiple, decoupled windows and, on
the other, in a higher cognitive load of the user to relate all pieces.

(a) (b)

Figure 3.14.: The modular EGF model and its visualization in PROMOT. (a) PROMOT CLASS

BROWSER with loaded library. (b) Highlighted modules of (a) are opened as disjunct views
in VISUAL EDITOR. Composite modules (e. g., MAPK cascade) are decorated with icons
depicting a rough sketch of the interior.

3.7. Conclusions

Graphs are an important concept for describing biological entities and their complex relationships. They
facilitate the integration of various data that are produced in different groups and formats in an intuitive

52

3.7. Conclusions

way. Furthermore, graphs support the process of creating mental models of the system which leads to an
improved understanding of the intrinsic data structure and solving the investigated problem. In particular,
graphs with a carefully chosen layout and visual properties depicting signaling processes help users read
and comprehend such complex systems.
For the purpose of visualizing complex relational data structures the graph drawing domain has a focus
on optimized layouts for large and static graph representations. However, the domain of information
visualization provides functionality to interactively visualize and explore such relational structures. This
includes topics on interactivity, multiple views, different levels of detail, and visual appearance of data
elements.
Visualization is a well-accepted method for analysis and interpretation, and translates the data into mean-
ingful models and hypotheses. However, the potential of information visualization methods has so far
not been sufficiently exploited by the systems biology community. With the recent transfer of systems bi-
ology to a data-driven discipline, the visualization of massive data is becoming more prominent. Recent
work on visualizing data in systems biology has been limited to representing mostly flat data structures,
but only little effort has been devoted to visualizing hierarchical data structures. Although several suc-
cessful tools for network and data exploration in systems biology such as CYTOSCAPE, GSCOPE or
OMIX exist, the majority lack in dealing with hierarchical structures or even modular models.
As mentioned in the previous section, VISUAL EDITOR of PROMOT provides disjunct submodels and its
associated views. This introduces problems such as no visual context, occlusions of different windows
and exactly only one detailed view. For the editing in VISUAL EDITOR only a single module description
is used. In summary, there is a lack of a recursive or ‘deep’ view of modular models that depicts the
various relations among modules and between different hierarchical levels. This can be implemented by
an integrated view where the complete model can be visualized by generating different perspectives on
the data and by utilizing Focus+Context techniques. These considerations led to the development of the
VISUAL EXPLORER.

In the next chapters the actual work and results (i. e., VISUAL EXPLORER and its methods) are presented.
It is shown how the combination of two different domains, graph drawing and information visualization,
can lead to synergistic effects and can provide strategies to solve problems dealing with complex data
structures. This is exemplified by application to real modeling projects at the end of each chapter.

53

3. Graphs and Visualization in Systems Biology – Fundamentals

54

Data is not information. Data must be presented in a usable
form before it becomes information, and the choice of
representation affects the usability. The representation
system, and thus the graphical object model, plays a central
role in converting data into information.

Thomas R. G. Green and M. Petre [76]
CHAPTER 4

Visual Representation of Dynamic and Logical Modular Models

As already discussed in the previous chapter, homogeneous views can help modelers become familiarized
with the graphical representation of modeling entities and the biological processes behind it. This is in
particular true for modular models where the representation of the structure is essential for understanding
the model. Homogeneous views need some degree of formalization, in order to be ‘homogeneous’.
This can be achieved, for example, by standard views. Another essential approach is to use formalized
representations for modeling entities and the model structure.
This chapter describes the specification of two visual representations. The first representation visually
encodes dynamic models; the second representation depicts logical models. The focus of both represen-
tations is on signal transduction systems used within PROMOT.
First the research problem is discussed. Then before introducing the specific modeling entities and their
graphical representations, it is described how the models can be visualized in a single integrated view.

4.1. Research Problem

In textbooks, biological network models are usually represented as informal graphical representations.
Often this results in ambiguous knowledge or long texts describing the depicted biological processes. In
the past, in order to encourage the formal graphical representation for dynamic and logical models, sev-
eral formalisms and notations have been presented. Important examples are Molecular Interaction Maps
(MIM), the Process Diagram Notation or the notation used in the EDINBURGH PATHWAY EDITOR [182]
(cf. Chapter 3, Section 3.5.1). Many of them provided a powerful and rich visual representation and also
defined grammar. However, the focus of these languages is not on modular structures, and they are not
capable of the full expressiveness of models defined in MDL (e. g., terminals).
In the following, some requirements for visual representations in PROMOT are presented:

• Comply with MDL: According to Chapter 3, Section 3.6.3, a model in PROMOT is defined by the
modeling language MDL. Modeling entities such as modules, terminals and links are given in MDL

syntax. Hence, a visual representation should be defined on the basis of components provided by
MDL.

• Consider modular structure: Since the aim is the visualization of modular models, also typical
modeling concepts such as composition (e. g., composite modules), abstraction (e. g., hierarchy),

55

4. Visual Representation of Dynamic and Logical Modular Models

and separation (e. g., flexible number of in- and outputs represented by terminals) must be con-
sidered. In this sense, a new visual representation, of course, must reflect the inherent structure
including modules and hierarchy.

• Adaptation and application to CellNetAnalyzer: For logical modeling an additional research mo-
tivation and requirement is the compliance with CELLNETANALYZER. Such a formalized visual
representation should be aligned closely to the requirements of CELLNETANALYZER since both
tools should be tightly integrated, aiming at an efficient workflow.

None of the mentioned graphical notations can cover all requirements. Hence, there was a need for the
development of formalized visual representations for dynamic and logical models in PROMOT. For this
reason two specific visual representations were developed. The challenge was that such representations
should be both, biologically intuitive using formal symbols, and suitable for modular models using an
engineering approach. These visual representations were developed in close cooperation with modelers
which have background knowledge in molecular biology. Shortly thereafter, a new notation, SBGN, was
developed by the international community. The motivation for the development of SBGN was similar
to the visual representations developed in this thesis. Today, SBGN is strongly supported and frequently
used in the systems biology community and known as the quasi-standard notation.
In the following, first, it is described how the different model parts defined in MDL are composed to a
single integrated view. Then the two specific visual representations for dynamic and logical models are
presented and their main modeling entities are described in detail.

4.2. Towards a Single Integrated View

On first glance, the consideration of the modular structure seems to be straightforward but it reveals
a challenging task. This is also highlighted by two recent publications [57, 77]. Many recent tools
visualize their model parts in separate, often disjunct views. Multiple views in different windows might
have a few advantages in the editing process, for example, by concentrating only on a model part of
interest. However, for the exploration and analysis of the entire model this is cumbersome. As already
mentioned in Chapter 3, Section 3.6.3, it is difficult to associate and relate elements from different model
parts and views. Moreover, using different windows hosting these views can cause several problems
such as occluded information by overlapping windows, significant time for managing such windows or
disruptive visual context when switching between them. Hence, instead of a collection of disjunct views,
an integrated view of a modular model should be generated; that is, the structured model should be
represented in a single visualization. The procedure is described in the following.
For a single integrated view all model parts (e. g., modules, terminals, links) are considered. They are
traversed in hierarchical order and aggregated to a multilevel structure. Therefore, a terminal cluster
graph GTCL (cf. Chapter 3, Section 3.1.2) is used. The resulting inclusion relations ET are mapped to
the nested hierarchy of GTCL. Thereby, a submodule is added as subgraph GS to the graph GTCL. All
nodes of the inclusion tree are represented as explicit nodes; that is, inclusion relations are part of the
graph GTCL (cf. Chapter 3, Figure 3.2d). Hence, the inherent modular structure is preserved. A terminal
is added as a port p which is an interface of GS to the exterior.
In most cases, model parts in separate views are visualized with the same scale factor (e. g., s = 1.0).
Hence, it is possible that submodules are displayed bigger in size than their related parent modules. An
example is given in Figure 4.1a. In order to prevent this, each subelement is scaled down by a default
scale factor sd before it is inserted into the parent element within the graph GTCL. In this way, it is
assured that each subelement is within the bounds of its parent element. As depicted in Figure 4.1b,

56

4.2. Towards a Single Integrated View

the subelement is then located on a certain hierarchical level LT . The default scale factor of a parent-
child relation is sd = 0.2. Hence, the overall scale factor s of an element is computed by the following
equation:

s = sd
LT . (4.1)

For example, the overall scale factor of an elementary module m located on the third hierarchical level
with LT = 2 and sd = 0.2 is sm = 0.22 = 0.04. In other words, the size (length or width) of
the elementary module m in the network is 25 times smaller than the size of the module on the first
hierarchical level (LT = 0), and 125 times smaller in respect to the area on the screen. As described later,
the ‘scaled’ geometry has, of course, an impact on visualization, navigation and layout. For instance,
elements in very deep hierarchies are nearly invisible because of their small size on the screen (in most
cases for LT > 3).

(a) (b)

Figure 4.1.: Comparison of the visualization of the modular EGF model and its hierarchical structure
in (a) separate, disjunct views and (b) an integrated view. Same color around modules in
both subfigures corresponds to the same hierarchical level. Additionally, the global scale
factors for certain modules are given (e. g., s = 1.0, s = 0.2, or s = 0.04). Note, in (a) all
modules have the same global scale factor (s = 1.0). A magnified version of (b) is given in
Figure 4.13.

From that single integrated model, according to the visualization pipeline, different views can be gen-
erated by drawing the graph G using its topological and visual properties. It is obvious that such a
compact, single view of the modular model needs appropriate mechanisms for navigation and explo-

57

4. Visual Representation of Dynamic and Logical Modular Models

ration, for instance, to visually analyze elements in deep hierarchies. This is discussed in more detail in
Chapter 5.
Having such an integrated view and appropriate exploration schemes it is possible to define high-level
views and if necessary refer always to detailed processes of the individual modules [30]. In this way,
the modeler is able to relate effects across different levels of scale and abstractions, for instance, small
changes in a molecular interaction have effects at physiological levels [170].
In the following, the general procedure of visual transformation of dynamic and logical models is given
in more detail. The entire process of the visual setup of models using the logical modeling approach is
described in detail in Saez-Rodriguez et al. [165].

4.3. Entities for Dynamic Modeling and their Visualization

Dynamic models are characterized by a kinetic description of the underlying processes. This very de-
tailed knowledge needs to be visually represented in a systematic manner. In this section, modeling
entities for dynamic modeling and their visual representation are given. Thereby, the focus is on de-
scribing and depicting signaling systems. First the basic elements and their visualizations are described.
Then the visualization of composite modules are discussed. Finally, in order to illustrate their usage
an example with typical components is introduced. For a comprehensive overview, a ‘symbol reference
card’ comprising relevant elements can be found in Appendix B, Figure B.1.

4.3.1. Basic Elements

For the convenient visual setup of dynamic models, different modeling entities are essential. They are
provided by the standard library for dynamic modeling. The basic elements are storage, reaction, help
and adapter. All of them are elementary modules and are derived from the class module. Additionally,
different types of links are provided.

Storage Storages are used to model, for instance, proteins, genes, or species with constant concentra-
tion (e. g., ATP pool or constant enzymes). Specialized storages are, for example, conc-sink
describing a sink of a signal (signal output) or storage-intra-const encoding an intra-
cellular storage with constant concentration of a signal.

Reaction Reaction elements represent biochemical reactions including catalytic reactions like different
enzymatic reactions (e. g., Michaelis-Menten), formal reactions like mass-action kinetics, or reac-
tions for some special cases. Furthermore, reactions can be divided into reversible and irreversible
reactions.

Help A help element represents either a constant-rate or a sum. A constant-rate element
is used, for instance, for a constitutive protein synthesis. Sum elements are needed to add or
split signals, for example, the product of two signals with different effects (one positive and one
negative).

Adapter Adapters allow elements to connect to terminals of the module. For instance, this is useful
when a reaction is modeled across different hierarchical levels.

Link A link connects different terminals that are owned by elementary or composite modules. Hence,
a particular edge in a link is the connection between two terminals either of the same module or
different modules, or a terminal and a link node. Terminals are needed as interfaces to the exterior.

In the next sections, important basic modeling elements and their particular visualizations are introduced.

58

4.3. Entities for Dynamic Modeling and their Visualization

4.3.1.1. Storages

Storages are represented by ellipses with a red border (Figure 4.2a). They can be visually specialized
using bitmap icons, for example, a phosporylated protein as shown in Figure 4.2b. Storages cannot be
connected directly; they must be linked by a reaction element.

4.3.1.2. Reactions

Reactions are encoded by rectangles with a blue border (Figure 4.2c). Similar to storages their visual
representation can be specialized by using bitmap icons (Figure 4.2d). A reaction element can connect
two or more storages depending on the number of its terminals.

4.3.1.3. Links

Links are defined and visually represented by edges and link nodes (Figure 4.3). A link connects two
or more terminals (owned by submodules). In the latter case, link nodes with adjacent edges within
the same hierarchy are used. Link nodes are used to model the sum of the signaling information to
different storages (information can also be split up). By that, link nodes reduce the visual complexity by
aggregating all incoming and outgoing links into a single node. The direction of a link (e. g., direction
of signals) is not indicated by an arrow head. Instead, the mass or signal flow is defined by the inner
stoichiometry and kinetic information of the reaction, and can be visually indicated using a specialized
bitmap icon (Figure 4.2d).
As already mentioned, links connect terminals owned by modules (e. g., storage or reaction elements).
All terminals have to be connected; open terminals result in an invalid model. Terminals are always
placed at the inner border of the module. They are represented by squares with a dark-gray border and
light-gray background (Figure 4.3).
For each link, a color can be defined that is applied to the corresponding edges and link nodes. In MDL

models blue, green, red and yellow links are used (Figure 4.3). Blue links indicate a concentration and
reaction flux (bi-directional). Green links are used to denote signaling relationships (uni-directional rela-
tion), whereas red links indicate concentration flux with signaling feedback (bi-directional). In modular
models derived from SBML models, yellow links are used to represent a concentration in a volume.

4.3.2. Visualizing a Composite Module

Composite modules of dynamic models provide terminals for the whole module. They are represented
by a rounded rectangle with a white background and black border. As depicted in Figure 4.4, the interior
and exterior can be visualized in different ways depending on the modeling task.
The most obvious way is to open the entire model and zoom to the particular composite module of
interest. With this local view, only the module and its subelements are displayed. Edges to and from
the exterior are shown and provide some contextual information. In Figure 4.4a a composite module
describing a double phosphorylation of a protein is depicted. The storages activ and deactiv are
connected to external terminals. Of course, a composite module can also be visualized as a ‘closed’
module, separated from the exterior context of the model. In this case, the composite module is the root
of the inclusion tree. The focus is on the content of the composite module since all inner submodules are
considered in the visualization. An example of that ‘deep view’ is shown in Figure 4.4b.
Similar to storages and reactions, composite modules can be decorated with bitmap icons depicting a
rough sketch of the interior. This allows a customized representation of the underlying process, for
example, a more intuitive reaction scheme of the double phosphorylation (Figure 4.4c). As shown in
Figure 4.4d, the composite module can also be depicted with contextual edges to the exterior, but without

59

4. Visual Representation of Dynamic and Logical Modular Models

content. This option is useful, for example, in order to present a higher abstraction of the model with less
detail. In this case, the visual complexity is decreased.

(a) (b) (c) (d)

Figure 4.2.: Visualization of storages and reactions. (a) Standard representation of a storage using an
ellipse with a red border, (b) storage with a bitmap icon indicating a modification state, (c)
standard representation of a reaction using a rectangle with a blue border, and (d) reaction
with a bitmap icon indicating a reversible reaction.

(a) (b) (c) (d) (e)

Figure 4.3.: Visualization of links and their related terminals. The link color can be defined to encode
the type of connection established by the link: (a) Link encoding a flux, (b) link representing
(signal) concentration, (c) link with both, concentration and flux, (d) link representing a
concentration in a volume, and (e) link with link node.

4.3.3. ‘Phosphorylation’-Example

In Figure 4.5b, a simple dynamic model using typical components is presented that illustrates the visual
representation. This model is defined in MDL in a modular fashion illustrated by Figure 4.5a. For an im-
proved visualization the two different windows (showing the model whole_model and the composite
module cycle) are integrated into a single view (Figure 4.5b). The model describes the phosphory-
lation of a protein. Thereby, in the module cycle, three storage elements activ, deactiv and
phosphatase are used. They encode the two states of the protein (i. e., active and inactive) and the
phosphatase. These storages are connected via a reversible reaction element rev-reaction describ-
ing a Michaelis-Menten kinetic. Two effectors control the reaction element – one from the exterior input
(connected by the terminal) and the other from the storage phosphatase. The composite module is
connected via terminals to the exterior modules input and output at the highest organization level.

60

4.4. Entities for Logical Modeling and their Visualization

(a) (b)

(c) (d)

Figure 4.4.: Different ways of visualizing a composite module of a dynamic model. (a) Zoomed-in sub-
module (with content and adjacent edges), (b) separately opened submodule (with content,
no links to the exterior), (c) zoomed-in submodule (with bitmap icon), and (d) zoomed-in
submodule (content is hidden, adjacent edges). The composite module is taken from Chap-
ter 2, Figure 2.5.

4.4. Entities for Logical Modeling and their Visualization

Logical modeling results in a qualitative description of the model. Typically, logical models are char-
acterized by many components resulting in large networks. Hence, visualization aspects are of great
importance [170].
How qualitative model properties should be graphically represented is not yet standardized. For this
purpose a draft is provided, which defines a special visual representation of modeling entities and the
model structure.
Logical modeling in PROMOT is supported by the logical library with specialized classes. In order to
represent the network in a biologically intuitive way, all modeling entities defined in MDL are inspected
and then aggregated in a single integrated view. Nevertheless, the inherent modular structure of the model
is still preserved. This step is analogous to the process described in Section 4.2. All elements necessary
for the mathematical description of the logical formalism, but without a clear biological interpretation,
are removed by editing the underlying graph structure. Particular steps are the simplification of complex
structures and the removal of elements that are not needed in the later visualization. Once the terminal

61

4. Visual Representation of Dynamic and Logical Modular Models

(a) (b)

Figure 4.5.: A dynamic model using typical components. A phosphorylation step is encapsulated in the
composite module cycle. This is a simplified version of the model given in Chapter 2,
Figure 2.5.

cluster graph GTCL is defined, the ‘Mapping’ step is applied. The mapping of data to topological and
visual properties is the most critical step. Here, the visual properties of certain elements are modified
to achieve a biologically more intuitive representation. In summary, the visual representation of logical
models from MDL to the VISUAL EXPLORER implicates the following sequenced steps:

1. aggregating all modules and hierarchical relationships in a single visualization,

2. removing all information necessary for the mathematical description, but without a clear biological
interpretation, and

3. altering the visual properties of certain elements using predefined mapping functions to achieve a
biologically more intuitive representation.

Hence, any logical model, specified in MDL, independent of size and complexity, can be automatically
converted to the formalized visual representation used by VISUAL EXPLORER. The following sections
show in detail how such a representation can be reached.

4.4.1. Basic Elements

For the convenient visual setup of a logical model, different modeling classes are provided by the stan-
dard library for logical modeling. The basic classes are compound and gate. Similar to the dy-
namic modeling approach, they are elementary modules and are derived from the class module. Using
the object-oriented modeling concept, these basic classes can be specialized (using sub-classing) in a
straightforward manner. To each of these classes or subclasses several properties can be added. In addi-
tion, different types of links can be defined.

62

4.4. Entities for Logical Modeling and their Visualization

Compound Compounds are used to model logical states. A compound contains some common molec-
ular classifications of certain species frequently used in signal transduction networks. For instance,
subclasses of compound are receptor, kinase, phosphatase, phenotype, ligand or
drug target. The subclass other serves as a generic compound that represents an unspecific
molecular species. Additionally, the subclass reservoir representing a pool of species and the
subclass dummy representing a generic entity for modeling different characteristics are provided.
Most of the subclasses are mathematically equivalent to the class compound. The information of
the specific subclass is used in the latter visualization [165].

Gate Gates include the logical connection of network elements for describing certain interactions. They
are based on a common Boolean logic and its operators. Basic classes of logical gates are and
(represents an ‘and’-connection of compounds), or (represents an ‘or’-connection of compounds),
and somehow (can be used when the logic is not clear). Additionally, the class boundary refers
to gates. It represents either an ‘input’ or ‘output’ of a compound. The class input describes an
incoming signal, for example, an initial trigger; the class output denotes an outgoing signal of
the model.

Link In the context of logical models, a link represents a relationship and connects gates to compounds
or gates to gates.

In the next sections, important subclasses of compound and gate, and their special visualizations are
introduced. A comprehensive overview including a ‘symbol reference card’ can be found in Appendix B,
Figure B.2.

4.4.1.1. Compounds

As already mentioned, compounds can be specialized into different subclasses (e. g., kinase,
phosphatase or adapter-protein). In order to distinguish different subclasses, they vary in
their visual representation (see Figure B.2).
An important subclass is reservoir. It is used to denote a pool of entities (e. g., molecular species)
relevant for signal transduction processes. For instance, a single reservoir can be used for the activation
of two species. In general, this allows the modeling of simultaneous interventions (e. g., knock-outs)
of multiple entities. A reservoir can be used from any reaction in the network independently from its
localization. In recent tools, two different approaches exist to depict reservoir-like elements. First,
multiple instances of a reservoir entity are each rendered near its adjacent compound. From a visual
point of view, this has both, advantages and disadvantages: The advantage is having short edges between
a reservoir entity and the adjacent compound. The drawback is that probably the connectivity does
not match the actual topology of the network [26]. In the second approach only a single reservoir
entity is drawn independent of the number of adjacent compounds. This has the advantage of having only
one instance of a reservoir. The latter approach is integrated in the formalized visual representation
presented in this chapter.
The modeler is able to customize the visual representations of reservoir elements. According to
Figure 4.6, three different options can be chosen: In Figure 4.6a, the standard representation is shown
where the reservoir is represented with a high level of detail. A more basic version is depicted in
Figure 4.6b where the reservoir construct is simplified by removing the input element. In contrast
to Figure 4.6a, influences of the reservoir on adjacent compounds are represented as dashed lines.
A further simplification is shown in Figure 4.6c. Here, both the reservoir and the input element
are removed. The influenced compounds are linked directly by a dashed line. It should be mentioned
that the latter option can only be applied when the reservoir influences exactly two compounds. The

63

4. Visual Representation of Dynamic and Logical Modular Models

options in Figure 4.6b and Figure 4.6c reduce the visual clutter, especially in large networks and aim at
a clear visual representation.
In contrast to dynamic models, compounds can be directly connected (if no gate is in-between). How-
ever, the situation appears different for gates. They cannot be directly linked; at least one element of
the class compound has to be placed between two gates. Additionally, all compounds that have no up-
stream or downstream stimulating reaction must be connected to an input element or output element,
respectively.
The class dummy is used as a generic compound for modeling specific characteristics of the system, for
example, time delays. In many cases, these characteristics are encoded in the mathematical description
and has no appropriate counterpart in the visual representation. Thus, depending on the purpose and
semantics, the user needs either to visualize a dummy or not. Consequently, two different ways for the
representation of the dummy element exist. As depicted in Figure 4.7, dummy elements can be visualized
in or removed from the network. Figure 4.7a depicts a dummy element with an upstream activation and
a downstream inhibition. When the dummy is removed the new overall reaction becomes an inhibition
(Figure 4.7b). Another use case for dummy elements is a compact representation of the logic. This is
exemplified in Figure 4.7c-4.7d. Figure 4.7c shows a network with complex logic using and gates and
many (partly overlapped) reaction edges. This visual representation of the network can be defined in a
more compact way by using dummy elements. Both figures show exactly the same input-output behavior,
but Figure 4.7d is much more compact. This approach can reduce the visual clutter.

4.4.1.2. Gates

As already described, subclasses of gate are the logical operators and, or and somehow, and the
boundary elements input and output. An and gate facilitates the combination of two or more distinct
compounds into one logical construct. Thereby, all input species are ‘and’-connected. The and element
is explicitly rendered using a light-blue circle with a dark-blue border. An ‘or’-logic is usually modeled
implicitly (cf. Figure 4.8b). Sometimes the modeler is not sure about the logical behavior, especially
between ‘and’-logic and ‘or’-logic. In this case, the ‘or’-logic can be defined by an explicit or gate (cf.
Figure 4.8c). It is depicted by a light-blue circle with a magenta border. In this way, the ‘or’-logic can
be switched easily to ‘and’-logic by simply replacing the or gate by an and gate. In most cases, an
‘or’-logic is represented implicitly. This leads to a more familiar and less cluttered visualization. Instead
of having three visualizations of different gates in VISUAL EXPLORER, only two gates (and, somehow)
must be visually distinguished. This results in an improved understanding of the network.
Logical models simplify the continuous behavior. During the transformation of continuous to discrete
behavior, often the type of the logical connection is unclear or ambiguous; that is, several species are
combined with an and gate or an or gate. The somehow gate can be used for these cases because it
allows the logical connection to be modeled using an incomplete truth table1. The somehow element is
explicitly represented by a light-blue circle with a dark-red border (see Figure 4.8d). Once the logic is
clear, the somehow gate can be replaced by an and gate or or gate.

4.4.1.3. Links

Similar to the representation in dynamic models (cf. Section 4.3.1.3), links are represented by edges. An
edge connects two compounds, or a compound and a gate. All compounds and gates have to be con-
nected. In MDL a certain type of interaction (e. g., stimulatory or inhibitory influence) can be defined. In
the visualization of logical models, a positive influence on a biological entity (e. g., activating effect) is

1For more details on incomplete truth tables and their usage, see Klamt et al. [104].

64

4.4. Entities for Logical Modeling and their Visualization

(a) (b) (c)

Figure 4.6.: Options for the visual representation of a reservoir element: (a) Standard visual rep-
resentation with full detail. (b) For the sake of clarity the input element can be hidden
and in (c) additionally, the reservoir can be hidden. In (b) and (c), influences of the
reservoir on adjacent compounds are encoded by dashed lines.

(a) (b) (c) (d)

Figure 4.7.: Visual representation and usage of a dummy element: (a) The dummy element is shown; (b)
the dummy element is removed. Usage of dummy for compact representation. (c) Common
visual representation with explicit use of gates. (d) More compact visual representation using
dummy elements.

indicated by a black edge (Figure 4.9a). In contrast, a negative influence on a biological entity (e. g., in-
hibitory effect) is encoded by a red edge(Figure 4.9b). Both representations have special target arrows –
different for positive and negative effects, i. e., activation is encoded by a black target arrow, and inhibi-
tion by a red target ‘T-end’, respectively. The direction of signal flow is depicted using the target arrows
mentioned before. This is a widely used visual representation in research of molecular biology (e. g., in
textbooks). There are also special types of interactions such as a reservoir reaction (Figures 4.6b, 4.6c
or 4.9c), an input reaction (Figure 4.9d), and an output reaction (Figure 4.9e). An undefined interaction
is represented using a gray line with no arrow heads (Figure 4.9f).
By default, no terminals are rendered because in biological representations they are not common. How-
ever, an option for showing terminal nodes in logical models exists. Similar to dynamic models, terminals
are placed at the inner border of the module. They are represented by squares with a dark-gray border
and light-gray background.

65

4. Visual Representation of Dynamic and Logical Modular Models

(a) (b) (c) (d)

Figure 4.8.: Visualization of logical gates: (a) an and gate, (b) an or gate using an implicit representa-
tion, (c) an or gate using an explicit representation, and (d) a somehow gate. Gate elements
can be visually distinguished by different border colors.

(a) (b) (c) (d) (e) (f)

Figure 4.9.: Visualization of different interaction types in logical models: (a) Activation is encoded by
a black edge with a target arrow; (b) inhibition is represented by a red edge with a target
‘T-end’; (c) a reservoir reaction is encoded by a gray, dashed edge; (d) an input reaction is
displayed using a green edge with target arrow; (e) an output reaction is defined by a yellow
edge with target arrow; (f) an undefined reaction is represented using a gray edge with no
arrow heads.

4.4.2. Visualizing a Composite Module

Using the logical modeling formalisms, composite modules can be visualized in different ways. Fig-
ure 4.10 provides an overview. A first option is to open the entire model and zoom into the particular
composite module. Then, having a local view, only the module and its subelements are displayed. Pos-
sible reaction edges from the outside are shown in part and provide some contextual information. In
Figure 4.10a a composite module with subelements d, e, f and and is depicted. Subelements d and
e are connected to incoming edges, f to an outgoing edge, respectively. As shown in Figure 4.10d,
the composite module can also be depicted with contextual edges, but without content. This results in
a higher abstraction with less detail, and therefore reduces the visual complexity. Composite modules
can also be opened explicitly, independent from their parent module, but considering all submodules.
An example is shown in Figure 4.10b. In this case, the composite module is the root of the inclusion
tree. The composite module may contain terminals that indicate coupling to the exterior modules. These

66

4.4. Entities for Logical Modeling and their Visualization

terminal nodes are enhanced with labels for contextual information. Moreover, for this option, incoming
and outgoing edges are drawn between terminal nodes and subelements in order to correlate both. The
composite module can also be visualized as a ‘closed’ module; separated from the model context. For
instance no context is given (e. g., edges or terminals to the outside). In this case, the focus is only on the
content of the composite module. An example is shown in Figure 4.10c. There is an additional option to
use a bitmap icon (similar to the usage in dynamic models described in Section 4.3.2).

(a) (b)

(c) (d)

Figure 4.10.: Different ways of visualizing a composite module of a logical model. (a) Zoomed-in sub-
module (content is visible), (b) separately opened submodule (shows both content, and
terminal nodes), (c) separately opened submodule (visualized as closed submodule, shows
content but without edges to the exterior), and (d) zoomed-in submodule (content is hid-
den).

67

4. Visual Representation of Dynamic and Logical Modular Models

4.4.3. Visual Handling of Parameters

As mentioned in Section 4.4.1 different properties of modeling elements, in form of parameters, can
be easily added. These parameters can be used, for instance, to define a time-scale of the logi-
cal functions, or to define the confidence of the encoded biological knowledge. Other parameters
are necessary to encode options for the (visual) handling of logical models such as visibility or
map-number. Most are dedicated to the further use in CELLNETANALYZER.

Figure 4.11.: VARIABLE EDITOR for a somehow gate in the Toy model example. The param-
eter map_number (map-number) is highlighted. Other parameters shown are, for
example, time (time-scale), logexcl (logical-excluded) and ignore_in_export
(ignore-in-export). Additionally, using this dialog, the name, the class and the doc-
umentation of the particular element can be changed.

Parameters of logical models can be set or modified through the VARIABLE EDITOR, a GUI component
that was developed and implemented as part of this thesis (Figure 4.11). The general purpose of that
component is the visual editing of properties for modules in the model. Additionally, it facilitates the
modification of the name, class and documentation of the particular modeling element.
In the following, two parameters that are especially useful for the visualization of logical models are
discussed. In Appendix B (Section B.3) further parameters are listed. Many are described in detail
in Klamt et al. [104].

Visibility The parameter visibility is used for expressing that composite modules are not showing
their contents. Hence, enabling this option, subelements of the respected composite module are
not rendered. This property is important for adjusting the visual complexity and abstraction level
of the model.

This can be performed by using the parameter visibility. example depicted in Figure 4.10d.

Map Number The parameter map-number can be used to define multiple maps. Such maps are com-
parable to local views – showing parts of the network. They are especially important for the in-
tegration with CELLNETANALYZER. The parameter map-number itself determines the specific
map to which a certain network element belongs. Since the association is based on elementary and

68

4.5. Applications

not on composite modules, a map may comprise different hierarchical levels. However, often the
modular structure of logical models is an appropriate starting point because within a module, ele-
ments have the same level of abstraction. Then all elements in a particular module have the same
map-number. The application of the parameter map-number and its visual representation is
described in more detail in Section 4.5.3.

In principle, all parameters mentioned before and listed in Appendix B can be used as metadata for
the visual mapping to the elements in the network. For instance, all compounds in the network can be
colored according their specific map-number. In VISUAL EXPLORER the parameter map-number is
needed for the convenient visualization and later export of multiple maps.

4.4.4. The Logical Toy Model

In this section, the visual representation of logical models is illustrated using the Toy model. As already
mentioned, this process aims at designing a biologically motivated representation. The Toy model is
defined in MDL in a modular fashion illustrated by Figure 4.12a. The model can be represented in a sin-
gle integrated view (Figure 4.12b). Thereby, the local views separated into different windows (showing
the model whole_model, and the composite modules cell and nucleus) are integrated in a single
view. In Figure 4.12b, different modeling elements are shown. The information of a negative influence
(inhibition) is encoded by a red edge of the particular reaction. A similar rule is applied to the positive
influence (activation) where a black edge is used. Additionally, the direction of signal flow is indicated
by target arrows that are different for activation and inhibition. Furthermore, the reservoir k3r has been
automatically removed, since it belongs to the class reservoir and is not necessary for a clear biologi-
cal interpretation. Instead, an edge connecting the corresponding compounds supplied by the entity pools
is drawn using a dashed style. For a more biologically motivated representation the composite modules,
in particular cell and nucleus, are drawn as ellipses rather than strict rectangles. Additionally, the
ellipses are rendered in yellow and dashed (to imitate a biological, semi-permeable membrane). Interac-
tions are rendered as curved edges2 instead of angular edges. Both representations, ellipses and curved
edges, are more familiar for biologists. More visualization examples of the Toy model are presented in
Appendix B, Section B.4.

4.5. Applications

In the following, different realistic large models and their visual representations are shown. The models
including their biological backgrounds were described already in Chapter 2, Section 2.5. First, the dy-
namic EGF model is presented. Then the visualization of two logical models – the logical EGFR/ErbB
model and the logical TCR model – are given. Finally, the logical modeling workflow including the
analysis tool CELLNETANALYZER is presented exemplarily using multiple maps and the associated pa-
rameter map-number. The models presented here or particular parts of them serve as examples in the
subsequent chapters.

4.5.1. The Dynamic EGF Model

The biological processes described by the dynamic EGF model were already mentioned in Chapter 2,
Section 2.5.1. How this model is visually represented in VISUAL EXPLORER is shown in Figure 4.13.
Here, different modeling elements for dynamic modeling are used (e. g., storage, reaction or

2Curved edges are applied using Bézier curves. They are used to draw multi-segment edges very smooth, independent of the
zoom scale factor.

69

4. Visual Representation of Dynamic and Logical Modular Models

(a)

(b)

Figure 4.12.: The logical Toy model using typical components for logical modeling. (a) The model is
decomposed into the composite modules cell and nucleus. (b) Biologically motivated
visual representation of the model. Figure is adapted from Saez-Rodriguez et al. [165].

70

4.5. Applications

adapter). Since the model makes extensive use of hierarchy and modularity, many composite modules
are integrated. Most of the elements are not visible since they are located on deep hierarchical levels.
Two composite modules raf_ras_int and mek_int are magnified to indicate more details.

4.5.2. The Logical Models: EGFR/ErbB and TCR

The visual representation for logical models can also be applied to large models. This is illustrated in
Figure 4.14 and Figure 4.15. In these figures the models described in Chapter 2, Sections 2.5.1 and 2.5.2
are depicted. The first example shows the EGFR/ErbB model (Figure 4.14). It can be seen that the
visual complexity and clutter is reduced. Both, compounds and interactions are presented more clearly,
for instance, the reservoir constructs are simplified and explicit or gates are not rendered. An
exception is the composite module egf_ligand on top of the network. It describes the combinatorial
logic of the ligand-receptor bindings; and this logic is explicitly shown. However, there is the option to
hide the interior of a composite module from view (cf. Figure 4.10d). Detailed information on the visual
representations of the EGFR/ErbB model in different steps of the logical modeling workflow are given
in Appendix B (particularly in Figure B.5).
Another example showing the TCR network is depicted in Figure 4.15. It provides a visual summary
of the qualitative knowledge gathered while studying signal processing in T Cell receptor activation.
Standard modeling entities and their parameters are visually modified by applying visual representations
(e. g., kinase or phosphatase). The border of the composite module representing a membrane
is modified (yellow dashed edge) to distinguish intra-cellular and extracellular processes. Also curved
edges are supported because they are prevalent in (traditional) graphics of molecular biology. At the
end, a more biological, clearer representation can be achieved; and a map is provided that encodes
all necessary information in a visual manner. With this at hand, the modeler can zoom into particular
parts of the signaling network to explore the underlying biological knowledge. The adequate visual
representation can also be used as a visual aid for further analysis in CELLNETANALYZER.

4.5.3. Integration with CELLNETANALYZER – Multiple Maps

The workflow of logical modeling is already described in Chapter 2, Section 2.4.2 and illustrated in
Figure 2.6. In this section the focus is on visual issues regarding the workflow with special emphasis on
multiple maps.
As mentioned before, VISUAL EXPLORER can be used to generate adequate visual representations for
the logical modeling formalism (an example is given in Figure 4.12b) and tools supporting structural
analysis, for example, CELLNETANALYZER. For that, the formalized visual representations are exported
as bitmap graphics to CELLNETANALYZER. This also includes the layout information of the network
elements. In CELLNETANALYZER these static visualizations are used as background images.
As described in Section 4.4.3, CELLNETANALYZER supports multiple maps. In MDL the information
on multiple maps is encoded in the parameter map-number for each network element. The following
procedure is used to generate multiple maps for CELLNETANALYZER in an automatic fashion. First, for
each network element the parameter map-number is obtained. This information is used to detect the
specific submaps defined in the model. Then, all network element having the same map-number are
saved in a group. For each of the groups the geometric bounding box is computed. Then, for each group
VISUAL EXPLORER automatically zooms to the specified bounding box. In this step, the view is focused
on the components with the same map number. The layout information of all network elements with that

71

4. Visual Representation of Dynamic and Logical Modular Models

Figure 4.13.: Visual representation of the dynamic EGF model. Modules in very deep hierarchies
are nearly invisible because of their small size on the screen. Two composite modules
raf_ras_int and mek_int are magnified to provide more details.

72

4.5. Applications

Figure 4.14.: Visual representation of the large EGFR/ErbB model. This shows a clear representation
of compounds and interactions, expect the composite module egf_ligand on top of the
network. The visual complexity of this module can be reduced by hiding the interior from
view. Figure is taken from Samaga et al. [167].

73

4. Visual Representation of Dynamic and Logical Modular Models

Figure 4.15.: Visual representation of the logical TCR model. This aims to achieve, on the one hand,
a biological more intuitive representation and, on the other, a less cluttered visualization.
Figure is taken from Saez-Rodriguez et al. [165].

74

4.6. Conclusions

particular map-number is saved3. Finally, the visual representation terminated by the bounding box is
saved as a bitmap image for further processing in CELLNETANALYZER.
In Figure 4.16, two states in this workflow are depicted. In Figure 4.16a, the parameter map-number
is overlaid on the network of the Toy model using color coding. Three different submaps are defined
and the maps are based on the predefined modules in the model, namely whole_model, cell and
nucleus. In Figure 4.16b, these multiple maps are used to visually assist the structural analysis in
CELLNETANALYZER.

4.6. Conclusions

In this chapter, first, it is shown how modular models specified in the object-oriented language MDL can
be organized and managed in a single integrative view by utilizing a terminal cluster graph, a special
compound graph. This, in combination with appropriate mechanisms for navigation and exploration,
presents an interactive and very flexible way for visualizing different levels of scale and abstraction, and
thus relates underlying biological concepts captured in MDL models.
In close cooperation with modelers, two formalized visual representations are developed which are spe-
cialized to the adequate representation of dynamic and logical models with modular structure. They
are tailored to processes in signal transduction. For that, different graphical symbols for the individual
modeling entities aggregating in a symbol set are provided. A general procedure was elaborated that
combines the MDL syntax and the related graphical symbols to automatically generate the representa-
tions of MDL models. Hence, any dynamic or logical model specified in MDL, independent of size
and complexity, can be automatically converted to the formalized visual representation used by VISUAL

EXPLORER.
The graphical representation of dynamic and logical models aims to be, on the one hand, intuitive and,
on the other, precise and descriptive while incorporating and depicting modular structures and differ-
ent abstraction levels of knowledge. These graphical representations are intensively applied in several
modeling projects that use realistic large models such as EGF or TCR (Sections 4.5.1 and 4.5.2).
Furthermore, such comprehensible, visual representations can be used to visually summarize the gathered
knowledge about the system under investigation. In this way, the communication between different
research groups can be facilitated. They are the basis for the interpretation of data generated in an
external process, for example, analysis or simulation data that can be displayed in the context of the
network model. The example in the last section shows the high level of integration between PROMOT
and CELLNETANALYZER, which improves the structural analysis and interpretation of logical models.

3Note that not all network elements depicted on the submap must have the same map-number since the bounding box has
to have a rectangular shape, whereas map numbers can be located arbitrarily in the network. Moreover, bounding boxes
specified for different map numbers may overlap.

75

4. Visual Representation of Dynamic and Logical Modular Models

(a)

(b)

Figure 4.16.: The use of multiple maps for CELLNETANALYZER is illustrated using the Toy model.
In this case, the definition of multiple maps is based on existing composite modules in
the model. (a) Visualization of the parameter map-number in VISUAL EXPLORER.
The parameter values for map-number are encoded by node color (whole_model
with value ‘1’ is encoded in blue; cell with value ‘2’ is encoded in red; nucleus
with value ‘3’ is encoded in green). (b) CELLNETANALYZER screenshots from the three
submaps specified in PROMOT and generated by VISUAL EXPLORER.

76

The best visualizations are not static images to be printed in
books, but fluid, dynamic artifacts that respond to the need
for a different view or more detailed information.

Colin Ware [203]

CHAPTER 5

A Visual Interface for Interactive Exploratory Model Analysis

In this chapter, different interactive exploration schemes for complex structures of modular models are
presented. These schemes are combined in a visual interface for the interactive exploratory analysis of
models. In the first part, the research problem is outlined. Then the interactive exploration schemes are
introduced, followed by a comparison of them. Finally, some use cases illustrate their application.

5.1. Research Problem

As mentioned in Chapter 3, Section 3.6.2 most of the tools operate on flat models – even if they are large
and complex. As the integration of models is pushed further, models become larger and larger. In many
cases they do not fit onto the screen and the elements that are outside of the viewing window have to be
explored by standard Pan+Zoom operations. Frequently used zoom operations are often strictly discrete.
As a consequence, the mental map could be lost through the abrupt changes in the view. Additionally,
standard zoom emphasizes only the detail of model parts but this results in a loss of context and does not
enable different levels of information to be represented in the cellular network.
Even in modular models with many and deep hierarchical levels, the completion of a particular task
by navigation and exploration can be confusing and disorientating without visual cues; the modeler is
confronted with too much information. A lot of the information is not relevant or not interesting in the
context of the specific task. In the context of this thesis common tasks for exploratory analysis are the
following:

• examine the overall structure and relations of the intra-cellular network,

• recover specific entities deep in the hierarchical structure,

• find and view all biological entities that will be affected by a certain biological entity of interest
(e. g., a protein),

• view a particular biological entity or a group of entities in the context of the entire network,

• elucidate properties of biological entities like concentration, signal, initial parameters or activity
state in the network context of the entire system, and

• find functional units, duplicates, interdependencies, and inheritance properties of the overall net-
work structure.

77

5. A Visual Interface for Interactive Exploratory Model Analysis

These tasks can be performed in an efficient manner when the structure of the modular model is fully
integrated into the visualization and navigation capabilities of the respective tool [158]. It must be able
to navigate within the hierarchical structure, for instance, to find the actual position of an element in the
hierarchy. Standard Pan+Zoom operations are not sufficient; they do not consider structural properties.
Based on the analysis of existing tools and several reviews from literature, both discussed in the intro-
ductory chapters, a set of requirements for the visualization and navigation of modular models has been
identified:

• For the application of modular models the simple graph model (introduced in Chapter 3, Sec-
tion 3.1.1) is too restrictive and, therefore, does not model the data encoded in a modular model
adequately. In contrast to simple graph models, compound graphs models are able to model a nest-
ing hierarchy; that is, the graph structure is used to produce a meaningful inclusion tree. Hence,
an integrated single hierarchical model based on a terminal cluster graph, a specialized compound
graph, should be used.

• Model parts need to be scaled depending on their level in the hierarchy. In other words, elements
on deeper hierarchical levels must be scaled down by a constant factor. This saves space on the
limited screen and can be seen as analogous to the organization of things in nature.

• The intrinsic hierarchy of the compound graph should be captured. Then it can be used as a
paradigm for navigation and exploration of the model.

• Multiple interactive exploration schemes should be provided – also in combination – to flexibly
support various modeling tasks in an intuitive and efficient manner.

• The focus should be on navigation and exploration, not on editing. That means, mainly several
functionalities of a viewer including different model views, advanced navigation pattern and ani-
mations (cf. Chapter 3, Section 3.3.4.1) should be supported. A few basic editing functions can be
provided, but are not mandatory.

The first two points are already mentioned in Chapter 4. The rest of the requirements are discussed in the
chapter at hand. In the following sections, the interactive visual exploration of model parts in the context
of the entire modular system is presented. Thereby, the application of proven concepts from the research
of information visualization to the domain of systems biology is in focus.

5.2. Interactive Exploration Schemes for Modular Models

In order to facilitate the intuitive navigation and the flexible visualization several specific interactive
exploration schemes are implemented in VISUAL EXPLORER. These implementations are based on
the ZUI toolkit PICCOLO2D1. The interactive exploration schemes can be used as navigation and ex-
ploration modes with the integrated view and are based on seamless zooming, semantic zooming, and
content- and topology-aware navigation.
In the following, the individual schemes are introduced. In particular, these are InteractiveZoom, Con-
textualZoom and HierarchicalZoom. Furthermore, the integration of the interactive exploration schemes
with complex structures of modular models is described in detail. They are strongly correlated to the
steps ‘Mapping’ and ‘Rendering’, and to the specific user interactions of the visualization pipeline (cf.
Chapter 3, Figure 3.6).

1Piccolo2D is already discussed in detail in Chapter 3, Section 3.6.1.

78

5.2. Interactive Exploration Schemes for Modular Models

5.2.1. InteractiveZoom

The InteractiveZoom facilitates geometric zooming by providing efficient Pan+Zoom operations. Pan in
the InteractiveZoom is similar to standard pan operations in many other tools. The modeler can move
the entire network with constant scale of the view. By zooming in, the area in focus is enlarged; that is,
details on deeper hierarchical levels are depicted more clearly. In contrast, zooming out displays a more
abstract view of the focused area. In this way, the signaling network can be interactively explored at
different levels of abstraction, for example, a global view for high-level processes or several local views
for processes described in detail.
As stated in Chapter 3, Section 3.4.2, the zooming functionality of the majority of tools is restricted to
discrete steps. This can destroy the mental map of the modular model. For instance, the modeler can
perform several zoom-in operations, and finally gets lost in the hierarchy. In contrast, InteractiveZoom
features seamless zooming that enables smooth transitions between the subsequent views. In this way,
the mental map can be preserved. An additional feature is that zooming performed by the Interactive-
Zoom is relative to the mouse pointer, and not defined by the center of the viewing window. This is an
essential advantage because the direction of the zoom can be actively controlled by the modeler. For
instance, the modeler can perform a zoom-in operation directly on an element located peripherally in
the network without moving it out of the viewing window. This is more efficient in terms of the amount
of navigation operations while exploring a modular model. Zooming, in the InteractiveZoom, is a non-
context-preserving navigation technique; that is, the global context gets lost while zooming in.

5.2.2. ContextualZoom

The ContextualZoom provides an exploration scheme with interactive Focus+Context. Thus, the rep-
resentation of the modular model is modified by selectively emphasizing elements (focus) and de-
emphasizing elements (contextual information). Emphasizing and de-emphasizing can be performed
by adjusting the scale of elements (i. e., size), and thus the level of detail they can present on the screen.
The ContextualZoom can be compared to a ‘local’ zoom-in of a focused element (Figure 5.15a). In this
way, detailed focus areas and less detailed context areas are established in the same view. An example is
depicted in Figure 5.1. The ContextualZoom complies with the following requirements:

R1. In order to follow the potential changes of the network, topological properties such as orthogonal
ordering and proximity should be preserved. This also includes the prevention of node overlapping.

R2. The overall model size should be fixed. This can be achieved by scaling all elements (zoom in focus
element, zoom out all other elements). For instance, the size of the composite module raf_ras
in both subfigures of Figure 5.1 is the same.

R3. It should be able to propagate to upper hierarchical levels. Thus, if not enough space is available
at the current hierarchical level then the next-higher level should be used.

R4. For an easy comparison of elements located within different modules and at different hierarchical
levels, it is of advantage to define an arbitrary number of concurrent foci. By applying multiple
foci, it is possible to “display both short and long range correlations and patterns in data simulta-
neously and their possible inter-relationship”[160].

R5. Bend points are an integral part of the overall appearance of the network. Thus, they should be
considered during modification in order to maintain the mental map.

R6. Since relations are as important as elements, ContextualZoom of edges should be considered; that
is, focusing on an edge forces its end nodes to perform a ContextualZoom (multiple foci).

79

5. A Visual Interface for Interactive Exploratory Model Analysis

R7. The sequence of transformation steps must be reversible and unambiguous in order to maintain
the mental map of the modeler. The reverse step can also be used for de-emphasizing elements
(reduce scale of elements).

R8. The technique should be performed in real-time and changes should be animated in order to main-
tain visual context.

Many of the requirements are fulfilled by existing Focus+Context techniques, for example, R1-R3 [186],
R4 [12, 172], R5 [171] or R7-R8 [158]. However, they still need to adapt to modular models and the
domain of signal transduction. All requirements are implemented as part of the ContextualZoom.
The ContextualZoom approach is based on the concept of manipulating intervals that splits the viewing
window into different horizontal and vertical segments. Thus, basically, the ContextualZoom does not
work on elements, but rather on intervals. Similar ideas are presented by Bartram et al. [12] and Storey
et al. [186]. In the following paragraphs different relevant aspects of the ContextualZoom are described
in more detail.

5.2.2.1. Consideration of Edges

Some existing approaches ignore the edges and their complex routes in the network. In modular mod-
els edges can relate to different hierarchical levels. Following edge routes and preserving the mental
map gets even more complicated in signaling networks where each element often has more than one
interaction partner resulting in tightly interlinked networks.
The computation of routes of straight lines is not complicated. For example, as depicted in Figure 5.2
(e. g., the two lines from the adapter protein a1 to the kinase k1), the straight lines in the initial view are
mapped to straight lines in the view generated by the ContextualZoom.
Polylines2 must be handled differently. They are mapped from the initial to the final view by treating
each bend point as a separate node. Thereby, the node has an interval of size 0. In this way, the mapping
of polylines is reduced to the mapping of their line segments. Then each line segment is defined by a
straight line that can be easily mapped. In general, parallelism between edges is not preserved except
they are vertical and horizontal. The mapping of polylines was already described by Sarkar and Brown
[171]. However, this approach is not based on intervals.

5.2.2.2. Multiple Foci

The ContextualZoom can handle multiple foci (independently zoomed elements). As depicted in Fig-
ure 5.3, three elements are in focus and, therefore, increased in scale. All other elements are de-
emphasized by reducing the scale (i. e., size).
Often elements are located within different modules and at various hierarchical levels. By focusing
on two or more areas in the network simultaneously, the emphasized modules can be visually correlated
without losing context – even if they have a high spatial distance in the network layout. Hence, important
structural features can be revealed such as network-wide dependencies. An example where multiple foci
are used for visual correlation is discussed later in this chapter (Section 5.5.2).

5.2.2.3. Scale Factor

For balancing local detail and global context in the ContextualZoom the appropriate value of the zoom
scale factor is essential. In Figure 5.4, it is shown how the zoom scale factor influences the final visual-
ization result. The zoom scale factor depends on the modeling task, and thus is easy to configure by the

2A polyline is an edge with multiple bend points and line segments in between.

80

5.2. Interactive Exploration Schemes for Modular Models

(a) (b)

Figure 5.1.: The protein complex raf_ras encapsulated in a composite module as part of the EGF
model displayed in VISUAL EXPLORER. (a) Initial visualization without a focus area. Al-
tering the visualization from the initial state (a) to the final state (b) using the Contextual-
Zoom preserves all elements and their relationships (contextual information), but gives the
particular element highlighted in red approximately six times more space for presenting its
content and additional information compared to the area in the initial state.

(a) (b)

Figure 5.2.: Side-by-side comparison of ContextualZoom (a) with and (b) without consideration of edge
bend points. The scale of the adapter protein a2 is increased. In (b) the mental map is
preserved. The original network layout is shown in Figure 5.4a.

81

5. A Visual Interface for Interactive Exploratory Model Analysis

user via a GUI component.

In summary, the ContextualZoom facilitates the simultaneous display of cellular information at different
levels of abstraction. Moreover, it guides the attention of the modeler and helps to differentiate between
important and non-relevant biological information regarding the current modeling task.

5.2.3. HierarchicalZoom

Many software tools provide generic exploration schemes such as Pan+Zoom or Overview+Detail as
navigation facilities for different exploratory tasks. However, dealing with hierarchical structures of
modular models, navigation is not efficiently supported. The navigation mechanisms should be closely
linked to the content and its structure. Hence, it will be of great value for the modeler to use content- and
topology-aware navigation techniques able to enhance the exploration process [134]. As stated in Chap-
ter 3, Section 3.5.2, modular models consist of several units with varying organization and abstraction
levels forming a nested hierarchy of modules. These topological features of the underlying compound
graph can be used as a central paradigm for navigation and exploration of the modular model.
The HierarchicalZoom was developed to support such topology-aware navigation. A typical navigation
process is explained by means of Figure 5.5 where the modular EGF model is explored. Initially, the
focus is on a specific module using a local view. Focusing on a particular element results in an animated
zoom sequence out of the hierarchy guided by the modular structure, for example, by considering the
inclusion relations. Thereby, the view is centered on the next logical parent and, accordingly, is scaled
to the size of the viewing window. Zoom-out operations are performed in several hierarchical steps until
the root module is reached. This results in a global view showing the complete model. Finally, zoom-in
operations are performed until a certain, very detailed module deep in the hierarchy is focused using a
local view. Each zooming operation is described by a smooth, non-uniform animation. Alternatively,
the HierarchicalZoom also provides an option to directly zoom to the focused node without considering
hierarchical steps in between. This can improve the exploration time.

5.2.3.1. Edge Topology

Not only modules can benefit from such a technique. Another way is to use the topology of the edges
between modules. In complex structures of modular models, edges can often be long, connecting ele-
ments on different hierarchical levels and can cross many other edges. Here, topology-aware navigation
techniques such as ‘zoom to source’, ‘zoom to target’ or ‘zoom along edge’ can improve the exploration
experience. These examples are discussed in more detail in Section 5.5.3. Another possibility is zooming
to the entire edge. In the HierarchicalZoom this is computed by the union of the bounding boxes of the
entire edge route and the two adjacent modules. Thereby, terminal nodes interfacing different modules
are not considered. The edge and its related modules are displayed with maximal size on the screen.

5.2.3.2. User Interactions

Enabling the HierarchicalZoom, both, modules and edges are sensitive for user interactions. Usually,
a focus is defined by clicking with the mouse within the bounds of the module or directly on an edge,
respectively. For zooming in, the focus is lead on a particular module or edge of interest. For zooming
out (navigating to the next logical parent), the periphery can be focused. The focus areas are sensitive to
user interactions as depicted in Figure 5.6. The navigation using the HierarchicalZoom is illustrated in
animation movies mentioned in Appendix A, Section A.1.

82

5.2. Interactive Exploration Schemes for Modular Models

(a) (b)

Figure 5.3.: The protein complex raf_ras as part of the EGF model displayed in VISUAL EXPLORER.
Altering the visualization from the initial state (a) to the final state (b) preserves all ele-
ments and their relationships (contextual information) but gives the particular elements in
focus (kinase raf, protein complex complex1_internalization, protein complex
complex4_internalization, depicted in red) more space for presenting its content
and additional information compared to context elements.

(a) (b)

Figure 5.4.: Focusing on receptor k3r using ContextualZoom with different scale factor s. (a) s = 1.0
and (b) s = 11.25. Intervals in light gray depict shrinking segments; intervals in dark gray
show enlarging segments. Figure is inspired by Schaffer et al. [172].

83

5. A Visual Interface for Interactive Exploratory Model Analysis

Figure 5.5.: HierarchicalZoom based on topological features of the modular EGF model. Several zoom-
out and zoom-in operations from protein rgshc (left) over root element egf_model rep-
resenting the most abstract view (middle) to protein ras_gtp (right) on efficient and com-
prehensible paths through the hierarchical structure. Numbers on the right side denote the
hierarchical levels.

In summary, in the HierarchicalZoom intrinsic, topological features of the compound graph are used
to navigate on efficient and comprehensible paths through the hierarchical structure. The navigation
is based on user interactions, for example, simply by defining the area of interest. In this sense, the
modeler is guided by rich navigation cues until the targeted element is reached. Moreover, topology-
aware navigation cues ensure the user’s orientation in complex structures. Hence, it is nearly impossible
to get lost in information space, for example, by navigating to empty regions in the network.

5.3. Animations, Semantic Zooming and LOD

In the following section, different techniques relevant for InteractiveZoom, ContextualZoom as well
as HierarchicalZoom are discussed. They are adapted to modular models and the domain of signal
transduction, and thus are able to improve the exploration experience. In particular, these techniques
are non-linear animation functions, semantic zooming with level of detail and efficient, topology-aware
Pan+Zoom operations.

84

5.3. Animations, Semantic Zooming and LOD

Figure 5.6.: HierarchicalZoom can be used with focus areas sensitive for interactions (encoded with gray
shades). Zoom-in operations can be performed by selecting the element in focus (area 2 for
submodule or area 3 for edge, respectively); zoom-out operations can be done by selecting
the peripheral element (area 1 or area 2 for parent module). In most cases, this is the direct
parent in the hierarchy.

5.3.1. Smooth (Non-)Uniform Animations

As mentioned in Chapter 3, Section 3.3.4.1, a fundamental characteristic of interactive ZUIS are ani-
mated transitions. They can be applied to diverse geometric transformations such as translation and scale
of the view or a certain element. Important in this context are smooth, non-uniform animations. They
provide immediate feedback and maintain the visual context. Non-uniform animations are typically used
for camera and view transformations, and for some glyph animations such as translations.
InteractiveZoom, ContextualZoom and HierarchicalZoom are aided by animated transitions. For both,
InteractiveZoom and ContextualZoom uniform animations are applied. This is applicable because the
individual animation steps are too short to have more complex (non-uniform) animations. However, the
InteractiveZoom overall type of animation depends on the specific user interactions. Hence, the modeler
decides which animation behavior is applied. For instance, when the modeler performs a non-uniform
translation with the mouse, also the overall animation can be understand in terms of a non-uniform
transition.
For HierarchicalZoom a uniform animation is not appropriate. It rather employs the optimized version
of the non-uniform animation function as described in Chapter 3, Section 3.3.4.1. The animation speed
of this function slowly increases in the beginning and slowly decreases in the end of the animation se-
quence (i. e., slow-in/slow-out). Hence, the modules where the animation starts and finally ends are
emphasized. By applying smooth, non-uniform and optimized animation functions, the interactive ex-
ploration schemes facilitate efficient transitions from one to another visual state. As already mentioned,
this is an important component for preserving the mental map.

5.3.2. Semantic Zooming and LOD

VISUAL EXPLORER also supports semantic zooming, which is useful to graphically abstract the modular
model. In many cases, the modeler is confronted with too much information – often not relevant or not
interesting in the context of the task. Semantic zooming is able to show only information that is important
for a particular modeling task. Some example tasks are given in the beginning of this chapter.
As discussed in Chapter 3, Section 3.4.2 an important property of semantic zooming is LOD. Different
visual states can be defined for an element. By applying semantic zooming, an element can then switch
between the different states. In general, the LOD is assigned through user interactions. As depicted
in Figure 5.7, elements and their semantic information are altered according to the zoom level of the
view of the modular model. For instance, starting with a zoom-in operation using the InteractiveZoom,

85

5. A Visual Interface for Interactive Exploratory Model Analysis

only molecules are displayed (Figure 5.7a). When zooming in further, the logical gates and names of
molecules become visible (Figure 5.7b). Finally, at a higher zoom level relationships between molecules
are displayed (Figure 5.7c).

(a) (b) (c)

Figure 5.7.: Three consecutive screenshots of the logical TCR model captured when performing a zoom-
in operation in VISUAL EXPLORER. Thereby, semantic zooming is applied. Elements and
their semantic information are altered according to the zoom scale level of the network. (a)
Only molecules distinguishable by border color are displayed (s = 1.0). (b) Molecules,
their names, and logical gates are shown (s = 1.3). (c) All elements and their relationships
become visible (s = 1.5).

The LOD defined by semantic zooming is a domain-specific issue (cf. Chapter 3, Section 3.4.2.2). For
that, the modeler can select the threshold of LOD to influence the visual states in a modular model
(e. g., the amount of visible objects). As depicted in Figure 5.8, this can result in a reduction of visual
complexity and density by hiding unnecessary details and uninteresting parts of the structure.

5.3.2.1. LOD of Elementary and Composite Modules

For each elementary module four different visual states relevant for semantic zooming are defined – full
detail, without content, without label and invisible. The first three visual states are depicted in Figure 5.9.
In VISUAL EXPLORER, the LOD function of each node in the network including elementary modules,
composite modules, text labels and terminal nodes depends on the displayed size and is a binary operator.
When the size of a particular element is under a certain threshold this element becomes invisible. When
the size is above the threshold the element is rendered according its specification. The threshold can
be adjusted using a GUI component. Composite modules allow a hierarchical view of all submodules.
The LOD of a composite module is based on the LOD (i. e., size) of its inner elementary modules and
terminal nodes. In other words, the LOD states of all elementary modules and terminal nodes results in
the visual state of the related composite module. This can vary among different zoom levels of the view
or different scales of the composite module, respectively.
The visibility of a bitmap icon is not controlled by semantic zooming; it can be manually switched on
or off by an additional option in the GUI. An example of an elementary module with rendered icon
depicting the reaction scheme is shown in Figure 5.9d.

86

5.3. Animations, Semantic Zooming and LOD

Figure 5.8.: LOD applied to the modular EGF model. A typical zoom sequence according to Figure 5.5
(left) with and (right) without module-based navigation. Module borders are steps in the
plot; plateaus are pauses in the zoom sequence. Pauses are needed for visual inspection of
the model. The zoom steps are performed either with or without LOD. As depicted with
enabled LOD the number of nodes, edges and overall elements are at a low constant level
while zooming in and out the hierarchical structure. Thus, the essential structural properties
are displayed – and at the same time the visual density and complexity can be reduced. (Left)
HierarchicalZoom and (right) InteractiveZoom.

87

5. A Visual Interface for Interactive Exploratory Model Analysis

(a) (b) (c) (d)

Figure 5.9.: Visual states using the example of an enzymatic reaction – (a) full detail, (b) without content,
(c) without label, and (d) using an icon representation. The visual state using a bitmap icon
is not controlled by semantic zooming. It can be manually switched on or off in addition to
the LOD states in (a)-(c).

5.3.2.2. LOD of Edges

The LOD of an edge depends on the visual state of its adjacent modules and terminal nodes. When all
adjacent modules and terminals are rendered (i. e., they are above a certain LOD threshold), also the
edge is visible. This is obvious because a relation between two interaction partners (e. g., proteins) only
makes sense when both partners are visible.
Figure 5.8 shows the number of visible edges (and also nodes) during a typical zoom sequence in VI-
SUAL EXPLORER. The zooming pattern are based on the sequence from Figure 5.5 and is performed
with different exploration schemes, and either enabled or disabled LOD. On the left, different zooming
operations from the elementary module rgshc over the high-level module egf_model to the elemen-
tary module complex is performed using the HierarchicalZoom. On the right, zooming is performed
from the elementary module complex to the high-level module egf_model and back again to the ele-
mentary module complex using the InteractiveZoom. As depicted in Figure 5.8, the overall number of
elements with enabled LOD mode is nearly constant (around 100 visible elements) in order to maintain
a consistent level of complexity, whereas the number of elements with disabled LOD increases to over
2700 and decreases again. An advantage of an enabled LOD is the decreased number of elements to
draw and the resulting higher performance.

5.3.2.3. Options for Adjustments of LOD

As described in a previous section, the high-level representation of a particular module is obtained by
hiding the subelements (e. g., elementary modules or terminal nodes) and their related edges.
In order to adjust the LOD to the application domain and individual preferences, the thresholds of LOD
for nodes, edges and text labels can be configured and fine-tuned through a GUI options dialog.
In addition, to the LOD, driven by semantic zooming, in some cases it is necessary to manually adjust
the visual states of elementary or composite modules such as with/without content, label or icon. This
can be performed by different options for each individual element.

In summary, it can be shown that in different models such as EGF model (cf. Figure 5.8) or Ecoli
model (cf. Figure C.2 in Appendix C) the enabled LOD can reduce the overall number of elements
by a factor of 3 to 25 depending on the zoom level. This leads to the visual representation of essential
structural properties and at the same time the reduction of visual density and complexity.

88

5.4. Combining and Comparing Interactive Exploration Schemes

5.3.3. Efficient Pan+Zoom Operations

In modular models often users navigate with operations separated in pan and zoom. For example, the
modeler is focusing on a biological entity using a local view and is interested in a peripheral entity on the
same abstraction level. As depicted in Figure 5.10a the modeler first performs several pan operations,
but perhaps gets lost in the hierarchical structure since the global context is not always shown. In order
to orient, the modeler performs a zoom-out operation and after locating the entity of interest the modeler,
again, performs a zoom-in operation.
Performing separate Pan+Zoom operations is a common task, but is not an efficient navigation in the
sense of the number of navigational operations. A well-known example for an efficient navigation is
given by the web mapping service GOOGLE MAPS [75]. There the modeler is supported by animated
‘flights’ – from the start location to the destination. First the modeler zooms out applying a high-level or
global view. On that scale, the modeler performs a single pan operation to see the destination in context.
Then the modeler zooms in, using a local view focusing on the targeted location (see Figure 5.10b). This
represents an efficient strategy because, in most cases, this is the shortest path between the two specific
places [65].
However, this strategy does not use the structural properties of the model. In VISUAL EXPLORER the
model structure is used while zooming. The modeler is able to zoom out in hierarchical steps3 until the
common parent of both, the source and the target, is visible in the view. Now both locations can be
related to each other and understood at a glance. Then the modeler can zoom in hierarchical steps until
the target is reached. Thus, the pan operation on the high-level view is not necessary. The navigation in
hierarchical steps can also be performed in an automatic fashion when the source and target are known,
for example, when performing a search operation (see example in Section 5.5.1). In this way, navigating
is guided by the modular structure and enables the modeler to experience the structure (Figure 5.10c).

(a) (b) (c)

Figure 5.10.: Different strategies for Pan+Zoom operations applied to space-scale diagrams: (a) subse-
quent separate Pan+Zoom operations, (b) efficient operations like in GOOGLE MAPS, and
(c) subsequent operations with combined Pan+Zoom considering the modular structure.

5.4. Combining and Comparing Interactive Exploration Schemes

VISUAL EXPLORER also provides ways to combine the different interactive exploration schemes. This
is helpful in order to improve the navigation and exploration process of modular models. For instance,

3Zooming in or zooming out in hierarchical steps means the following: in each step a combined Pan+Zoom operation to the
parent or particular child is performed.

89

5. A Visual Interface for Interactive Exploratory Model Analysis

the ContextualZoom can be performed first to show details in the model within their related context.
Then, a HierarchicalZoom can be used to have a quick view of further details without context (zoom
into a particular module and zoom out again). Another example is combining InteractiveZoom and
ContextualZoom. When working on large models, often modelers prefer to use InteractiveZoom to
zoom into a certain part of the model, and work with the ContextualZoom within this area.
Each interactive exploration scheme or a combination of them can be suitable for a specific modeling
task. Hence, providing all schemes and their flexible combination is essential in order to get an efficient
support for each individual modeling task. Especially a Focus+Context approach, such as the Contextu-
alZoom, can be combined with other schemes (e. g., Pan+Zoom) in an effective way.

5.4.1. Overview+Detail

In addition to the interactive exploration schemes mentioned in the previous sections, an Overview+Detail
scheme is provided. It facilitates the exploration of the modular model by using both, an overview and
a detailed view. In this way, a view of the overall model structure, and focused information about spe-
cific submodules and details can be displayed simultaneously. Figure 5.15b shows the approach using
a space-scale diagram whereas Figure 5.11 provides an example. These views and their different ab-
straction levels of the model are linked. For instance, when the modeler is interactively focusing on an
element of interest in the local view, the same element is emphasized in the overview. In this way the
modeler is able to contextualize the element in focus.
Overview+Detail also provides navigation through the network on a constant zoom level. As depicted
in Figure 5.11, in VISUAL EXPLORER an overview window of the entire modular model appears in the
lower-right corner and can be switched on or off. In the overview window a drag-and-drop box can be
used to navigate the network in the detailed view.
The smooth integration of overview and detailed view is realized by using two cameras4. Each camera
belongs to an independent layer which is superimposed, for example, by a transparent background (see
Figure 5.12).

5.4.2. Comparison

In literature, there have several evaluations of the different interactive exploration schemes. Results have
been revealed that the efficiency of each approach depends on several factors, in particular on the specific
task and individual preferences. None of these approaches is suitable for all tasks, but rather for a specific
group of task. For a recent discussion of advantages and disadvantages see the review of Cockburn et al.
[39].
In VISUAL EXPLORER three interactive exploration schemes are provided. By using different explo-
ration schemes, the provided contextual information varied widely when focusing on the same element
or focus path. This is shown in Figure 5.13. Another example emphasizing a focus path is given in
Appendix C, Figure C.1. The different exploration schemes can also be combined in a straightforward
manner. For instance, the Overview+Detail scheme can be enhanced by features of the zooming in-
terface. In this way, the modeler is able to decide which exploration scheme is most suitable for the
individual task. Table 5.1 summarizes the features of the exploration schemes discussed in this chapter.
Geometric transformations of Focus+Context interfaces as well as the semantic zooming of zooming
interfaces is performed by the ‘Mapping’ step of the visualization pipeline. Geometric zooming and
panning can be assigned to the ‘Rendering’ step (cf. Figure 3.6). All interactive exploration schemes
provide the information visualization mantra: “Overview first, then zoom and filter, then details on
demand” [176]. They support views with different granularity.

4PICCOLO2D provides a flexible model for using multiple cameras.

90

5.4. Combining and Comparing Interactive Exploration Schemes

(a) (b)

Figure 5.11.: Logical Toy model with Overview+Detail: (a) global view; (b) local view. By moving the
transparent gray box in the overview, the network in the local view can be navigated. In
this way, the hierarchical level of the view remains constant and can be used to navigate the
network similar to a pan operation, but with additional contextual information.

Figure 5.12.: Overview+Detail using two cameras. Camera 1 captures the detailed view (dashed line);
camera 2 relates to the overview (dotted line). The rendered picture is shown in Fig-
ure 5.11b where the detailed view captures the full screen and the overview is provided
in the lower-right corner.

91

5. A Visual Interface for Interactive Exploratory Model Analysis

Figure 5.13.: HierarchicalZoom versus ContextualZoom applied to the modular EGF model. A focus
path for visual correlation of distinct elements is used in order to emphasize double phos-
phorylation of the protein kinase mek. Columns show different schemes and options – Con-
textualZoom with disabled LOD (left), ContextualZoom with enabled LOD (middle), and
HierarchicalZoom with enabled LOD (right). When using ContextualZoom the context is
preserved, while when applying HierarchicalZoom it is not preserved. The left column has
a higher visual complexity than the middle and right columns. Rows depict different zoom
levels – from global view (top) to local view (bottom). The figure is inspired by Schaffer
et al. [172].

92

5.5. Applications

Feature/Scheme InteractiveZoom ContextualZoom HierarchicalZoom Overview+Detail

Scale view � · � �
Scale elements · � · ·

Content-aware · � � ·
Topology-aware · � � ·
Context-preserving · � · ·
Level of Detail � � � �
Multiple foci · � · ·

Uniform animations � � · �
Non-uniform animations � · � �

Table 5.1.: Features of the different interactive exploration schemes used in VISUAL EXPLORER. ‘�’ –
feature is supported; ‘·’ – feature is not supported.

5.5. Applications

In this section three applications are presented that use one or more of the interactive exploration
schemes. First, it is shown how the modular model can be quickly and efficiently searched. Then
the interactive exploration schemes are used to explore and visually correlate elements of interest in the
context.

5.5.1. Search the Modular Model

In the first section of this chapter common tasks are listed. One of them is to search for a particular
biological element or a group of entities (proteins, complexes, etc.) in the network. Usually, this is
performed by searching for all entities (partially) matching a given property (e. g., represented by a
string), and then listing or highlighting the result.
In modular models search operations and the representation of results need to be adapted to their com-
plex structures. In VISUAL EXPLORER, for example, different properties of nodes and edges such as
‘hierarchical level’ or ‘type of element’ are searchable. Hence, requests like: “Give me all signaling pro-
cesses that describing a specific level of detail.” or “Give me all (complex) entities of a specific type or
instance.” can be answered. Additionally, the search process is aided by the visualization and navigation
capabilities of VISUAL EXPLORER. As depicted in Figure 5.16, the modeler can show the results by
highlighting them in the network context, by listing them in a separate window, or both. A mechanism
for highlighting independent of the zoom level is especially useful to indicate results that are too small
to be realized at the current zoom level.
In parallel, the HierarchicalZoom can be chosen to automatically zoom to the search result (e. g., naviga-
tion in hierarchical steps). Applying this scheme, the model structure can be experienced while zooming
to the specific result using a smooth animation. In cases of multiple results, the list can be used to select
a particular result and to focus on it using the HierarchicalZoom. In this way, all results can be explored
in a convenient manner.

93

5. A Visual Interface for Interactive Exploratory Model Analysis

(a) (b) (c)

Figure 5.14.: Comparison of views of different exploration schemes using a 3D perspective. The original
graph can be found in Figure 3.2e. (a) InteractiveZoom – only viewing window changes,
separate Pan+Zoom, manual by the modeler – zoom out, pan, zoom in; (b) Contextual-
Zoom – no changes of the viewing window, changes in size of elements; (c) Hierarchi-
calZoom – only viewing window changes, Pan+Zoom simultaneously, semi-automatic,
abstraction until both are in view (same parent), then specialization until target node is
reached.

(a) (b)

Figure 5.15.: Exploration schemes applied to space-scale diagrams: (a) ContextualZoom, (b)
Overview+Detail. InteractiveZoom and HierarchicalZoom are depicted in Figure 5.10a
and Figure 5.10c, respectively.

94

5.5. Applications

The advanced search tool of VISUAL EXPLORER uses rich visual cues for highlighting the results and,
furthermore, applies the navigation and exploration capabilities of the tool. Thus, based on a compre-
hensive modular model, questions can be answered more efficiently.

5.5.2. Visual Correlation Using Multiple Foci and Contextual Visualization

For certain tasks the visual correlation of distinct biological entities will be of great value for modelers.
In modular models, often these entities are located at different hierarchical levels and with a high spatial
distance in the network. The direct visual correlation of entities can be achieved by the ContextualZoom
with multiple foci. As depicted in Figure 5.17, the proteins rgshc (Shc) and ras_gtp (Ras) are located
at different locations in the hierarchy. However, by applying the ContextualZoom both modules can be
simultaneously displayed, and thus, visually correlated without loosing much context. The proteins
rgshc and ras_gtp are also the elements of the local views in the zoom sequence in Figure 5.5.

(a) (b)

Figure 5.16.: Search the modular EGFmodel using highlighting and interactive exploration schemes. The
current display options are ‘Highlight’ and ‘Text List’; the interactive exploration scheme
is ‘HierarchicalZoom’. (a) Search dialog and results list, and search results in the network
context. (b) Detailed view of the search results.

5.5.3. Topology-Aware Exploring of the Local Context

Sometimes it is very difficult to follow an edge through the hierarchical structure because the biological
entities belonging to this edge are at different hierarchical levels or have a high spatial distance in the
network layout. Some techniques exist, e. g., as described in Moscovich et al. [134]. In VISUAL EX-
PLORER different strategies are provided to explore the local context of an edge. The different interaction
mechanisms are using the HierarchicalZoom and are described in the following list. For an illustration
see also Figure 5.18.

95

5. A Visual Interface for Interactive Exploratory Model Analysis

Figure 5.17.: ContextualZoom using the Focus+Context approach. Protein rgshc (Shc) and protein
ras_gtp (Ras) are emphasized by increasing their size. All remaining elements are de-
emphasized (decrease in size or hidden).

Zoom to Source. By clicking on a reaction edge defined between entities, this strategy automatically
zooms from an arbitrary viewing window WA to the source entity focused by a local view WS .
The source entity is displayed enlarged.

Zoom to Target. By clicking on a reaction edge defined between entities, this strategy automatically
zooms from an arbitrary viewing window WA to the target entity focused by a local view WT . The
target entity is displayed enlarged.

Zoom along Edge. By clicking on a reaction edge defined between entities, this strategy automati-
cally zooms from an arbitrary viewing window WA to the source entity rendered by WS . This
follows the movement of the viewing window along the path in edge direction until the target en-
tity, rendered by WT , is reached. The HierarchicalZoom introduces some intermediate viewing
windows WI .

96

5.6. Conclusions

For this purpose, animated ‘flights’ (moving the viewing window along the path) are applied. They also
consider bend points of polylines. These methods do not preserve the context but are topology-aware
by using the HierarchicalZoom and the route of the edge. They are performed in real-time and use the
optimized version of the non-linear animation function already mentioned in Chapter 3, Section 3.3.4.1.

Figure 5.18.: Exploring the local context of an edge using the HierarchicalZoom with different options:
zoom to source destination (from WA over WI to WS), zoom to target destination (from
WA over WI to WT), and zoom along an edge (from WS over WI to WT , based on the
edge geometry including bend points).

5.6. Conclusions

Appropriate interaction mechanisms are an essential foundation for complex visual representations and
their exploration. In this chapter different interactive exploration schemes are presented. Most of them
are based on well-known navigation techniques used in other tools such as the Overview+Detail ap-
proach. But all of them are adapted to handle hierarchical structures – they facilitate interactive vi-
sual exploration of modular models specified in MDL. In this way, model parts can be visually pre-
sented in the context of the entire modular system. This can be provided by either spatial separation
(Overview+Detail), temporal separation (InteractiveZoom, HierarchicalZoom) or integration (Contextu-
alZoom). Moreover, the interactive exploration schemes can be combined to improve the navigation and
exploration process and provide flexibility for multifaceted tasks in systems biology. For instance, an
ContextualZoom can be applied to remain the related context. If the context is not necessary anymore, a
HierarchicalZoom can be performed to have a quick view of the further details.
Applying the HierarchicalZoom, structural features of the modular model can be used to navigate on
comprehensible paths through the hierarchical structure. This helps users to build up a mental map and,
finally, ensures their orientation in complex structures of signaling models. A particular focus is on the

97

5. A Visual Interface for Interactive Exploratory Model Analysis

edges of the network. In signal transduction, they represent relations (e. g., interactions) and are often
much more complex than in other domains.
All interactive exploration schemes are elaborated to work with complex structures of modular models
and are integrated in VISUAL EXPLORER. Shortcuts and mouse controls for the provided exploration
schemes are compiled in Appendix C, Table C.1.

98

All communication between the readers of an image and the
makers of an image must now take place on a
two-dimensional surface. Escaping this flatland is the
essential task of envisioning information for all the
interesting worlds (physical, biological, imaginary, human)
that we seek to understand are inevitably and happily
multivariate in nature. Not flatlands.

Edward R. Tufte [197] CHAPTER 6

Visual Scenarios

The interactive exploration schemes described in the previous section modify either the scale of the
view (i. e., zoom level) or the scale of individual elements. This results in different views and varying
sizes of the geometric objects within these views. However, the interactive exploration schemes do not
primarily define how geometric objects are rendered, for example, the color of the object. Nevertheless,
the visual appearance of elements is certainly an essential prerequisite for encoding and interpreting
different properties of the model. Thereby, in systems biology, visual properties often have pre-associated
meanings, for instance, red or green is used to indicate under- and over-expressed elements in microarray
data analysis.
According to the visualization pipeline (cf. Chapter 3, Figure 3.6), there are several essential steps for
obtaining a desired visual representation: In the first, data must be analyzed, filtered and focused. These
operations are often necessary to prepare the data for adequate visualization. The most important and
critical step in this process is the mapping from arbitrary datasets (e. g., in the form of numerical values)
to visual properties of the element such as node shape, node color or line width. After mapping, often
an appropriate layout must be found. In practice, this can be performed, for example, by adjusting an
existing layout. Finally, different user interactions must be defined. They describe in which way the
modeler can interact with the data and its visual representation.
In this chapter Visual Scenarios1 are introduced – a mechanism to encapsulate different visual represen-
tations, their mappings, adequate filters, the overall layout strategy and appropriate exploration schemes.
First, the research problem is outlined. Then the general idea of visual scenarios is introduced. For illus-
trating this idea, two types of visual scenarios – predefined and user-defined – are introduced, and then
several visual scenarios are described in more detail. Finally, some applications using different visual
scenarios are presented.

6.1. Research Problem

A primary aim in visualization is to define an adequate visual representation for a particular modeling
task. Some modeling tasks need a common or standardized representation such as in textbooks or as
provided by SBGN. For instance, when a model has to be exchanged between different scientific groups,

1A scenario is a use case with a special intention, goal or set of tasks. This work deals with visual representations of models.
Accordingly, visual use cases are called Visual Scenarios.

99

6. Visual Scenarios

standardized visualizations are essential for providing a common basis for maintaining the mental map
and supporting a small cognitive load (cf. Chapter 3, Section 3.5.2.1).
Besides the trend towards standardized representations [114], visualizations must also be highly flexible
because data characteristics and modeling tasks widely differ. Often the meaning of ‘adequate’ depends
on the modeler and the scientific environment. Hence, visualization of network elements needs to be
customizable to individual requirements and preferences [111]. For instance, some modelers want a
particular color scheme applied to the network elements for highlighting a certain biological phenomena.
Others desire a specific set of shapes for the different molecules depicted. Furthermore, modeling and
analysis tasks change frequently. For instance, initially the modeler wants to emphasize nodes that meet
a certain condition, for example, over-expressed elements in microarray data analysis. In a later step,
the modeler becomes aware of some interesting elements and wants to explore the local network of
one of these elements in context of the whole network. Therefore, complex visual settings for different
modeling tasks should be switched between easily and with a direct visual feedback.
Typically, in the context of systems biology, visualization rules are defined as hard coded (i. e., in a pro-
grammatic manner). However, the definition of an adequate visual representation cannot be performed
by the software engineer because only the modeler knows the appropriate visualization in the current
context. However, the modeler has no or only a few options for direct interaction and manipulation. Fur-
ther, most of the visualizations are designed for a restricted set of data using very specialized methods.
It provides less visual flexibility regarding changes in the modeling task. Hence, a high flexibility in
visualization is needed to allow the integration of new data coming from in-vivo, in-vitro and in-silico
experiments.
In summary, the following list gives relevant requirements for a flexible visual representation of modular
models (some are taken from Droste et al. [50]):

VS1. Simplicity: Convenient and intuitive customization of visualization using GUI components.

VS2. Completeness: Support of the (mostly) complete ‘visual property set’ provided by the particular
tool. Additionally, other components affecting the visual representation such as filter options,
layout and exploration strategies should be provided.

VS3. Flexibility: Support of different mapping schemes for different types of data, for example, contin-
uous, ordered, categorical (cf. Chapter 3, Section 3.3.3.2).

VS4. Abstraction: Support of modular models and usage of different abstraction levels in order to hide
complexity or show different aspects of datasets.

VS5. Responsiveness: Simple and immediate switching between different visual settings in order to deal
with frequently changing requirements.

VS6. Scope: Support of pre-defined and user-defined visual settings.

Recently, two different approaches are presented that allow the modeler to access and directly manipulate
the visual representation of elements in an interactive manner2. This is realized either using a GUI or a
scripting language.
The first approach is called VIZMAPPER, a feature of the CYTOSCAPE tool [174]. Here, the visualiza-
tions can be customized by several GUI components. The VIZMAPPER is a visual mapping system that
controls the visual properties of network elements according to different datasets.

2The necessity of an interactive tool was already pointed out by Kumar et al. [111].

100

6.2. Concept

The second approach is introduced by Droste et al. [50, 51]. For the tool OMIX, a scripting language, the
OMIX VISUALIZATION LANGUAGE (OVL) was developed in order to give the modeler highly flexible
access to visual properties. An OVL script can be created by using a development environment that
supports the modeler in scripting appropriate visualizations.
Both approaches allow the exchange of visual styles between different models. For that, the VIZMAPPER

uses a special file with the definition of all visual styles; OMIX uses different OVL scripts. However, in
spite of the great flexibility of a scripting language, it would be preferable to use a GUI-based approach.
Usually, modelers are not well trained in scripting visual styles using a programming language, and there
is no direct visual feedback for the visualizations to be created.

6.2. Concept

As stated in the previous section, one of the main motivations for this work is the fast and convenient
switch between different visual configurations or settings. When the modeler is working on a modeling or
analysis task very intensively over a long period, they usually create complex visual settings that support
the efficient processing of the task. These settings are lost when the modeler changes the modeling task.
Then this happens, the modeler has to create all of the visual settings again when continuing with the
previous modeling task. An improved way would be to encapsulate all of the settings needed to reproduce
the customized visual representation in one configuration and to call a single action to generate it.
Based on the approach of the VIZMAPPER, a new software component is developed within VISUAL

EXPLORER. It introduces Visual Scenarios (VSs), a mechanism for encapsulating visual configurations
or settings for a customized visual representation. VSs are a way towards a more transparent definition
of specific visual settings that can be modified by the modeler. A central component of the VS approach
is a graphical interface for the flexible and intuitive handling of visual properties. Moreover, according
to the visualization pipeline described in Chapter 3, Section 3.3.2, the visual appearance of a network
can be influenced by additional components such as different filter options, a layout strategy or several
exploration schemes applied by the modeler (Sections 6.2.2 and 6.2.3). Thus, a customized, visual
representation may depend on several components. This can be seen as an extension to the VIZMAPPER

approach. Moreover, the VS approach supports modular models, for example, by special handling of
important visual properties like scale or width (Section 6.2.4), and two different scenario types which
reflect the trade-off between standardization and customization (Section 6.2.5).
In this sense, VSs are an attempt to combine the different components in a convenient form. The cen-
tral component of the VS approach is the flexible and intuitive handling of visual properties which is
described next. Thereafter, further components of VSs are introduced.

6.2.1. Visual Mappings Using Transfer Functions

One of the most important components is the visual mapping of metadata to visual properties of the
network. It refers to the ‘Mapping’ step in the visualization pipeline (cf. Chapter 3, Figure 3.6).
As illustrated in Figure 6.1, arbitrary metadata of the model (e. g., expression data, reaction type or
compartment location) is mapped by specific transfer functions3 to visual properties of the graph element.
For instance, the modeler needs to differentiate certain molecule types which are defined in the metadata.
By using a discrete transfer function the modeler can define an appropriate border color for each type
of molecule. In another example the modeler performs some analysis using the underlying graph and

3They are not related to the transfer functions used for distortions in graphical fisheye views or bifocal lenses described
in Leung and Apperley [116].

101

6. Visual Scenarios

computes the degree (i. e., connectedness) for each species in the network. Using a continuous transfer
function the modeler is able to map these connectedness values to the fill color of the respective species.
The visual mapping component M of a visual scenario is defined by a finite set of mappings M . A
specific mapping m ∈ M = {PD, tf, PV } consists of a set of metadata properties PD; a transfer
functions tf with tf ∈ TF = {direct, discrete, continuous}, and a set of visual properties PV . The
mapping process from the metadata to visual properties is achieved by specific transfer functions. They
are described in the following list (adapted from the VIZMAPPER):

Direct With the direct transfer function tfdirect the metadata are directly passed to the visual property of
the graph element. This is useful for labeling nodes and edges. For example, the name or identifier
of a molecule is directly visible as the text label of the related node (Figure 6.1a).

Discrete Using the discrete transfer function tfdiscrete, the metadata are mapped to discrete values of
the visual property. This works on the basis of a lookup table where for each piece of metadata
gi, a value vi is stored. The related function is vi = f(gi). For example, different molecule types
form a set of groups. Each group is mapped to a discrete color of the node borders (Figure 6.1b).

Continuous Applying a continuous transfer function tfcontinuous, numerical metadata can be related
to visual properties that are continuous in nature such as a color gradient. The interpolation does
not necessarily have to be uniform – it can also be non-uniform using interpolation points. For
instance, the connectedness value can be mapped to node fill color using a red-blue gradient.
(Figure 6.1c).

VISUAL EXPLORER supports the mapping to a wide variety of visual properties, which improves the
flexibility and efficiency in encoding (requirements VS2 and VS3). For a comprehensive overview of
supported visual properties of network elements, their related data types and feasible transfer functions,
see Appendix B, Table B.2. For the relative effectiveness and efficiency of different visual properties see
Chapter 3, Figure 3.8.
The visual settings are configurable and can be fine-tuned by the modeler via several GUI components.
These components facilitate the selection of desired metadata, and the adjustment of the transfer func-
tions and visual properties in an interactive and convenient way (requirements VS1 and VS5). So initially,
a visual scenario (VS) is defined by vs ∈ V S = {M} with a visual mapping component M. When the
component M is empty, a default mapping component is used.

6.2.2. Filter and Analysis

As described before, a VS includes the definition of a set of transfer functions for changing visual prop-
erties of the network. Along with these visual mappings also an appropriate filter mechanism, and
necessary analysis on top of that filtered dataset can be defined. Both components, filter and analysis
refer to the ‘Analysis’ and ‘Filtering’ steps in the visualization pipeline (cf. Chapter 3, Figure 3.6). They
are performed on data operators which change the raw data and generate a new dataset [35]. Filter op-
erations change the topology of the network, for example, through addition, removal or replacement of
elements (Figure 6.2a). For instance, terminal nodes can be removed in order to have a clearer visual
representation.
VSs can also have a component for analysis purposes where specific properties are computed before the
actual visual mapping (using transfer functions) takes place. These necessary computations are based
on the filtered data (Figure 6.2b). For instance, the connectedness value for each node in the network
is computed and stored for further processing. Of course, this computation is required whenever the
topology of the network is changed. Another example is the computation of the hierarchical level LT

102

6.2. Concept

(a)

(b)

(c)

Figure 6.1.: Arbitrary metadata of the model (e. g., type of molecule) is mapped by a transfer function
to the visual properties of the element (e. g., node border color). Thereby, different transfer
functions can be used for several data types: (a) direct, (b) discrete, and (c) continuous
transfer function.

of elements. Thereby, the values are computed only once because the structure does not change and the
calculation is independent of user interactions. In contrast, the calculation of the distance of each element
in the network to the current focus depends on user interactions. Hence a computation of the distance
values is performed every time, a new element is focused. According to that, the former definition of a
visual scenario (VS) can be extended by a filter component F and an analysis component A. This results
in the following definition: vs ∈ V S = {F,A,M}. F and A can be empty. These additional components
fulfill the requirement VS2.

6.2.3. Layout and Exploration Strategy

In addition to the filter and analysis components, a layout strategy and a particular exploration scheme
can be defined in a VS. Both components operate on the view data; that is, they do not change the under-
lying dataset [35]. For the layout component L, in principle, all provided layout strategies can be used
such as orthogonal layout or flat layout (Figure 6.2c). Furthermore, it is possible to define an interactive
exploration scheme for a specific VS. This is handled using a separate component E (Figure 6.2d). The
modeler can choose from different interactive exploration schemes such as InteractiveZoom, Contextu-
alZoom or HierarchicalZoom. Finally, a visual scenario (VS) is defined as a tuple of five components:

vs ∈ V S = {F,A,M,L,E} (6.1)

103

6. Visual Scenarios

The VS includes a filter component F, an analysis component A, a visual mapping component M, a
layout component L, and a component for exploration themes E. Additional to F and A, also L and E

could be empty. For instance, a layout could take a long time depending on the network complexity and,
therefore, the layout component in the VS definition can be defined as empty.

The components are ordered and can be applied according to the visualization pipeline; that is, first, filter
and analysis operations, then changing of visual properties, and finally layout methods. Of course, all
provided layout methods and exploration schemes (e. g., described in Chapter 5, Section 5.2) can be used
separately via a GUI component.

(a)

(b)

(c)

(d)

Figure 6.2.: Different components are used to visually alter the network. (a) Filter operations can be
applied resulting in a different network topology. (b) Specific properties can be computed
before the actual visual mapping, using transfer functions takes place. (c) Provided layout
methods can be used to alter the positions of network elements. (d) Exploration schemes
such as ContextualZoom or HierarchicalZoom can be chosen. (a) and (b) operate on the
dataset whereas (c) and (d) perform on the view.

104

6.2. Concept

6.2.4. Visual Mapping in Modular Models

In the context of modular models the mapping of metadata to visual properties is of high importance
because network elements and hence their visual properties are located in a hierarchical and nested struc-
ture. In the following, some visual properties and their hierarchical handling are described (requirement
VS4).

Scale In VISUAL EXPLORER scaling is a central method. As mentioned in Chapter 4, Section 4.2,
nodes and edges are scaled in relation to their location in the hierarchy. For that, the same, default
scale factor for each level is used. This represents the inherent scaling within the view of the
modular model. A new visual property ‘scale’ is introduced that can be accessed and managed
by VSs. Hence, the size of an element in the hierarchy can be modified by that property. The
scale property is applied recursively. Thus, it defines not only the size of a certain element but
also the size of all its subelements. When mapping a dataset to the dimension of elements, it is
advantageous to use the property ‘scale’ instead of the property ‘size’ because the property ‘scale’
is independent of the hierarchical level of an element.

Width According to the scale of the complete element, also the thickness of edges or node borders is
scaled in order to prevent unwanted occlusions. However, in hierarchical views this is not adequate
because lines with a broad line width located on a high level in the hierarchy can occlude elements
completely on lower hierarchical levels. See Figure 6.4a for an example. In order to ensure the
visibility of all entities without occlusion, lines are always rendered with a default constant width,
in all hierarchical levels and independent of the zoom level4. The general concept is illustrated
in Figure 6.3. An example with fixed line width is given in Figure 6.4b. To emphasize different
quantities encoded in the visual property ‘line width’, VISUAL EXPLORER provides multiples of
the default constant line width.

Transparency There are different ways for handling transparency in hierarchical structures. In VI-
SUAL EXPLORER transparency of an element is propagated to all of its submodules. That means
the transparency of an element cannot be set by an absolute value, but is rather a combination of
all transparency values of its parent modules – it is accumulated throughout the hierarchical levels.
Such handling simplifies the setting of transparency in hierarchical structures.

6.2.5. Pre- and User-Defined Visual Scenarios

In order to cope with the trade-off between standardization and customization, predefined and user-
defined visual scenarios are introduced. Predefined VSs, hereafter referred to as global VSs, are stan-
dardized configurations or settings that produce similar visualizations in similar semantic situations.
They ensure homogeneous views for common modeling and analysis tasks and also provide assistance
for the inexperienced modeler. As described in Chapter 3, Section 3.5.2.1, they can be used to have
nearly the same visual starting point for the same task. From a particular, standardized view the modeler
can perform user-specific tasks. They are useful to build a mental map. Using global VSs the modeler
can save time and effort required to become familiarized with the visualization. Thus, the modeler has
more time to decipher the information of interest. In order to ensure availability and integrity, global VSs
are predefined in VISUAL EXPLORER and are not editable by the modeler.
However, for some modeling or analysis tasks the predefined or default visualization is not applicable or
not appropriate. For these cases a global VS can be further refined. Since global VSs are not editable,

4Working with fixed line width is also common practice in software for computer-aided design.

105

6. Visual Scenarios

Figure 6.3.: In VISUAL EXPLORER line width and border width are independent of the zooming level of
the viewing window (cf. Chapter 3, Figure 3.12). While zooming in, the width of lines and
borders remain constant. The viewing window is colored in red.

(a) (b)

Figure 6.4.: Handling of line and border width in modular models. (a) Lines are scaled the same way as
modules in the hierarchy. Hence, the line width is not constant and occlusions may occur.
(b) In VISUAL EXPLORER the line width is kept fixed throughout the hierarchical levels.

the refinement can only be performed by duplicating the VS and modifying the instance as desired.
Scenarios that are instantiated from global VS are called user-defined VS, hereafter referred to as local
VSs. In contrast to global VSs, local VSs can be defined and modified by the modeler. For instance, each
of the predefined transfer functions can be changed in order to customize the visual representation to the
current modeling or analysis task. For that, all three transfer functions (direct, discrete and continuous)
and the complete set of visual properties can be used. The separation into global and local VS fulfills the
requirement VS6.

106

6.3. Specific Visual Scenarios

6.3. Specific Visual Scenarios

This section is concerned with specific global VSs developed in this thesis and adjusted for use with
modular models. First, VSs for logical and dynamic models are covered. Then, three different examples
for depicting structural properties of the modular model are introduced. Furthermore, how local VSs can
be defined, is discussed.

6.3.1. Visual Scenarios ‘Dynamic Model’ and ‘Logical Model’

The aim of the VS ‘Dynamic Model’ and the VS ‘Logical Model’ is to apply an adequate visual repre-
sentation to dynamic and logical models, respectively.
The VS ‘Dynamic Model’ is dedicated to dynamic models. The main visual features of this VS are
described in Chapter 4, Section 4.3. It is defined by vs ∈ V S = {M,E} whereas component M is
described in Chapter 4, Sections 4.3.1 and 4.3.2, and component E is defined as HierarchicalZoom.
Components F, A and L are not defined.
As mentioned in Chapter 4, no standard for the visual representation of logical models exists. Hence, an
intensively used global VS is the VS ‘Logical Model’. It serves as a common starting point when mod-
eling with the logical formalism. The main features of this VS are described in Chapter 4, Section 4.4.
By encapsulating all necessary transformation steps and visual mappings, it ensures the formalized vi-
sual representation of logical models in VISUAL EXPLORER. Its visual representation is defined by
vs ∈ V S = {F,M,E,L} whereas the component F is described in this section, the component M is
described in Chapter 4, Sections 4.4.1 and 4.4.2, the component L is defined as orthogonal layout (op-
tional), and the component E is set to the HierarchicalZoom. The component A is not defined. In the
current implementation, the VS ‘Logical Model’ is the only VS that uses a filter component F.
It is important to note that the VS ‘Dynamic Model’ and the VS ‘Logical Model’ are independent of a
specific model. They only depend on the model type ‘Dynamic Model’ and ‘Logical Model’, respec-
tively.

6.3.2. Visual Scenario ‘Hierarchical Level’

When using modular models the hierarchical level of a certain module is an important property. It
describes the hierarchical distance – the depth of the element in the hierarchical structure5. In systems
biology, the hierarchical level can be used to characterize the level of abstraction of the biological knowl-
edge. As described in Frisch et al. [60], when navigating through a modular model, it is often difficult
to determine which is the hierarchical level currently depicted6. A clear allocation of network elements
according to their hierarchical level is missing. This can be solved by visual cues for depth in a 2D
network. Thereby, the hierarchical levels of such network elements are encoded by different colors. As
shown in Figure 6.5a, clear allocation of elements can be established by encoding them with a unique
background color according to their hierarchical level. By interpolating between colors (i. e., by creating
a color gradient) hierarchical levels can be distinguished very easily. This can imply depth cueing and
is beneficial for allowing a quick navigation to higher or lower levels. This kind of visual feedback is
of special importance in modular models. In these models often the module borders are clipped, just
showing a portion of the network, for instance, a local view generated by an InteractiveZoom operation
(Figure 6.5b). Then the inclusion relations between different modules are not clear. With color cod-

5As described in Chapter 3, Section 3.1.2 and Chapter 4, Section 4.2 the hierarchical level LT of a module is defined by the
length of the shortest path between the root module and the module itself.

6Module size is not necessarily an indicator for the hierarchical level.

107

6. Visual Scenarios

ing it is apparent how these modules relate to each other, for example, two reactions are on the same
hierarchical level or have a parent-child relation.

In some use cases also the hierarchical level of edges is important. For instance, in Figure 6.5b edges
are clipped; that is, their end nodes are not visible. Then without having a visual indication it is nearly
impossible to determine or correlate the hierarchical level of these edges. Within the modular structure
the end nodes of an edge may lie on different hierarchical levels. Therefore, first the conjoint parent of the
end nodes is computed. Hereafter, the hierarchical level of this parent is used to define the hierarchical
level of the corresponding edge7. Then these values are mapped to the color gradient in order to indicate
the hierarchical level of edges.

(a) (b)

Figure 6.5.: The hierarchical levels in the network are encoded using a gray color gradient. For modules
low saturation means low hierarchical level, high saturation means high hierarchical level;
for edges the gradient is reversed. (a) A view of the composite module raf_ras. (b) A
local view of (a). Although the modules and links are clipped, the association to a specific
hierarchical level is straightforward.

Visual encoding of hierarchical levels is successfully used also in other applications. These applications
include TREEMAPS [175] or diagramming software such as TOMSAWYER [193] or YED [205, 211].
However, none of the applications is dedicated to the domain of systems biology and visually encodes the
hierarchical level of edges. However, the encoding of hierarchical levels should be displayed temporally
in order to be oriented within the hierarchical structure; it includes a lot of different color cues and
reduces the overall clarity of the visualization.

All the functionality described above is defined in the VS ‘Hierarchical Level’. It defines a component A
by calculating the value of the hierarchical level of each network element, a component M as described
above, and a component E as HierarchicalZoom. The components F and L are not defined.

7Note, the conjoint parent must not necessarily the parent of one of the end nodes.

108

6.3. Specific Visual Scenarios

6.3.3. Visual Scenario ‘Connectivity’

A classical property in graph theory is the degree of a network element, which was already discussed in
Chapter 3, Section 3.1.2. In cellular networks, this property is important and can be used to characterize
the degree of connection or the connectedness of biological entities. Highly connected entities can be
biologically interpreted as hubs. In the majority of cases, these hubs belong to the core functions and are
essential for the survival of the cell [58, 90].
Each node is ranked by a connectedness value k. In dynamical models the directionality information is
not given in an explicit form. In a trivial case, k is equal to the number of adjacent nodes. In logical
models with directionality information, a trivial solution for the computation of k would be to define it
as the sum of the number of adjacent nodes that are source nodes kin and target nodes kout, as stated in
Equation 6.2.

k = kin + kout (6.2)

However, this generalized form is not appropriate for modular models, because in modular models,
defined by MDL, several nodes require special treatment – they have to be filtered. For instance, in
dynamic models specific network elements such as of the class reaction, adapter, terminal
should not be considered in the computation. A more sophisticated computation should also apply to
logical models. Network elements such as of the class terminal should not be considered.
Moreover, link nodes as part of links in dynamic models and gates (e. g., and or or) in logical models,
can split or aggregate ‘reactions’ and are not source or target nodes in a biological sense. Often, these
structures result in complex paths across different hierarchical levels. Thus, they have to be evaluated
accordingly. In this way, connectedness is defined as a special variant of the property ‘degree’.
The value for the connectedness of a network element is computed as follows: Starting from the par-
ticular element, all adjacent edges are computed. For each edge the adjacent node is computed. If the
adjacent node is an invalid element, this procedure is repeated until a valid network element is found.
The overall algorithm is repeated for all elements in the network that need a connectedness value k. Net-
work elements not considered in the computation (invalid network elements) are listed in Appendix B,
Table B.5.
After computation8, the values of the connectedness are mapped to a color gradient. By default, the most
highly connected modules (with a high connectedness value) are encoded in red; unconnected modules
are encoded in blue. An example is shown in Figure 6.12c. From a perceptual point of view, the highly
connected modules in red are more emphasized than modules in blue.
The computation and highlighting of the connectedness values is performed by the VS ‘Connectivity’. It
is defined by the component A calculating the connectivity value of each network element, the component
M as described above and the component E defined as HierarchicalZoom. The components F and L are
not defined.

6.3.4. Visual Scenario ‘Interaction Distance’

Similar to the two previous visual scenarios, the VS ‘Interaction Distance’ aims at emphasizing structural
properties of the network or its elements. It focuses on the neighborhood and interdependencies of a
specific element. The local network around an element of interest is emphasized and at the same time
this information is embedded in the context of the complete network. In this way, the modeler only pays
attention to the neighborhood of a specific network hub [200]. This property was already mentioned in
Chapter 3, Section 3.1.2.

8The computation is performed only once because the structure of the modular model does not change.

109

6. Visual Scenarios

Sometimes this type of distance is also referred to as semantic distance since it does not represent the
geometric distance between two elements, but rather the semantic relation based on their proximity. For
instance, two elements can have a high geometric or spatial distance in the network layout, but have a
low interaction distance because both elements are directly connected. From a semantic point of view,
they are very close.

The computation of the distance values, and handling of visual properties and interaction patterns is de-
fined by the VS ‘Interaction Distance’. The VS is defined by the component A that computes the distance
values for the network elements as described in Section 6.3.4.1, and the component M as described in
Section 6.3.4.2. The components F, L and E are not defined.

In the next subsections, the VS ‘Interaction Distance’ is discussed, in particular with regard to the com-
putation of the values for the interaction distance, the visualization and issues related to modular models.

6.3.4.1. Computation of the Values Defining the Interaction Distance

Computing a local network and visualizing it is straightforward and provided by some tools, for instance,
described in Toyoda et al. [195]. However, when dealing with modular models, the algorithm must
consider the modular and hierarchical structure.

The computation of the local network of relationships is based on two input parameters: the focus module
mfocus which is the element of interest and the interaction distance dmax defining the n-th degree of
the neighborhood. Both parameters can be adjusted by the modeler, whereas mfocus can be selected
interactively. The output is a local network (neighborhood) with the given distance dmax. The parameter
d is used to assign the current computed interaction distances to each element.

As already mentioned, for the computation of the local network, the modular and hierarchical structure
as well as domain-specific characteristics must be considered. For dynamic models, for example, link
nodes, and elements of the classes reaction, adapter, help and terminal are considered as not
valid for computing the interaction distance. This also applies to logical models where gates (e. g., and
or somehow) are not required for measuring the interaction distance of elements. These aforementioned
elements and further elements, compiled in Appendix B, Table B.5, are not relevant in the context of
signaling networks.

By definition, mfocus has an interaction distance of d = 0. Each node that is directly connected to
mfocus and considered as valid, gets a value for the interaction distance of d = 1 assigned; that is, the
interaction distance will be increased by one. The same applies to edges: for adjacent edges of mfocus

an interaction distance value of d = 1 is assigned. Then each of the adjacent nodes is analyzed and the
interaction distance d of its direct edges and nodes is set. The network structure is recursively traversed
until a valid elementary module is reached.

The procedure is illustrated in Figure 6.6 applying the interaction distance of dmax = 2. The focused
node mfocus has an interaction distance of d = 0. All adjacent modules are computed from that node.
Thereby, the hierarchical structure (in particular composite modules and terminal nodes) is considered.
The computation results in a reaction module with interaction distance of d = 1 within a composite
module. Now, the next adjacent modules are computed. The adjacent element is a link node (depicted
by a circle). This type is not considered in the computation. Thus, the next adjacent modules are deter-
mined. Since the link node has two adjacent edges, both modules are considered – one located at the
same hierarchical level; another located one hierarchical level below, within a composite module. Both
modules have an interaction distance of d = 2 assigned. All remaining modules with d > dmax (in
this case: d > 2) are treated equally and are given a value of d = −1. Then the procedure is finished.

110

6.3. Specific Visual Scenarios

The general assignment is given by the piecewise function in Equation 6.3 where d ∈ N0 ∪ {−1} and
dmax ∈ N.

f(d) =

⎧⎨
⎩
d if 0 ≤ d ≤ dmax

−1 if d > dmax

(6.3)

In Figure 6.7, the TCR network with different values for the interaction distance is presented. For in-
stance, the modeler is interested in a protein and its interdependencies and adjacent interaction partners.
As clearly seen in Figure 6.7a, the adjacent proteins are not in the geometric neighborhood, but often
have a high spatial distance in the network. In Figure 6.7b, the activation of kinase jnk and its link to a
direct output is shown.
Allowing the modeler to select an additional element provides additional options, for example, to remove
old subnetworks from the view or to add all neighbors to the current view. Another option would be to
calculate the shortest path9 between the former and current focus element and add all elements on that
path (and their local neighborhood) to the current view.

6.3.4.2. Visualizing the Neighborhood

The resulting local network is highlighted by a color; that is, the interval |0..dmax| is mapped to a
color gradient using a continuous transfer function. By default, the color gradient ranges from dark
blue for d = 0 to light blue for d = dmax. In other words, the saturation of the color is reduced
(faded out) with every iteration. In order to improve the visual appearance, additional visual properties
are modified within the VS. In particular, these are edge width, node border width and transparency.
Network elements with a low value (i. e., strong relation) are emphasized by a high width and a low
transparency. All elements with d > dmax (i. e., the network context) are de-emphasized by rendering in
light-gray. Additionally, they are rendered with small line width and in a semi-transparent fashion. An
example is presented in Figure 6.8.
From a perceptual point of view, the combination of these different mappings makes sense in order to use
stronger visual cues for emphasizing elements of interest and the less effective cues for de-emphasizing
elements out of scope. In this way, by selecting a certain module, the local interaction network is depicted
very prominently in the context of the complete network.

6.3.4.3. Considering Hierarchy

When focusing on a specific element in the network, adjacent elements must not be located at the same
hierarchical level; they can be placed in another module linked through terminal interfaces. However,
these relationships should be depicted according to the interaction distance. Therefore, the modeler can
choose from different options: (i) show only path elements defined either in the same module or in parent
modules, (ii) show only path elements defined either in the same module or in submodules, or (iii) show
all path elements independently of any inclusion relation.
In Figure 6.8a, the first option is depicted where all relationships are considered except those in par-
ent modules. In contrast, in Figure 6.8b the third option is used to visualize structures independent of
submodules and parent modules.

9For this scenario the graph property ‘path’ discussed in Chapter 3, Section 3.1.2 is used.

111

6. Visual Scenarios

Figure 6.6.: Computation of the interaction distance dmax = 2 with all intermediate steps. The process is
illustrated using the network example from Figure 2.5. For the sake of clarity, the interaction
distance of each node and edge is given as label text. A negative 1 (-1) shown in the label
means d > 2. A green gradient is used for emphasizing the local network.

(a) (b)

Figure 6.7.: Different values for the interaction distance dmax applied to the TCR model. The input
element of receptor molecule cd28 is selected as the entity of interest by the modeler (ele-
ment under the mouse cursor). (a) dmax = 4, (b) dmax = 7. The figure shows how the local
network is evolved.

6.3.4.4. Consider Directionality of Interactions

There also exist the possibility to consider the directionality of interactions in the computation of the
interaction distance10. In this way, the logical and functional order of cellular processes, for instance,
upstream or downstream processes in cell signaling, can be depicted. An example is given in Figure 6.9.

10This is based on directed edges and only applicable for logical models.

112

6.4. Applications

Considering the directionality of interactions, the highlighted network can be biologically interpreted as
a flow of reaction information downstream; it shows the effects of an element in focus on other elements
in the network.

6.3.4.5. Further Options

In Figure 6.10, different further options for handling hierarchical relations are illustrated. One option is
handling multiple foci. This can be performed by defining additional elements as focused nodes. For each
element the local network with the current interaction distance is calculated. As shown in Figure 6.10a
this gives separated or connected local networks of as many foci as defined by the modeler. In this way,
a local network can be expanded by defining, for example, a peripheral node as an additional focus node
in order to analyze network-wide interdependencies.
Another option is to use the shortest path between elements in the network. As shown in Figure 6.10b the
modeler can define two elements and the shortest path between them can be computed automatically11.
All nodes within this shortest path are used as focused elements. From each of the focused elements a
local network is computed using the defined interaction distance dmax. In this way, several local networks
can be emphasized within the entire network and the structural neighborhood can be explored effectively
and efficiently. All parameters for the different options can be configured by the modeler through a GUI

component. Related shortcuts are compiled in Appendix C, Table C.3.

6.3.5. Defining Local Visual Scenarios

Local VSs can be derived either from global VSs or from other existing local VSs, or can be defined
from scratch (using a default set of setting). In order to customize a visual representation, typically,
only a subset of the settings of a global VSs is altered. For this, the global VS is copied, the particular
mapping is changed and saved as a new local VS. For instance, in Figure 6.12d, a global VS depicts the
interaction distance using a blue gradient. In contrast, in Figure 6.11b, a local VS derived from the global
VS ‘Interaction Distance’ is shown. For this purpose, the global VS is copied, the gradient is changed to
a red color and then saved as a new local VS.
Another example is given in Chapter 4, Figure 4.15 where the global VS ‘Logical Model’ for the rep-
resentation of logical models is modified towards a more biological meaning. In particular, the visual
property ‘edge line type’ is used to change the edge appearance from polylines to curved lines. Although
the global VS ‘Logical Model’ represents a single, very specialized visualization method defined as a
global VS, it can be instantiated as a local VS and further modified. In this way, the visual properties
of the elements can be easily altered using the approach introduced. Thus, the generation of alternative
representations matching different requirements or individual preferences is straightforward.
Several examples for customized local VSs can be found in Section 6.4 or in Appendix B, Figures B.6
and B.7. As described already in Section 6.2, the process of customization is supported by comprehen-
sible and easy-to-use GUI components.

6.4. Applications

For the illustration of the applicability of VSs, in Figure 6.11, two visual scenarios of the EGF model
and, in Figure 6.12, several scenarios of the TCR model are shown. In particular, in Figure 6.11b and in
Figure 6.12d several VSs emphasizing the interaction distance are depicted. In Figure 6.12, a possible use

11The shortest path between two network elements is computed using Dijkstra’s algorithm [47]. Depending on the model type
the network is considered either as a directed or undirected graph.

113

6. Visual Scenarios

(a) (b)

Figure 6.8.: Interaction distance with dmax = 2 and focus on k3p1. Different options for handling
hierarchical relations are shown. (a) Only relationships in the same module or in parent
modules are considered. (b) All relationships are considered, also those in submodules.

(a) (b)

Figure 6.9.: Interaction distance with dmax = 2 with focus on kinase k3p1. There are different options
for directionality of interactions: (a) direction is not considered, (b) direction is considered;
for example, the upstream event to the adapter protein a1 is not part of the emphasized
network.

114

6.4. Applications

case is shown where the visual representation of the logical TCR network is adapted to different modeling
and analysis tasks. First, the network is visualized using metadata such as type of protein or interaction,
both are encoded by color (Figure 6.12b). After studying the topology of the network, the modeler may
be interested in the connectedness of all proteins in the network in order to find hubs. For that, the
modeler switches to the VS ‘Connectivity’. Hubs are immediately emphasized in red (Figure 6.12c).
Now, the modeler is interested in the local network of a specific highly connected entity. For that, the
modeler switches to the VS ‘Interaction Distance’ and selects the hub entity of interest. All adjacent
molecules within a given interaction radius are emphasized (Figure 6.12d). For such a diverse modeling
procedure, fast switching between VSs is essential.
Another use case is shown in Figure 6.11 where different VSs of the EGF model are used to encode
different distance metrics; in this case, hierarchical level and interaction distance.

6.4.1. Overlay Data in Context of Networks

As mentioned in Chapter 2, Section 2.2.1, new data can be generated from in-vivo and in-vitro exper-
iments (e. g., expression data, protein identifier, subcellular localization, function from ontologies), or
from in-silico experiments (e. g., structural, functional or dynamic properties) in order to validate hy-
potheses and predictions.
In the beginning, the model must be enriched with external data to describe properties of the model. In
most cases, the interpretation and analysis of these datasets is not trivial. Hence, an adequate visualiza-
tion of externally generated data in their related context is essential. A potential strategy is to overlay
the data on top of the complex network for their interpretation because the modeler is often familiar with
the network. In Saraiya et al. [169] it was evaluated that modelers have problems to derive meaningful
insights from the datasets without the network context. Thus, the overlay data should be interactively ad-
justed in order to obtain an adequate visual feedback. This may support the generation of new hypotheses
and knowledge.
Several research projects were published where the mapping of omics data or time-series data is dis-
cussed in general [26, 168]. There are different options for overlaying data in the context of the net-
work. Some approaches exist, which annotate network elements with numbers (e. g., in CELLNET-
ANALYZER), or subgraphics like complex glyphs or small charts for multi-dimensional data (e. g., in
VANTED, GSCOPE, CYTOSCAPE, OMIX or VISANT). The benefits are obvious: the original network
element can be preserved and the additional space for each element can be used for multi-dimensional
data. However, this approach has some drawbacks: Due to the amount of information being visualized
simultaneously the visual density is increased. This can also lead to poorer results in the interpretation
of topology-related features of the model [168]. Furthermore, the network element as well as the com-
plex subgraphics must be integrated. Thus, interrelations between the element and the subgraphics are
difficult to identify [50].
Consequently, the generated data must be integrated directly with the properties of elements (which
preserve the mental map of the modeler). In order to achieve this, a VS of choice is instantiated to a local
VS and then combined with external analysis data, for example, visual integration of a logical model
with external data. In this way, the presentation of analysis results will be more intuitive and flexible.
For instance, it is feasible to visually group identical or similar data (e. g., to depict possible correlations
between proteins or functional groups) to emphasize non-trivial or unexpected data (e. g., activation of a
certain protein that was not expected) and to de-emphasize data that are not relevant in the context of a
specific analysis (e. g., hide proteins that are not involved in a certain pathway). For instance, the state of
each protein (e. g., active or not active) after a certain simulation experiment can be mapped to the color
of the nodes in the network. In the following sections different use cases are presented.

115

6. Visual Scenarios

(a) (b)

Figure 6.10.: Interaction distance with dmax = 2 showing different options for handling multiple foci.
(a) Multiple foci on receptor molecule cd28, protein zap70 and protein jnk. (b) Shortest
path from the receptor molecule cd28 to the kinase jnk.

(a) (b)

Figure 6.11.: VSs of the EGF model encoding different distance metrics. (a) Hierarchical level LT . The
distance is encoded using a gray gradient; complete TCR signaling pathway (LT = 0),
lymphocyte-specific protein tyrosine kinase Lck (LT = 1), and more detailed information
of Lck (LT = 2 and LT = 3). (b) Interaction distance with dmax = 3; graph-theoretical
distance of each element to the current element in focus; distance is encoded using a red
gradient. The focus is on the protein LAT.

116

6.4. Applications

(a) (b)

(c) (d)

Figure 6.12.: Different VSs applied to the logical TCR model tailored to the modeling task and individual
preferences. Only part of the model is shown. (a) Local VS that represents the network in
textbook style showing only proteins, their names and relationships. (b) Global VS ‘Logi-
cal Model’ that shows a biologically intended visualization using metadata such as type of
protein or interaction. (c) Global VS ‘Connectivity’ depicting the connectedness of proteins
and other biological entities in the network. (d) Global VS ‘Interaction Distance’ by click-
ing on a certain protein (e. g., zap70), the adjacent molecules within a given interaction
distance are emphasized.

6.4.2. Visual Analysis of the Logical TCR Model

In this section the application of VSs to the logical TCR model is presented. Biological aspects of the
TCR model are described in Chapter 2, Sections 2.1.2 and 2.5.2.
In Figure 6.13, different results of structural analyses of the TCR model generated by the external anal-
ysis tool CELLNETANALYZER are overlaid on top of the network. These resulting structural network

117

6. Visual Scenarios

properties like network-wide relations are highlighted by applying different visual scenarios. Figure 4.15
in Chapter 4 shows an intuitive representation of signaling paths in the logical model using the global VS
described in Chapter 4, Section 4.4. Figure 6.13 shows the activation of receptor molecule cd28 and the
adequate representation of analysis results. Thereby, the active network (green and red nodes) is depicted
in the context of the entire network. In this way, obvious results can be depicted such as the inhibition
of the extracellular signal-regulated kinase ERK. However, even non-trivial results can be highlighted,
for example, the activation of kinase jnk was not expected, which is elucidated in the network context.
In Figure 6.13b, initial values and analysis results are presented simultaneously by encoding those using
different visual properties. Active elements are rendered opaque whereas inactive elements are rendered
semi-transparent. External data are also mapped to the edges since this is a powerful visual cue for un-
derstanding which substructures of the network are active [26]. Another example is given in Appendix B
by Figures B.6 and B.7.
As stated above, an interesting feature is the integrative representation of heterogeneous results or dif-
ferent datasets within a single illustration encoded by different visual properties. They often reveal
correlations or other relations, which are not obvious in separate visualizations per se. For instance, for
a certain protein, the initial value and the value obtained from the analysis are mapped to the node color
and the node label, respectively. In this way, multiple visual properties are used to convey the underlying
data and more information can be presented in the visualization without using complex glyphs. Hence,
only the information density but not the visual density of the representation is increased. Hence, different
facets of the cellular system and its processes can be integrated.

6.4.3. Visual Analysis of the Logical EGFR/ErbB Model

In this section the application of VSs to the logical EGFR/ErbB model is given. The biological model is
described in the Chapter 2, Sections 2.1.2 and 2.5.1. In Figure 6.14, visual scenarios of the EGFR/ErbB
model are given. Results of structural analyses are shown in the network context and highlighted using
different visual scenarios. Figures 4.14 and 4.15 in Chapter 4 provide intuitive representations of the
logical model using the global VS described in Section 4.4. The protein type is encoded by node border
color whereas the entity type (e. g., receptor, ligand or reservoir) is encoded by node shape. Activation
and inhibition is encoded by edge color combined with arrow type. Figure 6.14 depicts instantiated
local VSs that emphasize external analysis data, or important structural properties of the species such as
participation in feedback loops. In this way, the modeler is able to visually analyze which species has
a specific property. In Figure 6.14a, all species can have one of two logical states – active or inactive.
The node fill color reflects the state, namely green for an active state and red for an inactive state. For
that purpose, a discrete transfer function is used to map each activation state to a discrete node fill color
using a lookup table. In Figure 6.14b, the participation of species in feedback loops is presented12.
The ’participation’ value is mapped to the node fill color via a continuous transfer function. A red
gradient is used – dark red means high participation in loops; light red means low participation. A
species represented by a white node fill color does not participate in any feedback loop.
In summary, VSs can emphasize entities with a specific network property, but also reveals network-wide
structures and patterns. This may guide further analysis.

6.4.4. Visualization of Time-Series Data

In Figure 6.15, the logical EGFR/ErbB model is visualized applying VSs. The visual representation is
enriched with time-series data from experiments. Each subfigure shows the status of the system under

12For further information on the analyses the reader is referred to Samaga et al. [167].

118

6.5. Conclusions

investigation at a specific time point. At the beginning (0 minutes) only the protein gsk3 is active; most
of the other proteins are inactive (Figure 6.15a) Then, during the early phase (0–10 minutes) several
proteins become active and the active protein gsk3 becomes inactive (Figure 6.15b). In the later phase
(60–240 minutes) the protein gsk3 switches back to the active state, some others remain active but some
proteins become inactive again (Figure 6.15c). In the VS a certain color coding is used. Green means
the species is in an active state; red means the species has an inactive state. For species that are semi-
transparent, no analysis data are available; that is, they are not measured during the experiment. However,
the semi-transparent species are used as contextual information for the improved understanding of the
network.
The visualization using VSs can reflect the behavior of the underlying system over time and aid the inter-
pretation of experimental results. For instance, it can support the modeler in observing and understanding
changes in conditions, propagation of signals or processes of up- and downregulation in the context of
the network. Hence, the modeler can obtain a clue about the signaling processes within the cell. VSs
can be switched in a fast and convenient manner in VISUAL EXPLORER. However, so far there is no
possibility to ‘play’ different VSs at a constant frame rate in order to show animated time-series data.

6.5. Conclusions

As pointed out by Bourqui and Westenberg [26], each modeling or analysis task has its own adequate
visualization. Depending on that, the modeler should be able to define the most effective visual settings.
In this chapter, the general idea of ‘Visual Scenarios’, a mechanism for encapsulating visual settings for
a customized visual representation, is introduced. It is based primarily on the approach of the VIZMAP-
PER, but extends it by several visual properties like scale or transparency and incorporates components
for layout and exploration scheme, and the applicability to modular models. Integrating visual scenarios
into VISUAL EXPLORER, gives the modeler not only better control over the exploration schemes and the
network layout but also the ability to adjust the visual representation of the network in a very flexible
manner. This is only constrained by the available set of visual properties for the networks elements, the
number of available layouts and exploration schemes.
Several global VSs are implemented to ensure homogeneous views for common modeling and analysis
tasks where the set of visual settings is predefined. By using global VSs the researcher can be guided
in a visual sense, and saves time and effort to become familiarized with the visual representation and
the signaling processes behind it. For instance, the global VSs ‘Dynamic Model’ and ‘Logical Model’
formalize the visual representations for dynamic and logical models. Another use case of global VSs
is the analysis and visualization of structural properties. Unlike in many other tools, the analysis of the
network structure (handled, for example, by the global VSs ‘Connectivity’ and ‘Interaction Distance’) is
performed in a very interactive way incorporating the network context and the modular structure.
Global VSs can be instantiated to local VSs and further modified. They can be very easily and precisely
adapted to the specific modeling task or individual preferences. Each VS created or modified for a spe-
cific task can be saved and reused when the modeler has data with similar characteristics. It is important
to state that predefined and customized visualizations do not contradict, but rather complement each
other. For instance, a network visualized with the VS ‘Logical Model’ can be enriched with additional
datasets. This data can be visually represented by mapping it on further visual properties (by creating a
new local VS derived from the global VS). In this way, the characteristics of the global VS and the new
visual encodings can be combined.
Using VSs, the visual representation of external data in context of the network can be more intuitive
and flexible, for example, by emphasizing species that are active in a particular experimental condition
or other biological context. Integrating conditional or time-related data with the visualized network

119

6. Visual Scenarios

structure in a single view supports modelers in interpreting underlying signaling processes and may
foster new insights and knowledge.
Switching VSs is very fast and with a direct visual feedback. However, when complex layout strategies
are considered, it is difficult to meet this requirement. With that very flexible approach of ‘Visual Scenar-
ios’, the visual representations for dynamic and logical models described earlier may adapt to the SBGN

notations in order to familiarize users with the models handled in PROMOT.

120

6.5. Conclusions

(a)

(b)

Figure 6.13.: Two different local VSs of the logical TCR model in VISUAL EXPLORER showing the acti-
vation of receptor molecule cd28. The global VS ‘Logical Model’, depicted in Chapter 4,
Figure 4.15, is instantiated to a local VS. (a) Adequate representation of analysis results;
highlighting of non-trivial results (not expected was activation of kinase jnk). (b) Visual-
ization of initial values and analysis results simultaneously by encoding them using differ-
ent visual properties (initial values red = 0, green = 1; analysis results, with transparent
being not active and opaque being active). Figures courtesy of Julio Saez-Rodriguez. 121

6. Visual Scenarios

(a)

(b)

Figure 6.14.: Two different local VSs of the logical EGFR/ErbB model. They are used for visual analy-
sis. The global VS ‘Logical Model’, depicted in Chapter 4, Figure 4.13, is instantiated to a
local VS and then combined with external analysis data (visual integration of logical mod-
els with external data). (a) VS depicting states of species fixed to active (encoded in green
node color) and inactive (depicted in red node color). (b) VS for depicting the participation
of species in feedback loops using a red gradient. The darker a species is colored, the more
loops it participates in. Figures courtesy of Regina Samaga, published in [167].

122

6.5. Conclusions

(a
)

(b
)

(c
)

Figure 6.15.: Visualization of time-series data in the EGFR/ErbB network. Different time points at (a)
0 min, (b) 0–10 min and (c) 60–240 min are depicted. Underlying data courtesy of Regina
Samaga.

123

6. Visual Scenarios

124

The structure of the underlying mathematical equations is
represented but not their interpretation in their specific
application domain.

W. Wiechert et al. [204]

CHAPTER 7

Layout Strategies for Modular Models

When dealing with models describing intra-cellular processes, not only the definition of components and
their visual properties is essential but also their layout; that is, the placement of components and the
routing of edges. This is particularly important for modular models since their structure is much more
complicated. Thus, comprehensible layouts for modular model are needed for effective exploration and
navigation, and especially for the understanding of the underlying complex system.
As described in Chapter 2, Section 2.4.2, in PROMOT modular models are set up either by hand, or
obtained using the built-in SBML parser1. In the past, modular models were usually created by hand
and their layout was an integral, but also time-consuming, part of the modeling process. An example
is illustrated in Figure 7.1. In recent years, model integration has become more and more important.
For this, many models are provided in SBML format by diverse databases and internet repositories.
Currently, these SBML models have no layout. Thus, after modularization of the models in PROMOT,
an appropriate layout2 must be generated, ideally in an automatic fashion.
Although it is desirable to work with modular models, it is still necessary to ensure compatibility and
integration with tools and workflows that do not support modular modeling. This applies not only for
the mathematical model but also for its visual representation. Hence, in this thesis when dealing with the
layout of modular models the following questions are discussed:

1. How can modular models be laid out in order to emphasize their properties? How can local as well
as global structures be incorporated in the layout process?

2. Once an appropriate layout for a modular model is given, it is often also desired to generate a
flat graphical representation. This is necessary in order to present and publish it in print media or
comply with tools that work on flat models. The question is how modular models can be laid out
towards flat representations.

In this chapter, two different layout strategies for modular models are introduced that address the ques-
tions raised above.

1In order to obtain a modular model the flat SBML model has to be modularized, for example, with the method of Saez-
Rodriguez et al. [162]. For the modularization of SBML models PROMOT provides an automatic workflow.

2The layout process for modular models can be assigned to the ‘Mapping’ step in the visualization pipeline – in this case
mainly geometric mapping.

125

7. Layout Strategies for Modular Models

(a) (b) (c)

Figure 7.1.: Different layouts of the dynamic EGF model: (a) visualization of an unstructured (flat) ver-
sion using the analysis and visualization tool PAJEK [14], (b) a decomposed, modularized
version with random layout, and (c) a manual layout of the version in (b).

7.1. Research Problem

The generation of automatic layouts for modular models can be traced back to the basic problem of the
layout of compound graphs. The drawing of compound graphs has been the subject of considerable re-
search for many years. When drawing compound graphs in the context of force-directed methods [45]
the researcher is traditionally faced with two contrary approaches: local [22] and global [48, 55] layout.
The local approach calculates the layout for each subgraph independently of the global constraints. This
results in fast computations, but in low quality regarding the global structure and across different hierar-
chical levels. In contrast, the global approach considers all subgraphs across all hierarchical levels in a
single step to compute the final drawing. In general, this leads to a poor runtime but a reasonable good
layout quality. These two approaches merely mark the outer boundary of a wide spectrum of solutions.
However, there is a lack of practical solutions in-between.
In order to overcome this drawback the HyCoGLa algorithm is introduced. The core functions of the
proposed algorithm are based on the spring-embedder first introduced by Eades [53]. Therefore, in the
remainder of this thesis the algorithm is referred to as the extended spring-embedder. The basic concept
of force-directed methods, relevant extensions, advantages and disadvantages are already introduced in
Chapter 3, Section 3.2.3.
The HyCoGLa approach is aimed at fulfilling certain specific requirements which are formulated below.
Some are taken from the compiled list of aesthetic criteria in Chapter 3, Section 3.2.1.1.

• Node overlaps should be reduced (cf. C1).

• Edge-edge crossings and edge-node crossings should be reduced (cf. C2).

• The length of edges should be uniform. The deviation in edge lengths should be small (cf. C4).

• Inclusion relations (parent-child relations) should be displayed explicitly (cf. C9).

• Scaled subgraphs should be considered.

126

7.1. Research Problem

• Terminal nodes should be incorporated and constrained in their position.

• Domain-specific requirements for signaling systems such as subcellular localization should be
considered.

Another layout strategy for modular models is the flatting of the visual representation. Some research
has been done in ‘model flattening’ based on the underlying equation or graph structure [151, 155,
156]. PROMOT, for instance, facilitates the flattening of the modular model by optimizing the particular
equation set of the mathematical model. This allows the model to be used with existing simulation and
analysis tools (cf. Chapter 2, Section 2.3.3.3). Analogous to these efforts, also the visual representation
of the modular model itself should be flattened. A main characteristic of the visual representation of
a modular model in VISUAL EXPLORER is that it is displayed using a single integrated view where
elements are scaled according to their position in the hierarchical structure. Hence, elementary modules
do not have the same size (cf. Chapter 4, Section 4.2).
For exploring the model on the screen several interactive exploration schemes can be used such as those
described in this thesis. In this way, also elements on deeper hierarchical levels that are too small to be
visible in the global view can be visually analyzed in a local view. However, when printing or exporting
to a static image, interactive exploration facilities are no longer available and thus parts of the graphical
model are not accessible (cf. elementary modules of the EGF model depicted in Figure 7.1c). Therefore,
it is desired to display all elementary modules independently of their current hierarchical level in an equal
size. In this way, equivalent modules throughout the network have the same size, and thus a similar visual
emphasis level. Moreover, links between elements, for example, proteins which directly interact, are
visually easier to follow. This type of representation is commonly used as, for example, depicted in the
‘EGFR Pathway Map’ [140] created with CELLDESIGNER [63]. For a flattened graphical representation
the following requirements are important.

• In order to unify the size of elementary modules, more space needs to be allocated for each of them.
Thus, the modular and hierarchical structure is visually broken up – the network no longer expands
in depth but in breadth using more space3. In comparison to elementary modules, composite
modules have no uniform size. Their size should be automatically computed based on the bounding
box of all inner (elementary or composite) modules.

• It is necessary to unify the size of elementary modules, but it is also important to preserve struc-
tural properties of the original network layout. Constraints such as orthogonal relationships (e. g.,
non-overlapping nodes, proximity relationships) and overall graph topology [131] are crucial for
preserving the mental map.

• The transformation from the original to the flat layout should be smoothly animated in order to
maintain the visual context.

In the following, two new layout strategies are described in detail. The first approach, HyCoGLa, is
suitable for drawing modular models while emphasizing the modular and hierarchical structure. The
second approach, FlatLayout, is able to transform a modular layout representation into a flat layout
representation in order to be compatible with common visual representations of other tools (cf. Chapter 3,
Section 3.6.2). The former is described in Section 7.2; the latter is introduced in Section 7.3.

3For example, a default scale factor sd = 0.2 and an elementary module with LT = 3 are given. Then this module is 125
times smaller compared to an elementary module with LT = 0 (cf. Chapter 4, Equation 4.1).

127

7. Layout Strategies for Modular Models

7.2. HyCoGLa

HyCoGLa, short for Hybrid Compound Graph Layout, is a new layout approach. It is dedicated to
the layout of modular models set up by dynamic or logical modeling formalism. However, it also in-
corporates domain-specific constraints for signaling processes. In the following, the research problem
is discussed and the HyCoGLa algorithm is introduced. Moreover, how domain-specific knowledge is
considered and how the algorithm deals with concepts from modular modeling is shown in detail. The
developed basic ideas and the related research on HyCoGLa was performed during a supervised diploma
thesis [8].

7.2.1. The HyCoGLa Algorithm

The overall procedure of the HyCoGLa algorithm is illustrated in Figure 7.2 using the Toy model. The
procedure is described in Appendix D, Algorithm 3. Basically, the inclusion tree of the modular model is
traversed in level order (bottom-up). Thereby, in each traversal step two hierarchical levels of the model
are considered for layout. First, the lower two levels in the model are used. When this step is finished
the next hierarchical level along with the last already laid out hierarchical level is considered for layout.
This will continue until all hierarchical levels are processed. Thereby, for two subsequent traversal steps
one hierarchical level overlaps.
The final layout of each traversal step is computed in different phases. This includes the handling of the
skeleton graph (see Chapter 3, Section 3.2.3.2), the layout of the skeleton graph and the overall layout of
the graph using the extended spring-embedder, and a post-processing phase. They are described in the
following sections.

7.2.1.1. Dealing with the Skeleton Graph

In the first phase the coarse structure of the subgraph (skeleton graph) is computed by considering all
nodes excluding leaf nodes; that is, leaf nodes are temporarily removed before laying out the skeleton
graph with the extended spring-embedder. In the next phase based on the skeleton layout the overall
layout is computed. For this purpose each of the removed leaf nodes of the former phase is set to the
position of its adjacent node in the skeleton graph. Finally, the complete graph is laid out including the
temporarily removed leaf nodes using the extended spring-embedder. There are several advantages using
the skeleton. For instance, the algorithm has an improved runtime because of the lower number of nodes
in the skeleton graph, or the removed leaf nodes do not influence the overall layout significantly. This
optimization also leads to the reduction of local minima4.

7.2.1.2. Layout Using the Extended Spring-Embedder

In order to compute the layout of the basic skeleton and the overall layout of the graph, the developed ex-
tended spring-embedder (Appendix D, Algorithm 4) is applied. Initially, the various forces acting on the
nodes (e. g., spring, repulsive or gravitational forces) are computed. This is explained in Section 7.2.1.4.
Subsequently, the forces are combined and the nodes are moved in the direction of the forces (see Sec-
tion 7.2.1.5). This procedure is repeated as long as either the maximum number of iterations is reached
or the standard deviation of the sum of the forces acting on the nodes is below a certain threshold. As a
further optimization the update of the nodes is improved by the concept of local temperature [59], which
avoids oscillations and improves the termination of the algorithm.

4Local minima in force-directed approaches are potential configurations of nodes, which in an energetic sense are convenient
but not optimal. They force the termination of the algorithm.

128

7.2. HyCoGLa

7.2.1.3. Post-Processing

After calculating the layout of the complete graph different post-processing steps have to be performed
in order to refine the layout. First, terminal nodes had to meet the most important constraint: They should
be located at the border of the respective module. However, due to the strong relationships of terminal
nodes to nodes outside of the subgraph, mostly the terminal nodes are not located at the border of the
subgraph. Therefore, in a post-processing step, the terminal nodes are positioned at the nearest border of
the subgraph. Another post-processing step is necessary since the spring-embedder algorithm is not able
to completely eliminate node overlaps [118]. Hence, after computation of node positions, potential node
overlaps are removed.

Figure 7.2.: Traversal of the inclusion tree of the Toy model. Starting with LT = 3, the composite
module nucleus along with the content of composite module cell (nodes within dotted
line area) are laid out. Hereby, the positions of nodes of nucleus under consideration
of relationships to outer nodes are calculated. In the next and final step, with LT = 2, the
composite module cell along with the content of composite module whole_cell (nodes
within dashed-dotted line area) are drawn. The inner layout of the composite module cell
is adjusted related to the outer layouts. Note that module nucleus is treated as leaf node
of cell and, therefore, its inner layout is not changed. The modular Toy model is depicted
in Chapter 4, Figure 4.12.

7.2.1.4. The Force Model

In HyCoGLa the force model is based on several forces used in common spring-embedder approaches.
However, adjustments are necessary due to the modular structure with scaled subgraphs. The interplay
of forces is illustrated in Figure 7.3.
Spring forces FS affect the nodes connected directly by edges. In the standard spring-embedder, the
length d of an edge e(u, v) is equal to the distance between the node centers ucenter and vcenter. In
contrast, in HyCoGLa the actual length of the edge is computed by getting the distance between the nodes
(in case of link nodes) or between the terminal nodes (in case of elementary or composite modules). Thus,
the node sizes are considered in the calculation and an attempt is mode to avoid node overlapping [118].
The spring forces FS are calculated as depicted in Appendix D, Algorithm 5. Repulsion forces FR which
affect the nodes are calculated including the size and scaling of the nodes like the edge forces. Repulsion

129

7.2. HyCoGLa

all inner nodes are also updated. Thereafter, the new size and position of the submodules are set to the
bounding box of the inner nodes.
HyCoGLa like other force-directed approaches supports animation by default (by the different layout
iterations). Therefore, the layout process can be interactively displayed and thus provides a visual feed-
back how the layout evolves over time. Additionally, the mental map can be preserved.

7.2.2. Domain-Specific Knowledge

As already mentioned in Chapter 3, Section 3.2.4, many standard graph layout methods consider only
the topological information given by the graph structure. However, for an improved representation of the
properties of the modeled system, domain-specific characteristics must be included in the layout process.
Recently, some research has been carried out in order to define and characterize domain-specific knowl-
edge for signaling systems [11, 70]. Such knowledge of signaling processes is also considered in the
HyCoGLa approach, but for logical rather than dynamic models. In the following, particular domain-
specific knowledge and its consideration in HyCoGLa is discussed.

7.2.2.1. Direction of Signal Flow

Describing signaling processes based on logical modeling, the causal flow of the signals is important. In
common visual representations this is often encoded in a top-down arrangement of the network elements.
Thus, modelers can easily identify the sequence of events described by the logical model [209].
Figure 7.4 shows the consideration of directionality of reactions resulting in an overall causal signal flow
in from top to down. This directional constraint is formulated using magnetic forces FM [189] that are
added to the force model of the nodes (see Section 7.2.1.4). The strength of the magnetic forces depends
on the length of the edge and the angle between edge and magnetic field. In HyCoGLa a global magnetic
field with the orientation (0, 1) (i. e., north-south orientation) is used to adjust the direction of the edges
from top to down. Another example can be found in Figure 7.5 (cf. Subfigures 7.5a and 7.5b).
In principle, it is also possible to align edges in other directions, for example, the signal flow from left to
right by applying a magnetic field with an appropriate orientation.

7.2.2.2. Subcellular Localization

Logical models of signaling systems are often organized in input-, intermediate- and output layer [167].
Usually, these layers are associated with subcellular compartments such as cell membrane, cytoplasm or
nucleus (cf. Figure 2.7 in Chapter 2). Input elements allow the definition of incoming signals of the
model. As illustrated in Figure 7.5c, they are aligned on top in the input layer of the network. Output
elements describe the outgoing signals of the model. Analogous to input elements, they are aligned
on the bottom in the output layer of the network. All other elements are placed in the intermediate layer
located between input- and output layer.
A great deal of domain-specific information exists, in particular coded in topological and functional
features such as cycles, cascades or molecular complexes. In principle, all these biological conventions
might be relevant for a comprehensive layout. However, this is not within the scope of the thesis and
not captured by the HyCoGLa approach. As a suggestion, some of these relevant structures can be
encapsulated in appropriate module structures and therefore are considered in the layout process.

131

7. Layout Strategies for Modular Models

(a) (b)

(c) (d)

Figure 7.4.: Comparison of different layouts using a simplified Toymodel. (a) A local random layout for
each of the modules is computed. (b) A local, spring-embedder [53] for the module cell
is applied. Initially, the layout of (a) is used. (c) The HyCoGLa layout for all modules is
applied; fewer crossings occur. (d) The HyCoGLa layout for all modules is depicted; the
direction of signal flow from top to down is considered.

132

7.2. HyCoGLa

7.2.3. Visual Handling of Multiple Instances

As described in Chapter 2, Section 2.3.3.1, PROMOT supports the reuse of modules. Thus, in a complex
modular model several instances of the same module, for example, the MAPK signaling cascade may
occur. An interesting question is how the layout of such identical modules is handled.
In Figure 7.6, two possible approaches are presented. One approach is to compute the layout for each
module instance individually (Figure 7.6a). Then an adequate layout5 can be assigned to each particular
instance. However, multiple instances with different layouts are difficult to detect and hard to distinguish
from other modules. A second approach is to compute the layout of one module instance and apply it
to all other instances automatically (Figure 7.6b). The advantage of this approach is that the layout has
to be computed just once. Since each instance of the module and its subunits has the same layout, it is
easier to recognize modules that appear several times in a model. Thus, patterns like network motifs can
be detected easier. In this way, not only the module itself can be reused, but also its layout.

7.2.4. Generalization of the Concept

So far, as described in Section 7.2.1, in each traversal step two hierarchical levels are considered for
layout. In some cases, this is not flexible enough.
In order to adjust the trade-off between layout quality and runtime two additional parameters can be
introduced – the number of hierarchical levels n, and the number of overlapping hierarchical levels m6.
The use of the parameters n and m is illustrated in Figure 7.7. The parameter n determines how many
hierarchical levels (including their nodes) are considered in a single traversal or calculation step, and
thus how much ‘local’ or ‘global’ the algorithm will work. When choosing n = 1 the algorithm works
similar to a local approach because only a single level is drawn independently from global constraints.
In contrast, when choosing n = depth, the result is comparable to a global approach where all nodes
in the graph are considered in a single calculation step. For all other values of the parameter n with
1 < n < depth the algorithm results in interim solutions. The parameter m defines how many hierarchi-
cal levels are overlapped in a calculation step. When choosing m = 1 only one level overlaps; that is,
the last hierarchical level from the current step and the first hierarchical level from the subsequent step.
In this case, very little information about already laid out parts of the network is considered. In contrast,
when choosing m = n − 1 much of the already calculated (i. e., laid out) information and only a small
amount of new information is considered for calculation. Consequently, from the definition of the two
parameters n and m, it follows that n > m.

7.2.5. Runtime and Layout Quality

For measuring the quality of the new HyCoGLa method, the runtime of the algorithm and the layout
quality are determined7. This is done for the HyCoGLa and a local standard layout method [53].
In Figure 7.8a, the runtime of the HyCoGLa and the local approach is compared. As expected, the overall
runtime of HyCoGLa is higher compared to the local approach. Especially, the four times higher runtime
of the layout calculation TC is induced by the consideration of the global relationships. However, the
runtime of the HyCoGLa algorithm depends on the hierarchical structure of the graph. Using graphs with
depth ≤ 2 the complexity of the algorithm is quadratic with respect to the number of nodes (O(k ∗n2)),
equally to other spring-embedder methods. Graphs with depth > 2 can benefit from the HyCoGLa

5Adequate in terms of the related network context.
6Note that the parameters n and m are not yet considered in the implementation.
7All experiments were performed on a personal computer with Intel R© Pentium 4, 3GHz CPU, 2GB RAM and Linux R©.

133

7. Layout Strategies for Modular Models

(a) (b) (c)

Figure 7.5.: A logical model of a signaling system laid out with the HyCoGLa algorithm using different
constraints. (a) No domain-specific constraints; (b) the directionality of reactions in the net-
work is considered which results in a top-down orientation. (c) Consider special semantics
of nodes in order to place them accordingly. A green rhombus refers to an input ele-
ment; a yellow rhombus encodes an output element. For instance, input and output
elements align in respect to an imaginary input- and output layer (dashed lines). Adapted
from Aschenbrenner [8].

(a) (b)

Figure 7.6.: Handling of multiple instances of a negative feedback motif encapsulated in a module. (a)
Individual layout for each of the motif instances according to the equilibrium of the forces,
and (b) uniform layout of all motif instances. Thus, equal instances can be recognized better.
Figure is adapted from Aschenbrenner [8].

134

7.3. Flat Layout

(a) (b)

Figure 7.7.: Traversing of inclusion tree with different values for the parameters n and m. Each box illus-
trates one subsequent calculation step (from solid over dashed to dotted border). (a) Three
subsequent calculation steps starting from level LT = 7 using n1 = 2 and m1 = 1.
(b) Two subsequent calculation steps starting from level LT = 7 with parameters n2 = 4
and m2 = 2.

approach. In this case, the layout of the whole graph is not computed at once but in subgraphs (cf.
Figure 7.2).
The layout quality can be evaluated using a number of criteria. As shown in Figure 7.8b, the experiments
on layout quality reveal that the HyCoGLa algorithm produces better results in the measured criteria
compared to the local method. In particular, the criteria are the number of edge-edge crossings, the
number of edge-vertex crossings, and the deviation of the average edge length from the sum of the ideal
edge length.
The graph in Figure 7.9 is an reasonable example to show the differences between the local method and
the HyCoGLa method. In Figure 7.9b the global relationships are considered whereas in Figure 7.9a
the layouts of the subgraphs are calculated without any global constraints. Figure 7.9b illustrates the
advantages of the HyCoGLa method – the nodes are well placed across different hierarchical levels,
edge-vertex crossings are minimized and edge lengths are almost uniform.

7.3. Flat Layout

Although it is desirable to work with modular models, it is still necessary to ensure compatibility and
integration with tools and workflows. For instance, the mathematical model that is used to describe a
modular model can be obtained by flattening. An important area in this context is the visual represen-
tation of modular models. Often, they need to be represented in a flat manner in order to be compatible

135

7. Layout Strategies for Modular Models

(a) (b)

Figure 7.8.: Results for HyCoGLa (black) and a local layout method [53] (gray). (a) The runtime for the
major steps of the algorithm including the setup of the inclusion tree (TI), initialization of the
special data structure (TL), layout calculation (TC) and removal of node overlapping (TO).
(b) The layout quality for measured parameters including the number of edge-edge crossings
(EEC), the number of edge-vertex crossings (EV C) and the deviation of the edge lengths
from the sum of the ideal edge length (EL). Adapted from Aschenbrenner [8].

with print media, publications, scientific communication, and tools that do not support modular modeling
(e. g., CELLNETANALYZER).
The FlatLayout method is able to automatically convert a modular visual representation into a flat
visual representation. ‘Flat’ does not mean to remove hierarchy, but rather to give each elementary
module in the network the same size. An example is given in Figure 7.11b.
In the following, the algorithmic solution is introduced and described. It is shown in detail how flat and
comprehensible visual representations of a modular model can be generated.

7.3.1. The Flattening Algorithm

As described in the introduction, the overall aim is to flatten the graphical representation of the modular
model. The approach is based on the ContextualZoom introduced in Chapter 5, Section 5.2.2 but with
two major differences according to the following requirements: First, all elementary modules in the
model have the same size independent of focus and context information. Second, the overall size of
the model is not fixed. Additionally, the FlatLayout maintains the relative positions of elements to
reduce user disorientation by using layout constraints, for example, stated in Storey and Mueller [187].
The layout method consists of several steps illustrated in Figure 7.10: First, a certain elementary module
is scaled to the appropriate, uniform size. For each surrounding module in the same parent module a
translation vector is computed. The surrounding modules are translated according to these translation
vectors (Figure 7.10b). Then the size of the parent module is adjusted according to the bounding box of
the inner elements (Figure 7.10c). The translation is recursively applied to all elements outside the parent
module in order to prevent node overlapping until the root element is reached. Then, this procedure is
applied to the next elementary module until all elementary modules in the network are processed. The
algorithm of the FlatLayout is given in Appendix D, Algorithms 1 and 2.
The complexity of the algorithm is linear with respect to the number of elementary modules in the model
(O(k ∗ n)), whereas n is the number of elementary modules and k is the number of elementary modules
that are needed to be resized.

136

7.3. Flat Layout

(a) (b)

Figure 7.9.: Example graph with 73 nodes, 96 edges and 3 subgraphs. Applying (a) a local method [53]
and (b) the HyCoGLa method. In (a) edge-vertex and edge-edge crossings may occur due to
the local focus of the method (indicated as arrows). In contrast, in (b) the nodes are placed in
an improved way across different hierarchical levels; edge-vertex crossings are minimized.

7.3.2. Applications

Figure 7.11 shows, exemplarily using the Toy model, how the FlatLayout algorithm performs. For
that, the model is laid out, applying the original hierarchical layout. Thereby, elementary modules on
deeper hierarchical levels are difficult to see or are even not visible (because of their small size). As
shown in Figure 7.11b a FlatLayout of the same model results in a uniform scaling of all species
and gates across different hierarchical levels (cf. elementary modules k3p2 and tf1). The size of a
composite module is computed by taking the bounding box of all inner modules. A large model with
applied FlatLayout is depicted in Appendix B, Figure D.1.

In Figure 7.12, a modular model with high ‘structural symmetry’ is shown. The modular, hierarchical
layout (Figure 7.12a) is transformed to a flat layout (Figure 7.12b). As depicted, the algorithm is also able
to preserve network properties such as orthogonal ordering or proximity even across different hierarchical
levels and module borders.

137

7. Layout Strategies for Modular Models

(a) (b) (c)

Figure 7.10.: Important steps of the FlatLayout algorithm applied to an example graph without edges.
(a) Graph before any transformation is applied. (b) The elementary module colored in gray
is increased in size according to the computed scale factor. Surrounding modules are trans-
lated using the computed translation vectors. (c) The bounding box of all inner modules is
computed and the bounds of the parent module are adjusted accordingly. Modules outside
the parent module are recursively translated in order to avoid node overlapping. Transla-
tion vectors in (b) and (c) are depicted as arrows; previous states of modules are depicted
as rectangles with a dashed border.

7.4. Conclusions

In this chapter two layout strategies, HyCoGLa and FlatLayout, have been presented. They have
been developed to layout modular models; that is, optimizing the positions of elements on different
hierarchical levels.
HyCoGLa is based on the spring-embedder paradigm. It tries to minimize the manual effort in the
process of layout. The key feature is a hybrid method which allows the advantageous combination of
both local and global approaches. Consequently, the trade-off between layout quality and computational
time can be optimized. The algorithm is implemented in the modeling tool PROMOT and is used to
draw modular models of complex signaling systems. Thereby, different domain-specific constraints such
as information about the direction of signal flow are incorporated in the layout process. This results in
an improved representation of modular structures across different hierarchical levels and increases the
readability of the network model. Moreover, the layout process can be constrained by different options
adjustable by the modeler.
Although it is desirable to work with structured models, it is still necessary to generate comprehensible,
flat graphical representations for use in traditional media, for example, for publications, presentations
or documentation. Moreover, it is essential to flatten the visual representation of modular models in or-
der to make visual representations available for tools not supporting modular models. For this purpose,
the FlatLayout was developed. With this layout strategy any graphical model depicted by a single
integrated view in VISUAL EXPLORER can be converted to a flat graphical representation where each

138

7.4. Conclusions

(a) (b)

Figure 7.11.: FlatLayout applied to the Toy model. The hierarchical structure of the Toy model is
depicted in Figure 7.2; it is the same for both layouts. (a) Original modular layout with
scaled size of elementary modules; (b) FlatLayout with uniform size of elementary
modules; proximity and orthogonal ordering are preserved.

(a) (b)

Figure 7.12.: Manual, modular layout versus FlatLayout: example network based on a logical model
with a high symmetry in structure and the layout. (a) Manual, modular layout with scaled
size of elementary modules and, (b) the derived layout with uniform size of elementary
modules using the FlatLayout method. It is shown in the final layout how proximity
information are preserved even across hierarchical levels and module borders.

elementary module is uniform in size. Similar to the HyCoGLa layout, the FlatLayout explicitly con-
siders the modular and hierarchical properties during the layout process. Thereby, the layout adjustments
are smoothly animated in order to maintain the visual context.

139

7. Layout Strategies for Modular Models

The visual representation produced by the FlatLayout has several advantages: For instance, elemen-
tary modules located at different hierarchical levels have the same size and their relations to each other,
for example, emphasized by a focus path, can be visualized in an intuitive way. This flat representation
is also comparable to the visual representations used in most network tools, and thus is familiar to most
modelers. However, due to the unification of the elements sizes, the space allocated by the network
may increase strongly. Here, techniques for layout compaction [45] might be an appropriate solution.
Applying such techniques for reducing the space between elementary modules, the layout area can be
minimized.
Both approaches use animations to smoothly transform the previous layout state into the new state. This
provides immediate feedback about the current layout progress and the effect of different layout settings.
In this way, visual context is maintained and the mental map is preserved.

140

Future advances in science depend on our ability to
comprehend the vast amounts of data being produced and
acquired, and scientific visualization is a key enabling
technology in this endeavor. . . . visualization should be
better integrated with the data exploration process instead
of being done after the fact – when all the science is done –
simply to generate presentations of the findings.

Claudio T. Silva and Juliana Freire [178] CHAPTER 8

Concluding Remarks

In systems biology, as in many other disciplines, visualizations play a pivotal role since it is a common
basis for communication and transfer of knowledge1. More specifically, graphical representation can
assist the modeler in exploring and analyzing complex biochemical datasets, and in answering related
questions. Thus, it is not surprising that this area is becoming more and more important – also reflected
in an increasing number of conferences and journal issues. However, the area is still in its infancy.
Large amounts of data require novel visualization and exploration techniques; comprehensible graphical
representations are essential. Visualizations need standardization, but also customization towards the
specific modeling task or individual preferences of the modeler. This requires a highly flexible handling
of visual properties of the model.
In this thesis, it is discussed how dynamic as well as logical models of signaling processes can be depicted
by adequate visual representations. Modularity as a fundamental property of models allows models
to be dealt with in a systematic and engineering-like fashion. In this context relevant questions are
addressed, for example: How complex structures of modular models and their properties be visualized
and interactively explored? How can they be laid out in a hierarchical or flat representation? This thesis
provides some answers. The overall motivation is to support modelers in setup and analysis of modular
models.
This thesis makes several valuable contributions that are summarized in the following section. Thereafter,
promising future directions are discussed.

8.1. Scientific Contributions

In the following, significant contributions of this work are given: First, in close cooperation with model-
ers, formalized visual representations for dynamic and logical models have been specified. They provide
a symbol set and adequate visualizations for models defined in the modeling language MDL. This also
implies the visual handling of complex modular and hierarchical structures in a systematic way (Chap-
ter 4). Especially for the logical modeling formalism, the new visual representation aims at visualizing
complex signaling systems in a biologically intuitive manner, but also at maintaining their systematic
approach. The visual representation improves the workflow of model analysis in the context of logical

1For instance, visual representations are often used on scientific conferences as well as in talks or publications.

141

8. Concluding Remarks

models with modular structure. This was described by using the example of multiple maps in PROMOT
and CELLNETANALYZER. The formalized visual representations for dynamic and logical models are
encapsulated in two global VSs – VS ‘Dynamic Model’ and VS ‘Logical Model’.

Second, a zoomable multiscale visual interface for modular models has been developed to support highly
interactive tasks such as navigation through complex model structures and exploratory analysis. Hereby,
interactive exploration schemes, semantic zooming as well as content-aware navigation are used and
combined in order to integrate focus and contextual information, and efficiently navigate and explore
the modular model (Chapter 5). In particular, different exploration schemes such as InteractiveZoom,
HierarchicalZoom and ContextualZoom are derived from successful, existing solutions and are adapted
to modular models and the domain of systems biology. They provide an intuitive and flexible data
exploration. Through interactive exploration, relationships or correlations between biological entities or
more complex units can be analyzed and novel hypotheses can be investigated. Semantic zooming and
Focus+Context techniques reduce visual complexity by presenting only a relevant subset of the model.
This results in less cluttered and more descriptive visualizations.

Third, different visual scenarios have been developed. Thereby, the trade-off between standardization
and customization is realized by defining two different scenario types: global and local VSs. Applying
VSs, the modeler is able to modify the representation of model elements in order to highlight, suppress
or ignore them, depending on context, structure or search criteria. Thus, the visual representation can
be designed towards a specific modeling task, given datasets and individual preferences (Chapter 6).
An interesting idea is to take different additional aspects into account that directly affect the visual
appearance of the network view, including exploration scheme and layout strategy.

VSs graphically aid the user in specific modeling tasks, for instance, in the visual interpretation of analy-
sis results. External data can be visualized very flexibly in the context of the modular model, for example,
by emphasizing species that were active in a particular experimental condition. Showing such external
data along with the network structure in a single view supports modelers in interpreting underlying sig-
naling processes.

Finally, two layout strategies, HyCoGLa and FlatLayout, have been developed. Both are dedicated
to drawing complex signaling networks and to work with modular models (Chapter 7). The HyCoGLa
layout algorithm is a new approach for laying out modular models that are structured by an arbitrary num-
ber of hierarchical levels. Thereby, it combines the advantages of local and global layout approaches by
considering elements from adjacent hierarchical levels in each traversal step. HyCoGLa is based on the
spring-embedder paradigm. Different domain-specific constraints are incorporated in HyCoGLa which
improve the representation of modular structures and increase the readability of the network model. Re-
sults suggest that HyCoGLa is able to produce comprehensible visualizations for signaling models with
modular structure. The HyCoGLa approach explicitly represents the modular and hierarchical structure.
In contrast to that the FlatLayout provides a way to generate comprehensible, flat graphical repre-
sentations. The single integrated view is flattened by unifying the size of elementary modules. Thus,
the modular structure is still encoded in the view but de-emphasized. These representations can be used
in the further workflow, for example, in the creation of publication-ready graphics, documentation and
presentation of models, or integration with other tools.

In summary, the developed methods for exploring and visualizing modular models in systems biology
assist the modeler in extracting biological meaning, understanding the system under investigation and
formulating novel hypotheses. The developed methods stated above and their combination allow the
modeler to smoothly and interactively explore and navigate model parts of interest in the context of the
modular model as a whole. In addition, they facilitate the creation of versatile visualizations, which
can be presented at interdisciplinary meetings or scientific conferences in order to stimulate discussions.

142

8.2. Open Issues and Research Directions

Thus, the methods presented in this thesis are a valuable contribution to addressing the challenges stated
in recent reviews [69, 141, 170, 188].
The applicability of the developed methods was demonstrated by application to large modular models of
signaling processes (e. g., EGF or TCR model) and confirmed by several modelers using the methods in
their daily research.
A major contribution of this research is the software component VISUAL EXPLORER developed as in-
tegral part of the modeling tool PROMOT. VISUAL EXPLORER contains the software-based implemen-
tation of most of the theoretical and conceptual work presented in this thesis. PROMOT is installed at
the MPI Magdeburg and can be used by all researchers within the institute. The developed methods
are actively applied in several modeling projects in order to visualize and explore complex structures of
modular models in systems biology. In particular, dynamic and logical models of signal transduction
systems [164, 166, 167] are applied. Furthermore, it is used by members of different research initiatives.
PROMOT is available for download and available for interested researchers world wide. The source code
is distributed under an open-source software license.

8.2. Open Issues and Research Directions

There are several directions for future research in the context of this thesis. In the following, some of the
promising directions are discussed.
First, there are several open research questions related to the application of rich semantic information in
the navigation and exploration of modular models. In the near future, the available semantic information
for models in systems biology will increase rapidly [119]. These metadata can also be used for improving
and fine-tuning the developed navigation and exploration techniques and at the end helps to understand
the underlying structure and processes. For instance, it might be useful to explore a certain protein family
different from another with semantic zooming. In the same way, semantic information can be used to
show different views of the same part of the model. Analogous to the smooth integration of overview
and detailed view by using multiple cameras (cf. Chapter 5, Figure 5.12), the view of model parts can
be visually modified by the approach of Semantic Lenses [24]. More specifically, a local view defined
by a region of interest is altered by a filter operator while the remaining parts are left unchanged. This
can also be enriched with semantic information. For example, the modeler might interactively move
the magic lens over the modular model and the operator filters out all information deeper than a certain
hierarchical level.
A second, very related area that could be investigated by future work is the visualization of simulation
results. In principle, simulation results are semantic information that can be mapped back to the visual
representation of the modular model. In Chapter 6, Section 6.4.1 it was already shown how this can
be performed with different analysis results (e. g., from CELLNETANALYZER). However, this should
also be possible for results of dynamic simulations, sensitivity analysis or optimization. Often, it is
necessary to explore the dynamic behavior of a specific part of the model (e. g., a composite module)
before investigating the overall model dynamics. The simulation results of a local model part should be
integrated graphically in the context of the modular model. Furthermore, there are a number of open
questions regarding the layout of modular models. It might be interesting to improve the network layout
with the results of logical analysis or dynamic behavior.
A third area of future research is the extension of the visual scenario approach described in Chapter 6,
Section 6.2. Two starting points are likely to investigate: mapping and the trade-off between standardiza-
tion and customization. Often a limitation is the provided one-to-one mapping; that is, a single value is
mapped to one visual property. Sometimes it is necessary to map multi-dimensional metadata to a one-
dimensional visual property. This can be performed by aggregating several metadata (e. g., combined

143

8. Concluding Remarks

by different weights), and then mapping from this resulting single value to the visual property. Another
issue is the trade-off between customization and standardization. It might be possible and reasonable to
provide three levels of ‘freedom’: local VSs defined by the modeler, global VSs implemented by the tool
developers and standardized VSs defined by the systems biology community like SBGN. In this way,
the modeler can choose the appropriate visualization scheme for the current modeling task. Of course,
related conversion strategies between the different VSs types must be provided.

In conclusion, as stated in the saying at the beginning of this chapter, visualization should not be only the
result of the modeling and analysis process, but also an important part of the exploration and visualization
step within that process.

144

Bibliography

[1] ADAR, E. 2006. GUESS: a language and interface for graph exploration. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM Press, 791–800. 49

[2] ADEREM, A. 2005. Systems Biology: its practice and challenges. Cell 4, 121, 511–513. 10

[3] ALBERGHINA, L. AND WESTERHOFF, H. V. 2005. Systems biology: definitions and perspectives.
Topics in Current Genetics, vol. 13. Springer. 16

[4] ALBRECHT, M., KERREN, A., KLEIN, K., KOHLBACHER, O., MUTZEL, P., PAUL, W.,
SCHREIBER, F., AND WYBROW, M. 2010. On open problems in biological network visualization. In
Graph Drawing. Lecture Notes in Computer Science, vol. 5849. Springer, 256–267. 2

[5] ALDRIDGE, B. B., BURKE, J. M., LAUFFENBURGER, D. A., AND SORGER, P. K. 2006. Physic-
ochemical modelling of cell signalling pathways. Nature Cell Biology 8, 11, 1195–1203. 10, 11, 13,
24

[6] ALON, U. 2007. Network motifs: theory and experimental approaches. Nature Review Genetics 8, 6,
450–461. 8

[7] ALVES, R., ANTUNES, F., AND SALVADOR, A. 2006. Tools for kinetic modeling of biochemical
networks. Nature Biotechnology 24, 6, 667–672. 18, 42

[8] ASCHENBRENNER, E. 2008. Layout strukturierter Modelle am Beispiel von Daten aus der Sys-
tembiologie. M.S. thesis, Department of Simulation and Graphics, Otto-von-Guericke University,
Magdeburg. 128, 130, 134, 136, 185

[9] ASSAULT SYSTEMES. 2011. Dymola. http://www.3ds.com/products/catia/portfolio/dymola/. On-
line; accessed November 24, 2011. 18

[10] BABU, M. M., LUSCOMBE, N. M., ARAVIND, L., GERSTEIN, M., AND TEICHMANN, S. A.
2004. Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural
Biology 14, 3, 283–291. 15

[11] BARSKY, A., GARDY, J. L., HANCOCK, R. E. W., AND MUNZNER, T. 2007. Cerebral: a Cy-
toscape plugin for layout of and interaction with biological networks using subcellular localization
annotation. Bioinformatics 23, 8, 1040–1042. 131

145

Bibliography

[12] BARTRAM, L., HO, A., DILL, J., AND HENIGMAN, F. 1995. The continuous zoom: a constrained
fisheye technique for viewing and navigating large information spaces. In Proceedings of the 8th
annual ACM Symposium on User Interface and Software Technology. ACM Press, 207–215. 41, 80

[13] BARTRAM, L., WARE, C., AND CALVERT, T. 2001. Moving icons: detection and distraction. In
Proceedings of the International Conference on Human-Computer Interaction. IOS Press, 157–165.
41

[14] BATAGELJ, V. AND MRVAR, A. 2003. Pajek – analysis and visualization of large networks. In
Graph Drawing Software, P. Mutzel, M. Jünger, and S. Leipert, Eds. Lecture Notes in Computer
Science, vol. 2265. Springer, 77–103. 126

[15] BEARD, D. V. AND WALKER, J. Q. 1990. Navigational techniques to improve the display of large
two-dimensional spaces. Behavioral Information Technology 6, 9, 451–466. 42

[16] BECK, F., BURCH, M., AND DIEHL, S. 2009. Towards an aesthetic dimensions framework for dy-
namic graph visualisations. In Proceedings of the International Conference Information Visualisation.
IV ’09. IEEE Computer Society, 592–597. 30

[17] BEDERSON, B. B. AND BOLTMAN, A. 1999. Does animation help users build mental maps of
spatial information? In Information Visualization. IEEE Computer Society, 28–35. 41

[18] BEDERSON, B. B., GROSJEAN, J., AND MEYER, J. 2004. Toolkit design for interactive structured
graphics. IEEE Transactions on Software Engineering 30, 8, 535–546. 49

[19] BEDERSON, B. B. AND HOLLAN, J. D. 1994. PAD++: a zooming graphical interface for exploring
alternate interface physics. In Proceedings of the 7th annual ACM Symposium on User Interface
Software and Technology. ACM Press, 17–26. 49

[20] BEDERSON, B. B., MEYER, J., AND GOOD, L. 2000. Jazz: an extensible zoomable user inter-
face graphics toolkit in java. In Proceedings of the 13th annual ACM Symposium on User Interface
Software and Technology. ACM Press, 171–180. 49

[21] BERGMANN, F. T. AND SAURO, H. M. 2006. SBW – a modular framework for systems biology.
In Proceedings of the 38th Conference on Winter Simulation. WSC ’06. IEEE Computer Society,
1637–1645. 49

[22] BERTAULT, F. AND MILLER, M. 1999. An algorithm for drawing compound graphs. In Pro-
ceedings of the 7th International Symposium on Graph Drawing. GD ’99. Springer, 197–204. 35,
126

[23] BERTIN, J. 1967. Sémiologie graphique: les diagrammes – les réseaux – les cartes. Editions de
l’Ecole des Hautes Etudes en Sciences. 38

[24] BIER, E. A., STONE, M. C., PIER, K., BUXTON, W., AND DEROSE, T. D. 1993. Toolglass and
magic lenses: the see-through interface. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’93. ACM Press, 73–80. 143

[25] BIERMANN, S., GU, Y., SCHUMANN, H., AND UHRMACHER, A. 2005. Information visualization
in systems biology. Rostocker Informatik-Berichte 29, 5–17. 10, 11

146

Bibliography

[26] BOURQUI, R. AND WESTENBERG, M. A. 2009. Visualizing temporal dynamics at the genomic
and metabolic level. In Information Visualisation. IEEE Computer Society, 317–322. 63, 115, 118,
119

[27] BRADFORD, R. 2003. A man, a worm, and a nobel. Salk Signals 5, 2, 12–17. 1

[28] BRANDENBURG, F. J., FORSTER, M., PICK, A., RAITNER, M., AND SCHREIBER, F. 2004.
BioPath – exploration and visualization of biochemical pathways. In Graph Drawing Software,
M. Jünger and P. Mutzel, Eds. Springer Mathematics and Visualization Series. Springer, 215–236.
35

[29] BREITLING, R., DONALDSON, R., GILBERT, D. R., AND HEINER, M. 2010. Biomodel engineer-
ing – from structure to behavior. Transactions on Computational Systems Biology 12, 1–12. 12, 17,
20

[30] CALZONE, L., GELAY, A., ZINOVYEV, A., RADVANYI, F., AND BARILLOT, E. 2008. A com-
prehensive modular map of molecular interactions in RB/E2F pathway. Molecular Systems Biol-
ogy 4, 173. 58

[31] CARD, S. K., MACKINLAY, J. D., AND SHNEIDERMAN, B. 1999. Readings in information
visualization. Morgan Kaufmann Publishers, Inc. 36, 37, 43, 45

[32] CARD, S. K., MORAN, T. P., AND NEWELL, A. 1986. The model human processor: an engineer-
ing model of human performance. Handbook of Perception and Human Performance 2, 4, 35–45.
41

[33] CARD, S. K., ROBERTSON, G. G., AND MACKINLAY, J. D. 1991. The information visualizer, an
information workspace. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM Press, 181–186. 41

[34] CARVALHO, A., DE SOUSA, A. A., RIBEIRO, C., AND COSTA, E. 2008. A temporal fo-
cus+context visualization model for handling valid-time spatial information. Information Visualiza-
tion 7, 3, 265–274. 45

[35] CHI, E. H. 2000. A taxonomy of visualization techniques using the data state reference model. In
Proceedings of the IEEE Symposium on Information Vizualization. IEEE Computer Society, 69–75.
37, 102, 103

[36] CITRI, A. AND YARDEN, Y. 2006. EGF-ERBB signalling: towards the systems level. Nature
Review Molecular Cell Biology 7, 7, 505–516. 8, 22

[37] CLEVELAND, W. S. 1985. The elements of graphing data. Wadsworth Publishing Co. 38

[38] CLINE, M. S., SMOOT, M., CERAMI, E., KUCHINSKY, A., LANDYS, N., WORKMAN, C.,
CHRISTMAS, R., AVILA-CAMPILO, I., CREECH, M., GROSS, B., HANSPERS, K., ISSERLIN, R.,
KELLEY, R., KILLCOYNE, S., LOTIA, S., MAERE, S., MORRIS, J., ONO, K., PAVLOVIC, V.,
PICO, A. R., VAILAYA, A., WANG, P.-L., ADLER, A., CONKLIN, B. R., HOOD, L., KUIPER, M.,
SANDER, C., SCHMULEVICH, I., SCHWIKOWSKI, B., WARNER, G. J., IDEKER, T., AND BADER,
G. D. 2007. Integration of biological networks and gene expression data using Cytoscape. Nature
Protocols 2, 10, 2366–2382. 49

[39] COCKBURN, A., KARLSON, A., AND BEDERSON, B. B. 2008. A review of overview+detail,
zooming, and focus+context interfaces. ACM Computing Surveys 41, 1, 1–31. 41, 42, 90

147

Bibliography

[40] DAVIDSON, R. AND HAREL, D. 1996. Drawing graphs nicely using simulated annealing. ACM
Transaction on Graphics 15, 4, 301–331. 34

[41] DEL VECCHIO, D., NINFA, A. J., AND SONTAG, E. D. 2008. Modular cell biology: retroactivity
and insulation. Molecular Systems Biology 4, 161, 1–16. 16

[42] DEMIR, E., BABUR, O., DOGRUSÖZ, U., GÜRSOY, A., AYAZ, A., GULESIR, G., NISANCI, G.,
AND ÇETIN ATALAY, R. 2004. An ontology for collaborative construction and analysis of cellular
pathways. Bioinformatics 20, 3, 349–356. 7

[43] DEMIR, E., BABUR, O., DOGRUSÖZ, U., GÜRSOY, A., NISANCI, G., ÇETIN ATALAY, R., AND

OZTURK, M. 2002. PATIKA: an integrated visual environment for collaborative construction and
analysis of cellular pathways. Bioinformatics 18, 7, 996–1003. 49

[44] DEMIR, E., CARY, M. P., PALEY, S., FUKUDA, K., LEMER, C., VASTRIK, I., WU, G.,
D’EUSTACHIO, P., SCHAEFER, C., LUCIANO, J., SCHACHERER, F., MARTINEZ-FLORES, I., HU,
Z., JIMENEZ-JACINTO, V., JOSHI-TOPE, G., KANDASAMY, K., LOPEZ-FUENTES, A. C., MI, H.,
PICHLER, E., RODCHENKOV, I., SPLENDIANI, A., TKACHEV, S., ZUCKER, J., GOPINATH, G.,
RAJASIMHA, H., RAMAKRISHNAN, R., SHAH, I., SYED, M., ANWAR, N., BABUR, O., BLINOV,
M., BRAUNER, E., CORWIN, D., DONALDSON, S., GIBBONS, F., GOLDBERG, R., HORNBECK,
P., LUNA, A., MURRAY-RUST, P., NEUMANN, E., REUBENACKER, O., SAMWALD, M., VAN

IERSEL, M., WIMALARATNE, S., ALLEN, K., BRAUN, B., WHIRL-CARRILLO, M., CHEUNG,
K.-H., DAHLQUIST, K., FINNEY, A., GILLESPIE, M., GLASS, E., GONG, L., HAW, R., HONIG,
M., HUBAUT, O., KANE, D., KRUPA, S., KUTMON, M., LEONARD, J., MARKS, D., MERBERG,
D., PETRI, V., PICO, A., RAVENSCROFT, D., REN, L., SHAH, N., SUNSHINE, M., TANG, R.,
WHALEY, R., LETOVKSY, S., BUETOW, K. H., RZHETSKY, A., SCHACHTER, V., SOBRAL, B. S.,
DOGRUSOZ, U., MCWEENEY, S., ALADJEM, M., BIRNEY, E., COLLADO-VIDES, J., GOTO, S.,
HUCKA, M., LE NOVÈRE, N., MALTSEV, N., PANDEY, A., THOMAS, P., WINGENDER, E., KARP,
P. D., SANDER, C., AND BADER, G. D. 2010. The BioPAX community standard for pathway data
sharing. Nature Biotechnology 28, 9, 935–942. 1

[45] DI BATTISTA, G., EADES, P., TAMASSIA, R., AND TOLLIS, I. G. 1999. Graph drawing: algo-
rithms for the visualization of graphs. Prentice Hall. 27, 28, 30, 33, 35, 126, 140

[46] DÍAZ, J., PETIT, J., AND SERNA, M. 2002. A survey of graph layout problems. ACM Computing
Surveys 34, 3, 313–356. 27

[47] DIJKSTRA, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 1, 269–271. 113

[48] DOGRUSOZ, U., GIRAL, E., CETINTAS, A., CIVRIL, A., AND DEMIR, E. 2004. A compound
graph layout algorithm for biological pathways. In Graph Drawing. Lecture Notes in Computer
Science, vol. 3383. Springer, 442–447. 35, 126

[49] DOS SANTOS, S. AND BRODLIE, K. 2004. Gaining understanding of multivariate and multidi-
mensional data through visualization. Computers and Graphics 28, 3, 311–325. 37

[50] DROSTE, P., NOACK, S., NÖH, K., AND WIECHERT, W. 2009. Customizable visualization of
multi-omics data in the context of biochemical networks. In Proceedings of the International Confer-
ence in Visualisation. VIZ ’09. IEEE Computer Society, 21–25. 32, 49, 100, 101, 115

148

Bibliography

[51] DROSTE, P., VON LIERES, E., WIECHERT, W., AND NÖH, K. 2010. Customizable visualiza-
tion on demand for hierarchically organized information in biochemical networks. Computational
Modeling of Objects Represented in Images 6026, 163–174. 101

[52] DWYER, T. 2005. Two and a half dimensional visualisation of relational networks. Ph.D. thesis,
The School of Information Technologies, University of Sydney, Sydney, Australia. 36

[53] EADES, P. 1984. A heuristic for graph drawing. Congressus Numerantium 42, 149–160. 34, 126,
132, 133, 136, 137

[54] EADES, P. AND FENG, Q. W. 1997. Multilevel visualization of clustered graphs. In Graph Draw-
ing. Lecture Notes in Computer Science, vol. 1190. Springer, 101–112. 31

[55] EADES, P. AND HUANG, M. L. 2000. Navigating clustered graphs using force-directed methods.
Graph Algorithms and Applications: Special Issue on Selected Papers from 1998 4, 3, 157–181. 35,
126

[56] EADES, P., LAI, W., MISUE, K., AND SUGIYAMA, K. 1991. Preserving the mental map of a
diagram. In Proceedings of Compugraphics. Vol. 91. 24–33. 39

[57] ELMQVIST, N. AND FEKETE, J. D. 2010. Hierarchical aggregation for information visualiza-
tion: overview, techniques, and design guidelines. IEEE Transactions on Visualization and Computer
Graphics 16, 3, 439–454. 2, 56

[58] FELL, D. A. AND WAGNER, A. 2000. The small world of metabolism. Nature Biotechnol-
ogy 18, 11, 1121–1122. 109

[59] FRICK, A., LUDWIG, A., AND MEHLDAU, H. 1994. A fast adaptive layout algorithm for undi-
rected graphs. In Proceedings of the DIMACS International Workshop on Graph Drawing. Lecture
Notes in Computer Science, vol. 894. Springer, 388–403. 34, 128

[60] FRISCH, M., DACHSELT, R., AND BRÜCKMANN, T. 2008. Towards seamless semantic zooming
techniques for UML diagrams. In Proceedings of the 4th ACM Symposium on Software Visualization.
ACM Press, 207–208. 49, 107

[61] FRITZSON, P. 2004. Principles of object-oriented modeling and simulation with Modelica 2.1.
Wiley-IEEE Press. 18

[62] FRUCHTERMAN, T. M. J. AND REINGOLD, E. M. 1991. Graph drawing by force-directed place-
ment. Software Practical Experiences 21, 11, 1129–1164. 34

[63] FUNAHASHI, A., MATSUOKA, Y., JOURAKU, A., MOROHASHI, M., KIKUCHI, N., AND KI-
TANO, H. 2008. CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proceedings
of the IEEE 96, 8, 1254–1265. 49, 127

[64] FURNAS, G. W. 1986. Generalized fisheye views. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’86. ACM Press, 16–23. 45

[65] FURNAS, G. W. AND BEDERSON, B. B. 1995. Space-scale diagrams: understanding multiscale
interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
234–241. 43, 44, 48, 89

149

Bibliography

[66] GALPERIN, M. Y. AND FERNÁNDEZ-SUÁREZ, X. M. 2012. The 2012 nucleic acids research
database issue and the online molecular biology database collection. Nucleic Acids Research 40, D1,
D1–D8. 10

[67] GARNY, A., NICKERSON, D. P., COOPER, J., SANTOS, R. W. D., MILLER, A. K., MCKEEVER,
S., NIELSEN, P. M., AND HUNTER, P. J. 2008. CellML and associated tools and techniques. Philo-
sophical Transactions of the Royal Society – Series A: Mathematical, Physical and Engineering Sci-
ences 366, 1878, 3017–3043. 1, 18

[68] GASTEIGER, E., GATTIKER, A., HOOGLAND, C., IVANYI, I., APPEL, R. D., AND BAIROCH, A.
2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids
Research 31, 13, 3784–3788. 46

[69] GEHLENBORG, N., O’DONOGHUE, S. I., BALIGA, N. S., GOESMANN, A., HIBBS, M. A.,
KITANO, H., KOHLBACHER, O., NEUWEGER, H., SCHNEIDER, R., TENENBAUM, D., AND GAVIN,
A. C. 2010. Visualization of omics data for systems biology. Nature Methods 7, 3, S56–S68. 1, 2,
41, 45, 48, 143

[70] GENC, B. AND DOGRUSOZ, U. 2006. A layout algorithm for signaling pathways. Information
Sciences 176, 2, 135–149. 131

[71] GILBERT, D., FUSS, H., GU, X., ORTON, R., ROBINSON, S., VYSHEMIRSKY, V., KURTH, M. J.,
DOWNES, C. S., AND DUBITZKY, W. 2006. Computational methodologies for modelling, analysis
and simulation of signalling networks. Briefings in Bioinformatics 7, 4, 339–353. 8, 13

[72] GILLES, E. D. 1998. Network theory for chemical processes. Chemical Engineering and Technol-
ogy 21, 2, 121–132. 17

[73] GINKEL, M., KREMLING, A., NUTSCH, T., REHNER, R., AND GILLES, E. D. 2003. Modular
modeling of cellular systems with ProMoT/DIVA. Bioinformatics 19, 9, 1169–1176. 10, 11, 16, 17,
21, 22

[74] GOLDSTEIN, E. B. 2001. Sensation and perception, 6 ed. Wadsworth Publishing Co. 38

[75] GOOGLE INC. 2012. Google Maps. http://www.google.de/maps/. Online; accessed February 25,
2012. 89

[76] GREEN, T. R. G. AND PETRE, M. 1996. Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7, 131–174. 55

[77] HADLAK, S., SCHULZ, H. J., AND SCHUMANN, H. 2011. In situ exploration of large dynamic
networks. IEEE Transactions on Visualization and Computer Graphics 17, 12, 2334–2343. 2, 56

[78] HANKE, R., MANGOLD, M., AND SUNDMACHER, K. 2005. Application of hierarchical process
modelling strategies to fuel cell systems towards a virtual fuel cell laboratory. Fuel Cells 1, 5, 133–
147. 19

[79] HARTWELL, L. H., HOPFIELD, J. J., LEIBLER, S., AND MURRAY, A. W. 1999. From molecular
to modular cell biology. Nature 402, 6761. 15, 16, 24

[80] HELMS, V. 2008. Principles of computational cell biology – from protein complexes to cellular
networks. Wiley-VCH. 46

150

Bibliography

[81] HERMAN, I., MELANÇON, G., AND MARSHALL, M. S. 2000. Graph visualization and navi-
gation in information visualization: a survey. IEEE Transactions on Visualization and Computer
Graphics 6, 1, 24–43. 27, 30

[82] HOOPS, S., SAHLE, S., GAUGES, R., LEE, C., PAHLE, J., SIMUS, N., SINGHAL, M., XU, L.,
MENDES, P., AND KUMMER, U. 2006. COPASI – a COmplex PAthway SImulator. Bioinformat-
ics 22, 24, 3067–3074. 49

[83] HORNBÆK, K., BEDERSON, B. B., AND PLAISANT, C. 2002. Navigation patterns and usability
of zoomable user interfaces with and without an overview. ACM Transactions on Computer-Human
Interaction 9, 362–389. 43

[84] HU, Z., MELLOR, J., WU, J., KANEHISA, M., STUART, J. M., AND DELISI, C. 2007. Towards
zoomable multidimensional maps of the cell. Nature Biotechnology 25, 5, 547–554. 27, 28

[85] HU, Z., NG, D. M., YAMADA, T., CHEN, C., KAWASHIMA, S., MELLOR, J., LINGHU, B.,
KANEHISA, M., STUART, J. M., AND DELISI, C. 2007. VisANT 3.0: new modules for pathway
visualization, editing, prediction and construction. Nucleic Acids Research 35, 625–632. 49

[86] HUCKA, M., FINNEY, A., SAURO, H. M., BOLOURI, H., DOYLE, J. C., KITANO, H., THE

REST OF THE SBML FORUM: A. P. ARKIN, BORNSTEIN, B. J., BRAY, D., CORNISH-BOWDEN,
A., CUELLAR, A. A., DRONOV, S., GILLES, E. D., GINKEL, M., GOR, V., GORYANIN, I. I.,
HEDLEY, W. J., HODGMAN, T. C., HOFMEYR, J.-H., HUNTER, P. J., JUTY, N. S., KASBERGER,
J. L., KREMLING, A., KUMMER, U., LE NOVÈRE, N., LOEW, L. M., LUCIO, D., MENDES, P.,
MINCH, E., MJOLSNESS, E. D., NAKAYAMA, Y., NELSON, M. R., NIELSEN, P. F., SAKURADA,
T., SCHAFF, J. C., SHAPIRO, B. E., SHIMIZU, T. S., SPENCE, H. D., STELLING, J., TAKA-
HASHI, K., TOMITA, M., WAGNER, J., AND WANG, J. 2003. The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models. Bioinformat-
ics 19, 524–531. 1, 18

[87] JACOBS, T. AND MUSIAL, B. 2003. Interactive visual debugging with UML. In Proceedings of
the 2003 ACM Symposium on Software Visualization. ACM Press, 115–122. 49

[88] JANECEK, P. 2004. Interactive semantic fisheye views for information workspaces. Ph.D. thesis,
School of Computer and Communication Sciences, Swiss Federal Institute of Technology, Lausanne,
Switzerland. 37

[89] JANECEK, P. AND PU, P. 2002. A framework for designing fisheye views to support multiple
semantic contexts. In International Conference on Advanced Visual Interfaces. ACM Press, 51–58.
38, 39

[90] JEONG, H., MASON, S. P., BARABASI, A. L., AND OLTVAI, Z. N. 2001. Lethality and centrality
in protein networks. Nature 411, 6833, 41–42. 109

[91] JUNKER, B., KLUKAS, C., AND SCHREIBER, F. 2006. VANTED: A system for advanced data
analysis and visualization in the context of biological networks. BMC Bioinformatics 7, 109. 49

[92] KAMADA, T. AND KAWAI, S. 1989. An algorithm for drawing general undirected graphs. Infor-
mation Processing Letters 31, 1, 7–15. 34

[93] KANEHISA, M. AND GOTO, S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28, 27–30. 1

151

Bibliography

[94] KAUFMANN, M. AND WAGNER, D. 2001. Drawing graphs, methods and models. In Drawing
Graphs, M. Kaufmann and D. Wagner, Eds. Lecture Notes in Computer Science, vol. 2025. Springer.
30, 33, 34

[95] KAUFMANN, M. AND WIESE, R. 2002. Maintaining the mental map for circular drawings. In
Revised Papers from the 10th International Symposium on Graph Drawing. GD ’02. Springer, 12–22.
33

[96] KEIM, D., ANDRIENKO, G., FEKETE, J. D., GÖRG, C., KOHLHAMMER, J., AND MELANÇON,
G. 2008. Visual analytics: Definition, process, and challenges. In Information Visualization, A. Ker-
ren, J. T. Stasko, J. D. Fekete, and C. North, Eds. Lecture Notes in Computer Science, vol. 4950.
Springer, 154–175. 36

[97] KERREN, A., EBERT, A., AND MEYER, J. 2007. Human-centered visualization environments.
Lecture Notes in Computer Science, vol. 4417. Springer. 36, 47

[98] KIM, J. S., YUN, H., KIM, H. U., CHOI, H., KIM, T. Y., WOO, H. M., AND LEE, S. Y. 2006.
Resources for systems biology research. Journal of Microbiological Biotechnology 16, 832–848. 18

[99] KITANO, H. 2002a. Computational systems biology. Nature 420, 6912, 206–210. 9

[100] KITANO, H. 2002b. Standards for modeling. Nature Biotechnology 20, 4, 337–337. 17

[101] KITANO, H. 2003. A graphical notation for biochemical networks. BIOSILICO 1, 5, 169–176.
46

[102] KITANO, H., FUNAHASHI, A., MATSUOKA, Y., AND ODA, K. 2005. Using process diagrams
for the graphical representation of biological networks. Nature Biotechnology 23, 8, 961–966. 27

[103] KLAMT, S., SAEZ-RODRIGUEZ, J., AND GILLES, E. D. 2007. Structural and functional analysis
of cellular networks with CellNetAnalyzer. BMC Systems Biology 1, 2, 1–13. 19, 20

[104] KLAMT, S., SAEZ-RODRIGUEZ, J., LINDQUIST, J., SIMEONI, L., AND GILLES, E. D. 2006. A
methodology for the structural and functional analysis of signaling and regulatory networks. BMC
Bioinformatics 7, 56. 14, 19, 64, 68

[105] KLIPP, E., LIEBERMEISTER, W., WIERLING, C., KOWALD, A., LEHRACH, H., AND HERWIG,
R. 2009. Systems biology: a textbook. Wiley-VCH. 12, 14

[106] KOCH, I., REISIG, W., AND SCHREIBER, F. 2011. Modeling in systems biology: the Petri net
approach. Springer Book Series Computational Biology. Springer. 12, 46

[107] KOHN, K. W. 1999. Molecular interaction map of the mammalian cell cycle control and DNA
repair systems. Molecular Biology of the Cell 10, 8, 2703–2734. 46

[108] KOTH, O. AND MINAS, M. 2002. Structure, abstraction, and direct manipulation in diagram
editors. In Proceedings of the Second International Conference on Diagrammatic Representation and
Inference. Springer, 290–304. 49

[109] KRASNYK, M., BONDAREVA, K., MILOKHOV, O., TEPLINSKIY, K., GINKEL, M., AND

KIENLE, A. 2006. The ProMoT/Diana simulation environment. Proceedings of the 16th European
Symposium on Computer Aided Process Engineering and 9th international Symposium on Process
Systems Engineering, 445–450. 19, 20

152

Bibliography

[110] KREMLING, A. AND GILLES, E. D. 2001. The organization of metabolic reaction networks: II.
signal processing in hierarchical structured functional units. Metabolic Engineering 3, 2, 138–150.
17, 19, 20

[111] KUMAR, H., PLAISANT, C., AND SHNEIDERMAN, B. 1995. Browsing hierarchical data with
multi-level dynamic queries and pruning. International Journal of Human-Computer Studies 46,
103–124. 100

[112] KÖHLER, J., BAUMBACH, J., TAUBERT, J., SPECHT, M., SKUSA, A., RÜEGG, A., RAWLINGS,
C., VERRIER, P., AND PHILIPPI, S. 2006. Graph-based analysis and visualization of experimental
results with ONDEX. Bioinformatics 22, 11, 1383–1390. 49

[113] LAUFFENBURGER, D. A. 2000. Cell signaling pathways as control modules: complexity for
simplicity? Proceedings of the National Academy of Sciences of the United States of America 97, 10,
5031–5033. 15

[114] LE NOVÈRE, N., HUCKA, M., MI, H., MOODIE, S., SCHREIBER, F., SOROKIN, A., DEMIR, E.,
WEGNER, K., ALADJEM, M. I., WIMALARATNE, S. M., BERGMAN, F. T., GAUGES, R., GHAZAL,
P., KAWAJI, H., LI, L., MATSUOKA, Y., VILLEGER, A., BOYD, S. E., CALZONE, L., COURTOT,
M., DOGRUSOZ, U., FREEMAN, T. C., FUNAHASHI, A., GHOSH, S., JOURAKU, A., KIM, S.,
KOLPAKOV, F., LUNA, A., SAHLE, S., SCHMIDT, E., WATTERSON, S., WU, G., GORYANIN, I.,
KELL, D. B., SANDER, C., SAURO, H., SNOEP, J. L., KOHN, K., AND KITANO, H. 2009. The
systems biology graphical notation. Nature Biotechnology 27, 8, 735–741. 2, 46, 49, 100

[115] LEE, Y. Y., LIN, C. C., AND YEN, H. C. 2006. Mental map preserving graph drawing using
simulated annealing. In Proceedings of the Asia Pacific Symposium on Information Visualization.
APVis ’06, vol. 60. Australian Computer Society, 179–188. 40

[116] LEUNG, Y. K. AND APPERLEY, M. D. 1994. A review and taxonomy of distortion-oriented
presentation techniques. ACM Trans. Comput.-Hum. Interact. 1, 2, 126–160. 101

[117] LI, C., DONIZELLI, M., RODRIGUEZ, N., DHARURI, H., ENDLER, L., CHELLIAH, V., LI, L.,
HE, E., HENRY, A., STEFAN, M. I., SNOEP, J. L., HUCKA, M., LE NOVÈRE, N., AND LAIBE, C.
2010. BioModels Database: an enhanced, curated and annotated resource for published quantitative
kinetic models. BMC Systems Biology 4, 92. 1

[118] LI, W., EADES, P., AND NIKOLOV, N. 2005. Using spring algorithms to remove node overlap-
ping. In Proceedings of the 2005 Asia-Pacific Symposium on Information Visualisation. Australian
Computer Society, 131–140. 34, 129

[119] LIEBERMAN, M. D., TAHERI, S., GUO, W., MIRRASHED, F., YAHAV, I., ARIS, A., AND SHNEI-
DERMAN, B. 2011. Visual exploration across biomedical databases. IEEE Transactions on Compu-
tational Biology and Bioinformatics 8, 2, 536–550. 143

[120] LLOYD, C. M., HALSTEAD, M. D. B., AND NIELSEN, P. F. 2004. CellML: its future, present
and past. Progress in Biophysics and Molecular Biology 85, 2-3, 433–450. 18

[121] MACHNÉ, R. 2011. SBML ODE Solver Library. http://www.tbi.univie.ac.at/~raim/odeSolver/.
Online; accessed October 4, 2011. 49

[122] MAIWALD, T. AND TIMMER, J. 2008. Dynamical modeling and multi-experiment fitting with
PottersWheel. Bioinformatics 24, 18, 2037–2043. 10

153

Bibliography

[123] MALLAVARAPU, A., THOMSON, M., ULLIAN, B., AND GUNAWARDENA, J. 2009. Program-
ming with models: modularity and abstraction provide powerful capabilities for systems biology.
Journal of The Royal Society Interface 6, 32, 257–270. 18

[124] MANGOLD, M., ANGELES-PALACIOS, O., GINKEL, M., WASCHLER, R., KIENLE, A., AND

GILLES, E. D. 2005. Computer aided modeling of chemical and biological systems – methods, tools,
and applications. Industrial and Engineering Chemistry Research 8, 44, 2579–2591. 17

[125] MANGOLD, M., GINKEL, M., AND GILLES, E. D. 2004. A model library for membrane reactors
implemented in the process modelling tool ProMoT. Computers & Chemical Engineering 28, 3,
319–332. 19

[126] MICHAL, G. 1999. Biochemical pathways. Spektrum Akademischer Verlag. 46

[127] MILO, R., SHEN-ORR, S., ITZKOVITZ, S., KASHTAN, N., CHKLOVSKII, D., AND ALON, U.
2002. Network motifs: simple building blocks of complex networks. Science 298, 5594, 824–827. 8

[128] MIREL, B. 2009. Supporting cognition in systems biology analysis: findings on users’ processes
and design implications. Journal of Biomedical Discovery and Collaboration 4, 1, 2. 48

[129] MIRSCHEL, S., STEINMETZ, K., AND KREMLING, A. 2009. Two different approaches for mod-
eling biochemical reaction networks with ProMoT. In Proceedings of the 6th International Conference
of Mathematical Modelling. MATHMOD ’09, vol. 35. ARGESIM, 2322–2330. 13, 21, 22

[130] MIRSCHEL, S., STEINMETZ, K., REMPEL, M., GINKEL, M., AND GILLES, E. D. 2009. Pro-
MoT: modular modeling for systems biology. Bioinformatics 25, 5, 687–689. 19, 22

[131] MISUE, K., EADES, P., LAI, W., AND SUGIYAMA, K. 1995. Layout adjustment and the mental
map. Journal of Visual Languages and Computing 6, 2, 183–210. 40, 41, 127

[132] MODELICA CONSORTIUM. 2012. OpenModelica. http://www.openmodelica.org. Online; ac-
cessed January 16, 2012. 18

[133] MOHL, K. D., SPIEKER, A., KÖHLER, R., GILLES, E. D., AND ZEITZ, M. DIVA – a simulation
environment for chemical engineering applications. In Proceedings of Informatics, Cybernetics and
Computer Science. ICCS ’97. Donetsk State Technical University, 8–15. 19

[134] MOSCOVICH, T., CHEVALIER, F., HENRY, N., PIETRIGA, E., AND FEKETE, J. D. 2009.
Topology-aware navigation in large networks. In Proceedings of the 27th international Conference
on Human Factors in Computing Systems. ACM Press, 2319–2328. 82, 95

[135] MOWBRAY, T. J. AND RUH, W. A. 1998. Inside CORBA – distributed object standards and
applications. Addison-Wesley object technology series. Addison-Wesley-Longman. 22

[136] NEUMANN, P., SCHLECHTWEG, S., AND CARPENDALE, S. 2005. ArcTrees: visualizing re-
lations in hierarchical data. In Data Visualization 2005, Eurographics/IEEE VGTC Symposium on
Visualization Symposium Proceedings, K. W. Brodlie, D. J. Duke, and K. I. Joy, Eds. Simulation,
53–60. 31

[137] NICHOLSON, D. E. 2000. The evolution of the IUBMB-Nicholson maps. IUBMB Life 50, 6,
341–344. 46

154

Bibliography

[138] NICKERSON, D., NASH, M., NIELSEN, P., SMITH, N. P., AND HUNTER, P. J. 2006. Computa-
tional multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. IBM
Journal of Research and Development 50, 6, 617–630. 18

[139] NOACK, A. AND LEWERENTZ, C. 2005. A space of layout styles for hierarchical graph models
of software systems. In Proceedings of the 2005 ACM Symposium on Software Visualization. ACM
Press, 155–164. 35

[140] ODA, K., MATSUOKA, Y., FUNAHASHI, A., AND KITANO, H. 2005. A comprehensive pathway
map of epidermal growth factor receptor signaling. Molecular Systems Biology 1, 1, E1–E17. 127

[141] O’DONOGHUE, S. I., GAIN, A.-C., GEHLENBORG, N., GOODSELL, D. S., HERICHE, J.-K.,
NIELSEN, CYDNEY B NORTH, C., OLSON, A. J., PROCTER, J. B., SHATTUCK, D. W., WALTER,
T., AND WONG, B. 2010. Visualizing biological data – now and in the future. Nature Methods 7, 3,
S2–S4. 143

[142] OLIVIER, B. G. AND SNOEP, J. L. 2004. Web-based kinetic modelling using JWS Online.
Bioinformatics 20, 13, 2143–2144. 1

[143] OMOTE, H. AND SUGIYAMA, K. 2007. Method for visualizing complicated structures based on
unified simplification strategy. IEICE – Transactions on Information and Systems 90-D, 10, 1649–
1656. 30

[144] PALMER, S. E. AND ROCK, I. 1994. Rethinking perceptual organization: the role of uniform
connectedness. Psychonomic Bulletin & Review 1, 1, 29–55. 38

[145] PAVLOPOULOS, G., WEGENER, A. L., AND SCHNEIDER, R. 2008. A survey of visualization
tools for biological network analysis. BioData Mining 1, 1, 12. 2, 48

[146] PERLIN, K. AND FOX, D. 1993. Pad: an alternative approach to the computer interfaces. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’93. ACM Press, 57–64. 49

[147] PETTINEN, A., AHO, T., SMOLANDER, O. P., MANNINEN, T., SAARINEN, A., TAATTOLA, K.-
L., YLI HARJA, O., AND LINNE, M. L. 2005. Simulation tools for biochemical networks: evaluation
of performance and usability. Bioinformatics 21, 3, 357–363. 18

[148] PICCOLO2D. 2011. Piccolo2D – A structured 2d graphics framework. http://piccolo2d.org/.
Online; accessed December 8, 2011. 49

[149] PIETRIGA, E. 2005. A toolkit for addressing hci issues in visual language environments. In
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE
Computer Society, 145–152. 49

[150] PLAISANT, C., CARR, D., AND SHNEIDERMAN, B. 1995. Image browsers: taxonomy, guide-
lines, and informal specifications. IEEE Software 12, 21–32. 42

[151] PRELLER, A., MUGNIER, M. L., AND CHEIN, M. 1998. Logic for nested graphs. Computational
Intelligence 14, 3, 335–357. 127

[152] PURCHASE, H. C. 2000. Effective information visualisation: a study of graph drawing aesthetics
and algorithms. Interacting with Computers 13, 2, 147–162. 33

155

Bibliography

[153] QELI, E. 2007. Information visualization techniques for metabolic engineering. Ph.D. thesis,
Faculty of Mathematics and Computer Science, Philipps University, Marburg, Germany. 38

[154] QUACKENBUSH, J. 2006. Weighing our measures of gene expression. Molecular Systems Biol-
ogy 2, 63. 10

[155] RANDHAWA, R. 2008. Model composition and aggregation in macromolecular regulatory net-
works. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
127

[156] RANDHAWA, R., SHAFFER, C. A., AND TYSON, J. J. 2009. Model aggregation: a building-block
approach to creating large macromolecular regulatory networks. Bioinformatics 25, 24, 3289–3295.
10, 17, 127

[157] RAVASZ, E., SOMERA, A. L., MONGRU, D. A., OLTVAI, Z. N., AND BARABÁSI, A.-L. 2002.
Hierarchical organization of modularity in metabolic networks. Science 297, 5586, 1551–1555. 16

[158] REINHARD, T., MEIER, S., STOIBER, R., CRAMER, C., AND GLINZ, M. 2008. Tool support for
the navigation in graphical models. In Proceedings of the 30th International Conference on Software
Engineering. ACM Press, 823–826. 48, 50, 78, 80

[159] ROBERTSON, G. G., CARD, S. K., AND MACKINLAY, J. D. 1993. Information visualization
using 3D interactive animation. Communications of the ACM – Special Issue on Graphical User
Interfaces 36, 4, 57–71. 41

[160] ROBINSON, J. A. AND FLORES, T. P. 1997. Novel techniques for visualizing biological informa-
tion. In Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology.
AAAI Press, 241–249. 45, 79

[161] SAEZ-RODRIGUEZ, J. 2007. Modular analysis of signal transduction networks. Ph.D. thesis,
Faculty of Process and Systems Engineering, Otto von Guericke University, Magdeburg, Germany.
24, 177

[162] SAEZ-RODRIGUEZ, J., GAYER, S., GINKEL, M., AND GILLES, E. D. 2008. Automatic de-
composition of kinetic models of signaling networks minimizing the retroactivity among modules.
Bioinformatics 24, 16, i213–i219. 16, 125

[163] SAEZ-RODRIGUEZ, J., KREMLING, A., CONZELMANN, H., BETTENBROCK, K., AND GILLES,
E. D. 2004. Modular analysis of signal transduction networks. IEEE Control Systems 24, 4, 35–52.
16

[164] SAEZ-RODRIGUEZ, J., KREMLING, A., AND GILLES, E. D. 2005. Dissecting the puzzle of life:
modularization of signal transduction networks. Computers & Chemical Engineering, Computational
Challenges in Biology 29, 3, 619–629. 15, 19, 22, 143

[165] SAEZ-RODRIGUEZ, J., MIRSCHEL, S., HEMENWAY, R., KLAMT, S., GILLES, E. D., AND

GINKEL, M. 2006. Visual setup of logical models of signaling and regulatory networks with Pro-
MoT. BMC Bioinformatics 7, 506. 19, 22, 24, 58, 63, 70, 74, 174

[166] SAEZ-RODRIGUEZ, J., SIMEONI, L., LINDQUIST, J. A., HEMENWAY, R., BOMMHARDT, U.,
ARNDT, B., HAUS, U.-U., WEISMANTEL, R., GILLES, E. D., KLAMT, S., AND SCHRAVEN, B.
2007. A logical model provides insights into T cell receptor signaling. PLoS Computational Biol-
ogy 3, 8. 22, 24, 143

156

Bibliography

[167] SAMAGA, R., SAEZ-RODRIGUEZ, J., ALEXOPOULOS, L. G., SORGER, P. K., AND KLAMT,
S. 2009. The logic of EGFR/ErbB signaling: Theoretical properties and analysis of high-throughput
data. PLoS Computational Biology 5, 8. 22, 23, 73, 118, 122, 131, 143, 176

[168] SARAIYA, P., LEE, P., AND NORTH, C. 2005. Visualization of graphs with associated timeseries
data. In Proceedings of the 2005 IEEE Symposium on Information Visualization. IEEE Computer
Society, 30–42. 115

[169] SARAIYA, P., NORTH, C., AND DUCA, K. 2005a. An insight-based methodology for evaluating
bioinformatics visualizations. IEEE Transactions on Visualization and Computer Graphics 11, 4,
443–456. 115

[170] SARAIYA, P., NORTH, C., AND DUCA, K. 2005b. visualization of biological pathways: require-
ments analysis, systems evaluation, and research agenda. Information Visualization 4, 3, 1–15. 2, 48,
49, 58, 61, 143

[171] SARKAR, M. AND BROWN, M. H. 1992. Graphical fisheye views of graphs. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, 83–91. 43, 80

[172] SCHAFFER, D., ZUO, Z., BARTRAM, L., DILL, J., DUBS, S., GREENBERG, S., AND ROSEMAN,
M. 1993. Comparing fisheye and full-zoom techniques for navigation of hierarchically clustered
networks. In Proceedings of Graphics Interface. GI ’93. 87–96. 80, 83, 92

[173] SCHOEBERL, B., EICHLER-JONSSON, C., GILLES, E. D., AND MUELLER, G. 2002. Compu-
tational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized
EGF receptors. Nature Biotechnology 20, 4, 370–375. 22

[174] SHANNON, P., MARKIEL, A., OZIER, O., BALIGA, N. S., WANG, J. T., RAMAGE, D., AMIN,
N., SCHWIKOWSKI, B., AND IDEKER, T. 2003. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Research 13, 11, 2498–2504. 49, 100

[175] SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-d space-filling approach. ACM
Transaction on Graphics 11, 1, 92–99. 108

[176] SHNEIDERMAN, B. 1996. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings of the IEEE Symposium on Visual Languages. IEEE Computer Society
Press, 336–343. 90

[177] SHNEIDERMAN, B. 2001. Supporting creativity with advanced information-abundant user inter-
faces. Tech. rep., Department of Computer Science, University of Maryland, USA. 36

[178] SILVA, C. T. AND FREIRE, J. 2008. Software infrastructure for exploratory visualization and data
analysis: past, present, and future. Journal of Physics: Conference Series 125, 1. 141

[179] SIX, J. AND TOLLIS, I. 1999. A framework for circular drawings of networks. In Graph Drawing,
J. Kratochvíyl, Ed. Lecture Notes in Computer Science, vol. 1731. Springer, 107–116. 33

[180] SMITH, L. P., BERGMANN, F. T., CHANDRAN, D., AND SAURO, H. M. 2009. Antimony: a
modular model definition language. Bioinformatics 25, 18, 2452–2454. 18

[181] SOLIMAN, S. 2009. Modelling biochemical reaction networks with BIOCHAM extracting qual-
itative and quantitative information from the structure. In Proceedings of the 6th International Con-
ference on Mathematical Modelling. MATHMOD ’09, vol. 35. ARGESIM, 2304–2312. 15

157

Bibliography

[182] SOROKIN, A., PALIY, K., SELKOV, A., DEMIN, O. V., DRONOV, S., GHAZAL, P., AND

GORYANIN, I. 2006. The Pathway Editor: a tool for managing complex biological networks. IBM
Journal of Research and Development 50, 6, 561–573. 49, 55

[183] SPENCE, R. 2006. Information visualization – design for interaction. Pearson Education. 11

[184] SPRINZAK, E., SATTATH, S., AND MARGALIT, H. 2003. How reliable are experimental protein-
protein interaction data? Journal of Molecular Biology 327, 919–923. 10

[185] STOREY, M. A., BEST, C., MICHAUD, J., RAYSIDE, D., LITOIU, M., AND MUSEN, M. 2002.
SHriMP views: an interactive environment for information visualization and navigation. In Extended
abstracts on Human Factors in Computing Systems. ACM Press, 520–521. 49

[186] STOREY, M. A. D., FRACCHIA, F. D., AND MUELLER, H. A. 1999. Customizing a fisheye view
algorithm to preserve the mental map. Journal of Visual Languages and Computing 10, 3, 245–267.
80

[187] STOREY, M. A. D. AND MUELLER, H. A. 1995. Graph layout adjustment strategies. In Pro-
ceedings of the 3rd International Symposium on Graph Drawing. Springer, 487–499. 136

[188] SUDERMAN, M. AND HALLETT, M. 2007. Tools for visually exploring biological networks.
Bioinformatics 23, 20, 2651–2659. 2, 48, 143

[189] SUGIYAMA, K. AND MISUE, K. 1995. Graph drawing by the magnetic spring model. Journal of
Visual Languages & Computing 6, 3, 217–231. 34, 131

[190] SUGIYAMA, K., TAGAWA, S., AND TODA, M. 1981. Methods for visual understanding of hi-
erarchical system structures. IEEE Transactions on Systems, Man and Cybernetics 11, 2, 109–125.
33

[191] TAMASSIA, R. 1987. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing 16, 3, 421–444. 33, 34

[192] TOLMAN, E. C. 1948. Cognitive maps in rats and men. Psychological Review 55, 4, 189–208. 39

[193] TOM SAWYER. 2012. Tom Sawyer Software. http://www.tomsawyer.com/. Online; accessed
February 15, 2012. 108

[194] TOMITA, M., HASHIMOTO, K., TAKAHASHI, K., SHIMIZU, T. S., MATSUZAKI, Y., MIYOSHI,
F., SAITO, K., TANIDA, S., YUGI, K., VENTER, J. C., AND HUTCHISON, C. A. 1999. E-CELL:
software environment for whole-cell simulation. Bioinformatics 15, 1, 72–84. 18

[195] TOYODA, T., MOCHIZUKI, Y., AND KONAGAYA, A. 2003. GSCope: a clipped fisheye viewer
effective for highly complicated biomolecular network graphs. BioInformatics 3, 19, 437–438. 49,
110

[196] TREISMAN, A. 1985. Preattentive processing in vision. Computer Vision, Graphics, and Image
Processing 31, 2, 156–177. 38, 41

[197] TUFTE, E. R. 1990. Envisioning information. Graphics Press. 99

[198] TUFTE, E. R. 1997. Visual explanations: images and quantities, evidence and narrative. Graphics
Press. 36

158

Bibliography

[199] UETZ, P., IDEKER, T. G., AND SCHWIKOWSKI, B. 2002. Visualization and integration
of protein-protein interactions. In Protein-Protein Interactions – A Molecular Cloning Manual,
E. Golemis, Ed. CSHL Press, 623–646. 30

[200] VILLÉGER, A. C., PETTIFER, S. R., AND KELL, D. B. 2010. Arcadia: a visualization tool for
metabolic pathways. Bioinformatics 26, 11, 1470–1471. 109

[201] VON LANDESBERGER, T., KUIJPER, A., SCHRECK, T., KOHLHAMMER, J., VAN WIJK, J.,
FEKETE, J. D., AND FELLNER, D. 2011. Visual analysis of large graphs: state-of-the-art and future
research challenges. Computer Graphics Forum 30, 6, 1719–1749. 27, 28, 47

[202] WALSHAW, C. 2003. A multilevel algorithm for force-directed graph drawing. Journal of Graph
Algorithms and Applications 7, 3, 253–285. 34

[203] WARE, C. 2000. Information visualization: perception for design. Morgan Kaufmann Publishers.
36, 41, 77

[204] WIECHERT, W., NOACK, S., AND ELSHEIKH, A. 2010. Modeling languages for biochemical net-
work simulation: reaction vs equation based approaches. In Biosystems Engineering II, C. Wittmann
and R. Krull, Eds. Vol. 121. Springer, 109–138. 8, 13, 20, 125

[205] WIESE, R., EIGLSPERGER, M., AND KAUFMANN, M. 2002. yFiles: visualization and automatic
layout of graphs. In Graph Drawing, P. Mutzel, M. Juenger, and S. Leipert, Eds. Vol. 2265. Springer,
588–590. 34, 108

[206] WIKIPEDIA. 2011. Signal transduction – Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/wiki/Signal_transduction. Online; accessed November 5, 2011. 9

[207] WILLS, G. J. 1997. NicheWorks – interactive visualization of very large graphs. In Proceedings
of the 5th International Symposium on Graph Drawing. GD ’97. Springer, 403–414. 33

[208] WIMALARATNE, S. M., HALSTEAD, M. D. B., LLOYD, C. M., COOLING, M. T., CRAMPIN,
E. J., AND NIELSEN, P. F. 2009a. Facilitating modularity and reuse: guidelines for structuring
CellML 1.1 models by isolating common biophysical concepts. Experimental Physiology 94, 5, 472–
485. 7, 17

[209] WIMALARATNE, S. M., HALSTEAD, M. D. B., LLOYD, C. M., COOLING, M. T., CRAMPIN,
E. J., AND NIELSEN, P. F. 2009b. A method for visualizing CellML models. Bioinformatics 25, 22,
3012–3019. 16, 17, 131

[210] YARDEN, Y. AND SLIWKOWSKI, M. X. 2001. Untangling the ErbB signalling network. Nature
Reviews Molecular Cell Biology 2, 2, 127–137. 23

[211] YWORKS. 2012. yEd graph editor. http://www.yworks.com/products/yed/. Online; accessed
March 10, 2012. 34, 108

159

Index

CellNetAnalyzer, 19, 56, 115
ContextualZoom, 79

domain-specific, 35, 86, 110, 131

FlatLayout, 135
focus path, 48, 90, 140
Focus+Context, 43, 79

gene regulation, 8
global VS

Connectivity, 109
Dynamic Model, 107
Hierarchical Level, 107
Interaction Distance, 109
Logical Model, 107

graph
compound, 28
hierarchical, 28
nested, 29
simple, 28
terminal cluster, 29, 56, 129

hierarchical level, 29, 47, 57, 78, 93, 128, 137
HierarchicalZoom, 82
HyCoGLa, 128

interactive exploration scheme, 78, 90, 127
InteractiveZoom, 79

level of detail, 43, 85

MAPK cascade, 22–24
MDL, 55, 60, 61
mental map, 39
metabolism, 7

model
dynamic EGF, 22
logical EGFR/ErbB, 23
logical TCR, 24

model type
biological, 13
computational, 12
graphical, 13
mathematical, 12
mental, 13
modular, 13

modeling
dynamic, 14
logical, 14
modular, 15

modular modeling concept, 17
module

composite, 21, 59, 66
elementary, 21

multiple maps, 68

network, 45
cellular, 13, 19, 46
gene regulatory, 45
metabolic, 45
protein-protein-interaction, 45
signaling, 45

Overview+Detail, 42, 82

Pan+Zoom, 43, 50, 79, 82
ProMoT, 19

Class Browser, 22
Visual Editor, 22

161

Index

Visual Explorer, 5

SBGN, 46, 49, 56, 99
SBML, 1, 18, 50, 125
scene graph, 49
shortest path, 29, 113
signal transduction, 7, 110
space scale diagram, 43
spring-embedder, 34

UML, 164

view
global, 47, 89
integrated, 47
level, 47
local, 47, 69, 82, 96
multiple, 47
standard, 47, 55

Visual Scenario
Logical Model, 107

visual scenario
global, 105
local, 106

zoomable user interface, 43, 78
zooming, 43

162

APPENDIX A

CD Information, Software Architecture and UML Diagrams

This appendix gives some information on the supplied CD and its content. Thereafter, some information
on the architecture of PROMOT and the classes of VISUAL EXPLORER is given.

A.1. Supplied CD

Many examples illustrating animations and interactions used within VISUAL EXPLORER are included as
movie files on the CD provided with this thesis. These files are stored in popular codecs and containers
such as MPEG-4, AVI, FLV and MOV. The particular file name indicates the appropriate figure in the
thesis.
The movies can be watched by clicking on the particular file using a multimedia player such as VIDEO-
LAN CLIENT (VLC)

TM
. VLC is an open-source and cross-platform multimedia player and framework

that plays most video formats. It can be downloaded free of charge from http://www.videolan.org/.

A.2. Architecture of PROMOT

In Figure A.1, the high-level software architecture of PROMOT is depicted. With respect to the mod-
eling formalism, PROMOT can read three different formats: MDL, SBML and CELLNETANALYZER.
The input model will be interpreted and stored in the PROMOT kernel. For analysis, a model instance is
created and processed by one of the different writers (dynamic or logical) located in the output layer. In
order to analyze or simulate models, PROMOT can export to several simulation backends and analysis
tools, which results in an optimized modeling workflow (MDL, MATLAB, DIVA/DIANA, SBML, CELL-
NETANALYZER). VISUAL EXPLORER supports import and export of graph formats (e. g., GRAPHML)
in order to save the layout. Further, the user can also export the graphics into various bitmap and vector
formats. For instance, the modeler can use vector graphics, for example, PDF, EMF or SVG, in order
to maintain the details and allow zooming in. The exported model or graphics can be processed further
in order to get an adequate visual representation of the model.

163

A. CD Information, Software Architecture and UML Diagrams

A.3. UML Diagrams

In Figure A.2, the UML diagram of VISUAL EXPLORER is depicted. It presents an overview picture of
the implemented classes, related PROMOT classes and third-party classes. Another UML diagram, given
in Figure A.3, shows the package structure of VISUAL EXPLORER.

164

A.3. UML Diagrams

Figure A.1.: Diagram of the high-level software architecture of PROMOT and the corresponding input
and output layer. VISUAL EDITOR and VISUAL EXPLORER are part of the PROMOT GUI
written in the programming language JAVA.

165

A. CD Information, Software Architecture and UML Diagrams

Figure A.2.: UML class diagram compiling important VISUAL EXPLORER classes (promot.viznav), re-
lated PROMOT classes (promot.vizedit) and third-party classes. ‘−�’ encodes a general-
ization between a subclass and a superclass, ‘- ->’ depicts a dependency between a class
and an interface.

166

A.3. UML Diagrams

Figure A.3.: UML diagram compiling the package structure and high-level classes of VISUAL EX-
PLORER. ‘−�’ encodes a generalization between a subclass and a superclass.

167

A. CD Information, Software Architecture and UML Diagrams

168

APPENDIX B

Visual Representations and Visual Scenarios

In this appendix symbol reference cards for dynamic and logical models are presented. Furthermore,
some comparisons on different interactive exploration schemes are given. Finally, an overview of the
shortcuts and controls to navigate and explore modular models defined in VISUAL EXPLORER is listed.

B.1. Symbol Reference Cards

In Figure B.1, the notation symbols used for the visual representation of logical models are depicted.
They are provided in the form of a reference card. Analogous to that, in Figure B.2, notation symbols
used for dynamic models are shown. These reference cards provide also an overview of the visual
mappings defined in the global VS ‘Dynamic Model’ and in the global VS ‘Logical Model’.
The set of symbols is tailored to the modeling entities in the modeling libraries for dynamic and logical
models. The are visually modified either by altering their visual properties (e. g., border color) or by
using a bitmap icon.

B.2. Comparison of Elements

In Table B.1 a comparison between the visual representations of elements for logical modeling in VI-
SUAL EDITOR and VISUAL EXPLORER is given. All elements are standard modeling entities taken from
the logical library.

B.3. Visual Handling of Additional Parameters

In the following the visual handling of additional parameters used to encode properties of the logical
model is given. Important parameters and their visual handling are already discussed in Chapter 4,
Section 4.4.3.

Time Scale

For modeling different time-dependent reactions, the time scale can be used. It is coupled to reac-
tions in the model. For instance, to reflect a reaction that is active earlier in the signaling process, the

169

B. Visual Representations and Visual Scenarios

Figure B.1.: Reference card showing the basic set of symbols used for the visual representation of dy-
namic models.

170

B.3. Visual Handling of Additional Parameters

Figure B.2.: Reference card showing the basic set of symbols used for the visual representation of logical
models.

171

B. Visual Representations and Visual Scenarios

Logical Element Visual Editor Visual Explorer

Compounds
dummy explicit (using a dummy element) implicit (encoded by a bend point), explicit
reservoir explicit (using a reservoir element) implicit, explicit
other explicit (using a other element) explicit

Gates
and explicit (using an and element) explicit (using an and element)
or explicit (using an or element, implicit) implicit
somehow explicit (using a somehow element) explicit (using a somehow element)

Miscellaneous
not explicit (using a not element) implicit (encoded by a red edge with a T-end)
activ explicit (using a activ element) implicit (encoded by a black edge with arrow)

Table B.1.: Direct comparison of visual representations of relevant elements in VISUAL EDITOR and
VISUAL EXPLORER. All elements are standard modeling entities taken from the logical
library.

parameter time scale can be set to a lower value (e. g., value ‘1’). Whereas when a reaction takes
place later in the process, the parameter time scale should be set to a larger value (e. g., value ‘2’).
This property can be used to easily visualize the time behavior of reactions in context of the entire logical
network. It can also be used as an important visual aid during analysis in CELLNETANALYZER.

Ignore in Export

The parameter ignore in export determines whether or not the related element is exported to
CELLNETANALYZER. This parameter is not defined in species but rather in gates. If the parameter has
the value ‘0’, it will not be considered in the export; whereas with the value ‘1’ it will be exported. The
state of the gate can be visually reflected in the logical VS. For that, all gates with a value of ‘0’ can be
automatically removed from the visual representation and are not present in CELLNETANALYZER. This
reduces the visual clutter.

Logical Excluded

In contrast to the former parameter, elements with parameter logical excluded will be considered
in export. This parameter is relevant for further proceeding in CELLNETANALYZER where elements
having a parameter with value ‘1’ are excluded from the logical computation, whereas elements with
parameter value ‘0’ are considered. Often, it is beneficial to know this information before export or at
least during analysis in CELLNETANALYZER. For that, elements with a parameter value of ‘1’ can be
automatically removed from the logical VS. This is important in order to get a visual overview of the
states of this parameter in the network context.

172

B.4. Visual Representation of the Logical Toy Model

Confidence Level

The parameter confidence level is used to model uncertainties regarding the logical combinations
in the model. It defines the level of confidence of the encoded biological knowledge. Modules with a
value of ‘1.0’ have a high confidence; that is, they are well-known and established. In contrast, mod-
ules having a small value (e. g., value ‘0.05’) have a low confidence; that is, the knowledge about the
element is very uncertain. In VISUAL EXPLORER the confidence level can be visualized using the trans-
parency property – low confidence is depicted using high transparency; no transparency is used when
high confidence is given. In the later analysis with CELLNETANALYZER, this can be an important visual
aid.

B.4. Visual Representation of the Logical Toy Model

In this section, the transformation steps described in Chapter 4, Section 4.2 and encapsulated in the
VS ‘Logical Model’ are illustrated using the Toy model. As already mentioned, this process aims at
designing a biologically motivated representation.

The Toy model is set up in PROMOT in a modular fashion (Chapter 4, Figure 4.12a). Thereby, the local
views are separated in different windows (composite modules: whole_model, cell and nucleus).
Then, the Toy model is opened and automatically converted in VISUAL EXPLORER using the VS ‘Log-
ical Model’ (Chapter 4, Figure 4.12b). The different separate views are integrated in a single nested
view.

In contrast to Figure 4.12a (Chapter 4), in Figure 4.12b (Chapter 4) all not elements are removed.
Instead, the information of a negative influence is encoded by a red colored edge of the particular reaction.
A similar rule is applied to the positive effects where activ elements are removed from the network
and encoded in black color of the related edge. Additionally, the direction of signal flow is indicated
by target arrows that are different for activation and inhibition. Furthermore, the reservoir k3r has
been automatically removed, since it belongs to the class reservoir and is not necessary for a clear
biological interpretation. Instead, an edge connecting the corresponding compounds supplied by the
entity pools is drawn using a dashed style.

For a more biological motivated representation the composite modules, in particular cell and
nucleus are drawn as ellipses rather as strict rectangles. Additionally, the ellipses are rendered in
yellow and dashed (for imitating a biological, semi-permeable membrane). Another area for ‘optimiza-
tion’ are network edges. They are rendered as curved edges (i. e., Bézier curves) instead of strictly
angular edges. Both representations, ellipses and curved edges, are more familiar to biologists.

Figure B.3 gives a side-by-side comparison of the visual representation of a simplified Toy model in
VISUAL EDITOR and VISUAL EXPLORER.

As described in Chapter 6, Section 6.2.5, from the global VS ‘Logical Model’, different local VSs can
be derived for matching certain modeling tasks or individual preferences. In Figure B.4, alternative
visualizations using different local VSs are shown. In contrast to Figure 4.12b (Chapter 4), in Figure B.4a
the visual focus is on the reservoir k3r. Furthermore, all logical gates are unified, for instance, there is
no distinction between and and somehow gates. The network representation in Figure B.4b highlights
the wiring of the network, not the species themselves. Species are depicted only by label name. The type
of a species is encoded in the color of the label text, for example, yellow color for output elements.

173

B. Visual Representations and Visual Scenarios

(a) (b)

Figure B.3.: Comparison of the visual representation of a simplified Toy model, (a) in VISUAL EDITOR

and (b) in VISUAL EXPLORER.

(a) (b)

Figure B.4.: Alternative visualizations of the Toy model using different local VSs. (a) Representation
focusing on reservoir k3r; logical gates are unified. (b) Representation emphasizing the
wiring of the network; entities are depicted by label name. The Toy model using the global
VS for logical models is depicted in Chapter 4, Figure 4.12b. Figure on the right is adapted
from Saez-Rodriguez et al. [165].

174

B.5. Logical Model of EGFR/ErbB Signaling

B.5. Logical Model of EGFR/ErbB Signaling

An overview of visual representation in different steps in the logical modeling workflow of the
EGFR/ErbB model is given in Figure B.5. In particular, these steps are setup and editing in VISUAL

EDITOR, exploration and visualization in VISUAL EXPLORER, structural analysis in the CELLNETAN-
ALYZER and mapping of analysis results to the network in VISUAL EXPLORER.

B.6. Logical Model of TCR Signaling

Different VSs of the logical TCRmodel used for visual analysis are depicted in Figure B.6 and Figure B.7.

B.7. Visual Properties and Mappings

Visual properties of nodes and edges, their related data types, and their associated mappings in VISUAL

EXPLORER are given in Table B.2.

B.8. Visual Scenarios and Model Types

In Table B.3 the relations between the different components and the global VS is given. Furthermore, in
Table B.4 all global VSs are listed according their valid model types. Another table (Table B.5) compiles
the network elements that are not considered in the computation of the VS ‘Connectivity’ and the VS
‘Interaction Distance’ according to the model type.

175

B. Visual Representations and Visual Scenarios

(a) (b)

(c) (d)

Figure B.5.: Compilation of visual representation in different steps in the logical modeling workflow
of the logical EGFR/ErbB model. Only a part of the network is shown. (a) Setup and
editing in VISUAL EDITOR; (b) exploration and visualization in VISUAL EXPLORER; (c)
structural analysis in CELLNETANALYZER; (d) analysis results mapped back to the network
in VISUAL EXPLORER. Figures courtesy of Regina Samaga, some of which were published
in [167].

176

B.8. Visual Scenarios and Model Types

(a)

(b)

Figure B.6.: Different VSs of the logical TCR model used for visual analysis. (a) Using a global VS
specifically adapted to logical models. The global VS is instantiated to different local VSs
and then combined with analysis data from CELLNETANALYZER. (b) Paths activated upon
stimulation of molecule cd28. Species in green and red represent states fixed to 1 and
0, respectively. Elements depicted in semi-transparent are not activated upon stimulation
molecule cd28. Figures courtesy of Julio Saez-Rodriguez, published in [161].

177

B. Visual Representations and Visual Scenarios

(a)

(b)

Figure B.7.: Additional VSs based on the model depicted in Figure B.6a. (a) Knock out of tyrosine-
protein kinase FYN. (b) Knock out of kinase PI3K. Red crosses indicate knock-out species.
They are not part of VISUAL EXPLORER features and were added afterwards. Figures cour-
tesy of Julio Saez-Rodriguez.

178

B.8. Visual Scenarios and Model Types

Property Type Data Type Transfer Function
Categorical Ordered Continuous Direct Discrete Continuous

Node Properties
Node Border Color · � � · � �
Node Border Style � · · · � ·
Node Border Width · � � · � �
Node Fill Color · � � · � �
Node Label Color · � � · � �
Node Label Font Face � · · · � ·
Node Label Font Size · � � · � �
Node Label Text � · · � � ·
Node Label Position � · · · � ·
Node Scale · · � · � �
Node Shape � · · · � ·
Node Transparency · � � · � �

Edge Properties
Edge Label Color · � � · � �
Edge Label Font Face � · · · � ·
Edge Label Font Size · � � · � �
Edge Label Text � · · � � ·
Edge Line Color · � � · � �
Edge Line Style � · · · � ·
Edge Line Type � · · · � ·
Edge Line Width · � � · � �
Edge Line Transparency · � � · � �
Edge Source Arrow � · · · � ·
Edge Target Arrow � · · · � ·

Global Properties
Global Background Color · � � · � �
Global Highlight Node Color · � � · � �
Global Highlight Edge Color � � � · � �

Table B.2.: Visual mappings for nodes and edges in VISUAL EXPLORER. ‘�’ – mapping is supported for
the specified visual property, ‘·’ – mapping is not supported for the specified visual property,
‘Data Type’ – which data type can be mapped to the visual property, ‘Transfer Function’ –
which transfer function can be used to map the data type to the visual property.

179

B. Visual Representations and Visual Scenarios

Global VS / Component Filter Analysis Visual Mapping Layout Exploration Scheme

Dynamic Model ∅ ∅ � ∅ HierarchicalZoom
Logical Model � � � � HierarchicalZoom
SBML Model ∅ ∅ � ∅ HierarchicalZoom
Unknown Model ∅ ∅ � ∅ InteractiveZoom

Connectivity ∅ � � ∅ HierarchicalZoom
Hierarchical Level ∅ � � ∅ HierarchicalZoom
Interaction Distance ∅ � � ∅ ∅

Table B.3.: Each global VS has default components. ‘�’ – component is set; ‘∅’ – component is an
empty set in VS.

Global VS / Model Type Dynamic Model Logical Model SBML Model Unknown Model

Dynamic Model ∗ · � ·
Logical Model · ∗ · ·
SBML Model � · ∗ ·
Unknown Model � � � ∗

Connectivity � � � �
Hierarchical Level � � � �
Interaction Distance � � � �

Table B.4.: Each model type has a default global VS and a list of additional valid global VSs in VISUAL

EXPLORER. ‘∗’ – VS is the default option for model type; ‘�’ – VS is supported for model
type; ‘·’ – VS is not valid for the given model type.

Model Type Invalid Network Elements

Dynamic Model reaction, help, adapter, terminal, link node
Logical Model dummy, and, or, somehow, terminal
SBML Model reaction, help, adapter, terminal, link node
Unknown Model terminal

Table B.5.: Model types and related network elements that are not considered in the computation of the
VS ‘Connectivity’ and the VS ‘Interaction Distance’. Network elements are given by their
class names (if suitable).

180

APPENDIX C

Interactive Exploration Schemes

This appendix gives some comparisons on different interactive exploration schemes, and an overview of
the shortcuts and controls defined in VISUAL EXPLORER.

C.1. InteractiveZoom versus ContextualZoom

In Figure C.1, a comparison of the InteractiveZoom and the ContextualZoom using the example of the
logical TCR model is given.

C.2. Zoom Sequence with LOD

In Figure C.2, a zoom sequence is performed within the model of central metabolism of E. coli. The
model comprises 1430 nodes, 652 edges and consists of three modules on the top level and eight hierar-
chical levels. The zooming is performed using the HierarchicalZoom.

C.3. Shortcuts and Mouse Controls

The Table C.1 lists common shortcuts and mouse controls introduced with VISUAL EXPLORER. They
are necessary to view, navigate and explore the compound graph.

181

C. Interactive Exploration Schemes

Figure C.1.: Highlight a path between two high-level elements using the InteractiveZoom (left) and the
ContextualZoom (right). The path is emphasized using red. The zooming sequence using
InteractiveZoom reveals more detail, but the context is lost. In contrast, the sequence using
ContextualZoom is characterized by the whole model context, but with less detail. The
dynamic EGF model is applied.

182

C.3. Shortcuts and Mouse Controls

Figure C.2.: A typical zoom sequence with module-based navigation (HierarchicalZoom) using the
Ecoli model. The zoom steps are performed either with or without LOD. As depicted
with enabled LOD, the number of nodes, edges and overall elements are at a low constant
level (around 130) while zooming within the hierarchical structure. In contrast without
LOD, the number of elements increases up to 2300.

183

C. Interactive Exploration Schemes

Operation Shortcut Description

Menus

Open node menu on entity Opens the context menu for nodes

Open edge menu on entity Opens the context menu for edges

InteractiveZoom

Zoom in + Zoom in the network

Zoom out + Zoom out the network

Pan + Ctrl + Drag Move (pan) the entire canvas in any direction

HierarchicalZoom

Zoom in on entity Zoom in to focused entity in hierarchical steps

Zoom out on entity Zoom out to focused entity in hierarchical steps

Fit network on screen + Shift Zoom out the entire network to fit on screen

Pan + Ctrl + Drag Move (pan) the entire canvas in any direction

ContextualZoom

Zoom in on entity Enlarge focused entity, shrink all other entities

Zoom out on entity + Shift Shrink focused entity, enlarge all other entities

Pan + Ctrl + Drag Move (pan) the entire canvas in any direction

Detail+Overview

Pan on gray box + Drag Move (pan) the entire canvas in any direction

Node Editing

Move on entity + Drag Move entity inside bounds of parent

Resize (all) on handle + Drag Scale entity including children and label

Resize (bounds) on handle + Shift + Drag Resize only bounds of entity, keep size of children and label

Pan + Ctrl + Drag Move (pan) the entire canvas in any direction

Edge Editing

Move handle on handle + Drag Move edge handle

Add handle on edge for context menu Add edge handle

Delete handle on edge for context menu Remove edge handle

Delete all handles on edge for context menu Remove all edge handles

Pan + Ctrl + Drag Move (pan) the entire canvas in any direction

Global Visual Scenario ‘Interaction Distance’

Show Int Dist on entity Show Interaction Distance for focused entity

Show Int Dist (multi) on entity + Shift Show Interaction Distance for previous and focused entity

Show Int Dist (path) on two entities + Ctrl Show Interaction Distance for all entities on the shortest path

Table C.1.: Shortcuts and modifiers used in VISUAL EXPLORER.

184

APPENDIX D

Layout and Algorithms

This appendix, first, provides an example for the FlatLayout and gives an overview of the proposed
algorithm. In a further section, the algorithmic realization of HyCoGLa is shown in detail.

D.1. Applying FlatLayout

In Figure D.1, a comparison of a manual, modular layout and a flat layout using the FlatLayout
method is given. While in the manual layout all elementary nodes are scaled according to their hierar-
chical level, in the flat layout the elementary modules have the same size. As depicted, layout properties
such as orthogonal ordering and proximity are preserved.

D.2. Algorithms for FlatLayout

The algorithm of the FlatLayout is given in Appendix D, Algorithms 1–2.

D.3. Algorithms for HyCoGLa

The algorithm of the HyCoGLa is given in Appendix D, Algorithms 3–8. They are adapted from As-
chenbrenner [8].

185

D. Layout and Algorithms

(a) (b)

Figure D.1.: Comparison of a manual, modular layout and the FlatLayout method. The MAPK
cascade, a part of the dynamic EGF model is shown. (a) Manual, modular layout, (b)
FlatLayout where layout properties such as orthogonal ordering and proximity are pre-
served.

186

D.3. Algorithms for HyCoGLa

Algorithm 1 General FlatLayout algorithm

Input: Modular Model (graph containing subgraphs)
Output: A FlatLayout for the modular model

1: time← setAnimationTime()
2: emList← getAllElementaryModules()
3: for all em ∈ emList do
4: pm← em.getParentModule()
5: level← em.getHierarchicalLevel()
6: scale← em.getScale() / em.getGlobalScale();
7: transformElementaryModule(scale, time)
8: smList← em.getAllSiblingModules()
9: for all sm ∈ simList do

10: translationV ector ← sm.computeTranslationVector()
11: translateSiblingModule(translationV ector, time)
12: end for
13: box← computeBoundingBox(em, smList)
14: transformParentModule(box, time)
15: traverseHierarchy()
16: end for

Algorithm 2 Traverse hierarchy (traverseHierarchy)

1: if level > 0 then
2: em← pm
3: pm← pm.getParentModule()
4: level← em.getHierarchicalLevel()
5: smList← em.getAllSiblingModules()
6: for all sm ∈ simList do
7: translationV ector ← sm.computeTranslationVector()
8: translateSiblingModule(translationV ector, time)
9: end for

10: box← computeBoundingBox(em, smList)
11: transformParentModule(box, time)
12: traverseHierarchy()
13: end if

Algorithm 3 General HyCoGLa algorithm

Input: Inclusion tree of the modular model (graph containing subgraphs)
Output: A layout for the modular model (graph containing subgraphs)

1: depth← inclusionTree.depth
2: while depth > 1 do
3: submodulesList← getSubmodulesOfLevel(depth)
4: for all submodule ∈ submodulesList do
5: extendedSpringLayout(submodule)
6: end for
7: depth← depth− 1
8: end while

187

D. Layout and Algorithms

Algorithm 4 Extended spring layout algorithm (extendedSpringLayout)

Input: Module (graph containing subgraphs)
Output: A layout for the module

1: phase← 1
2: while phase ≤ 2 do
3: if phase < 2 then
4: details← calculateLeafNodes(module)
5: currentModule← calculateSkeleton(module)
6: else
7: placeLeafNodes(details)
8: currentModule← module
9: end if

10: initialize(currentModule)
11: i← 0
12: while i ≤ maxIterations or stoppingConditions() = false do
13: calculateSpringForces()
14: calculateRepulsiveForces()
15: calculateGravitationalForces()
16: calculateMagneticForces()
17: updateNodes()
18: i← i+ 1
19: end while
20: phase← phase+ 1
21: end while
22: adjustTerminals()
23: removeNodeOverlapping()

Algorithm 5 Calculate spring forces (calculateSpringForces)

Input: Module (graph containing subgraphs)
Output: Spring forces FS for all nodes

1: for all e = (u, v) ∈ E do
2: d← distance(u.terminal, v.terminal)
3: if u is elementary module and v is elementary module then
4: l← defaultSpringLength ∗ scalingFactor
5: else
6: l← defaultSpringLength
7: end if
8: spring.x← k ∗ log(d/l) ∗ (u.terminal.x− v.terminal.x)/d
9: spring.y ← k ∗ log(d/l) ∗ (u.terminal.y − v.terminal.y)/d

10: FS(u)← spring ∗ u.scalingFactor
11: FS(v)← −spring ∗ v.scalingFactor
12: end for

188

D.3. Algorithms for HyCoGLa

Algorithm 6 Calculate repulsive forces (calculateRepulsiveForces)

Input: Module (graph containing subgraphs)
Output: Repulsive forces FR for all nodes

1: isF inished← {}
2: for all u ∈ V do
3: isF inished add u
4: for all v ∈ V − isF inished do
5: if u.parent == v.parent then
6: d← distance(u.center, v.center)
7: if d− u.radius− v.radius < repulsionRange then
8: l← defaultSpringLength ∗ u.scalingFactor + u.radius+ v.radius
9: repulsion.x← e ∗ (l/d) ∗ (u.center.x− v.center.x)/d

10: repulsion.y ← e ∗ (l/d) ∗ (u.center.y − v.center.y)/d
11: FR(u)← repulsion ∗ u.scalingFactor
12: FR(v)← −repulsion ∗ v.scalingFactor
13: end if
14: end if
15: end for
16: end for

Algorithm 7 Calculate gravitational forces (calculateGravitationalForces)

Input: Module (graph containing subgraphs)
Output: Gravitational forces FG for all nodes

1: for all v ∈ V do
2: if v is child of the parent module then
3: FG(v) = (globalGravityCenter − v.center) ∗ g ∗ v.scalingFactor
4: else
5: FG(v) = (v.parent.gravityCenter − v.center) ∗ g ∗ v.scalingFactor
6: end if
7: end for

Algorithm 8 Calculate magnetic forces (calculateMagneticForces)

Input: Module (graph containing subgraphs), direction of magnetic field
Output: Magnetic forces FM for all nodes

1: for all e = (u, v) ∈ E do
2: egdeDirection← calculateEdgeDirection(u, v)
3: φ← calculateAngle(edgeDirection, magneticF ieldDirection);
4: FM (u)← φ ∗ u.scalingFactor
5: FM (v)← φ ∗ v.scalingFactor
6: end for

189

D. Layout and Algorithms

190

Erklärungen

Selbständigkeitserklärung (§5, Absatz 2b)

Hiermit erkläre ich, dass ich diese eingereichte Arbeit selbständig und ohne fremde Hilfe verfasst, an-
dere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken
wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Frühere Bewerbungen um einen Doktorgrad (§5, Absatz 2c)

Hiermit erkläre ich, dass ich mich bisher um keinen weiteren Doktorgrad beworben habe.

Frühere Promotionsversuche (§5, Absatz 2d)

Hiermit erkläre ich, dass ich bisher keine vergeblichen Promotionsversuche unternommen habe.

191

