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Abstract

Brain-computer interfaces (BCIs) are systems that use real-time analysis of neuroimaging data to determine the mental state
of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech
perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech
perception by native and non-native speakers. Two principal questions were asked: 1) Can differences in the perceived
categories of pairs of phonemes be decoded at the single-trial level? 2) Can these same categorical differences be decoded
across participants, within or between native-language groups? Results indicated that classification performance
progressively increased with respect to the categorical status (within, boundary or across) of the stimulus contrast, and
was also influenced by the native language of individual participants. Classifier performance showed strong relationships
with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis
indicated an overall increase in average classifier performance when trained on data from all participants (native and non-
native). A second cross-participant classifier trained only on data from native speakers led to an overall improvement in
performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native
language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate
that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that
decoding performance systematically reflects graded changes in the responses related to the phonological status of the
stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second
language acquisition.
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Introduction

Learning foreign languages is difficult, in part because they

often make use of sounds which are unfamiliar. Moreover,

foreign speech sounds can be difficult to discriminate from one

another, depending on the types of phonemes used in one’s

native language. Studies of human language perception have

made use of EEG measurements to reveal differences in the

processing of speech sounds by the brains of native and non-

native listeners. The results of these studies are typically based

on the analysis of event-related potentials collected over

hundreds of trials and using many individual participants. This

is done because the signals of interest are much smaller in

amplitude than the ongoing brain activity measured during

single-trials [1]. By averaging EEG data collected during

repeated time-locked presentations of speech sounds, brain

activity unrelated to the stimulus presentation is eventually

cancelled out, leaving only the brain’s responses to the speech

sound. But what if it were possible to detect these signals in

single-trial EEG data? Research using multivariate pattern

classification methods and brain-computer interface (BCI)

paradigms has shown that this is feasible for signals such as

the P3 response [2,3]. In turn, users are able to control different

types of systems (e.g. communication devices and computers)

using mental activity alone by, for instance, attending to items

in a flashing menu. If it was also possible to detect the brain

responses underlying speech perception, it could allow for the

development of BCIs that support the learning of foreign

languages through the monitoring of ongoing perception, or by

providing feedback to users on their brain’s responses.

To this end, a study was conducted using a multivariate

analysis of EEG data collected during passive auditory

perception of English language phonemes by native and non-

native speakers of English. It investigated whether such methods

are sensitive to the different electrophysiological response

patterns elicited when native and non-native listeners are

presented with pairs of stimuli from a continuum of phonemes

representing either within- or across-category contrasts. Addi-

tionally, the study used the same methods in conjunction with

two cross-participant data sets to address questions regarding

the consistency of the functional brain organization underlying

speech perception across individuals both within and between

language groups.
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The Mismatch Negativity Component and Research on
Speech Perception

Previous research using auditory event-related potentials

(ERPs) has revealed consistent differences between native and

non-native speakers in the brain responses underlying the

perception of phonetic contrasts [4–6]. These findings are often

based on analysis of the mismatch negativity (MMN) component

of the auditory ERP, which is typically seen at fronto-central

scalp locations following the presentation of a low-probability

‘deviant’ stimulus. As the MMN is typically elicited using a

passive listening paradigm, it is thought to provide a pre-

attentive index of perceptual discrimination abilities [7,8]. In

addition, the amplitude and latency of the MMN have been

shown to be modulated by the stimulus contrast employed.

Large differences between standard and deviant stimuli will lead

to increases in MMN amplitude as well as a decrease in its

latency, while smaller differences will reduce the amplitude and

increase the latency [9].

The MMN has been observed in response to both changes in

acoustic features of phonemes typical of within-category variation

[10–12] as well as when presenting stimulus contrasts representing

two distinct phonemic categories [4–6,10,13,14]. A comparison of

the MMN responses evoked by stimuli from a phonetic continuum

containing both within- and across-category deviants showed that

across-category responses were significantly larger than within-

category responses [10]. When non-native listeners are presented

with a meaningful phonetic contrast in an unfamiliar language, the

measured ERPs typically show a reduced [4] or absent MMN

response [5,6,13] relative to native speakers. Thus it would seem

that MMN responses observed in response to phonemes show a

graded effect, with respect to both the categorical status of the

phonetic contrast as well as to the linguistic background of

individual listeners.

While MMN responses to artificial tone stimuli are consis-

tently reported in the N1 interval [7], studies using phonetic

stimuli have reported MMN in both the N1 [4,12] and N2

[6,10] intervals. It has been suggested that stimulus contrasts

representing distinct phonetic categories give rise to changes in

the N2-P3 complex of the auditory ERP, while effects in the N1

interval reflect the processing of acoustic differences in the

stimuli [15]. Other findings have also suggested a distinction

between early and late MMN responses to speech [16] and

speech-like [17] stimuli. Additionally, the same auditory oddball

paradigms used to elicit MMN responses have also been shown

to modulate mid-latency components prior to the N1 [18], and

to elicit a negative component following the P3a response

known as the reorienting negativity (RON) [19,20]. As such,

depending on stimulus and sequence parameters, ERPs collected

on deviant trials during MMN measurement paradigms can be

expected to show an enhancement of negative components in

one or more time intervals relative to standard trials. The

question we asked here was whether these (or other) compo-

nents could be detected reliably at the single-trial level.

Multivariate Analysis Methods and Auditory Perception
While the neurophysiology of speech perception has been

examined extensively using traditional ERP methodologies, there

has recently been an increasing interest in the use of multivariate

pattern classification methods to address questions regarding the

functional organization of cognitive processes using data collected

at the single-trial level [21–25], and to develop BCIs based on real-

time measurementsof brain activity. Whereas the traditional

univariate methods used to analyze neurophysiological signals

such as the BOLD response or ERP measurements focus on

amplitude differences at individual data points (i.e. sensors, time

points, voxels), multivariate methods are sensitive to differences in

the distribution of responses across high-dimensional feature

spaces. Moreover, when used with data collected at the single-

trial level, additional information contained within the single-trial

responses is available which might otherwise be lost when

averaging across trials.

Several BCI studies have used multivariate methods to detect

different classes of auditory ERPs elicited by target and non-

target stimuli in an active task. Such tasks are know to elicit a

P3 response [8,26], and have also been used with stimuli in the

visual [2,3] and tactile [27] modalities. Halder and colleagues

reported on a system capable of making binary choices using

auditory targets which differed in either loudness, pitch or

direction [28]. Systems capable of distinguishing a larger

number of classes using either spatial [29,30] or a combination

of spatial and frequency [31] cues have also been reported.

Additional work has shown that the use of speech stimuli can

enhance classifier performance relative to artificial stimuli [32].

While the principal focus in these studies has been the

elicitation of a P3 response for use as a control signal in

determining whether a target stimulus has been presented, some

of the studies just mentioned have also reported on the

contribution of negative ERP components in the 100–300 ms

post-stimulus onset time interval to overall BCI performance

[29,31].

Multivariate approaches have also been used in several

studies to investigate auditory perception of speech and music at

the single-trial level. In the music domain, it has been shown

that decoding perceived music from EEG data at the single trial

level is possible, and that decoding using cross-participant data

sets leads to similar overall performance as compared to within-

participant analyses [33]. Additional work using EEG data has

shown that the decoding of accented vs. unaccented beats in an

isochronous sequence is possible, during both active perception

as well as during a subjective-accenting task, and that decoding

performance generalizes across these conditions [34]. With

regard to speech perception, it has been shown that the brain

activity underlying the perception of different vowels and

different speaking voices can be decoded from single-trial fMRI

data [24]. A recent study by Herrmann and colleagues

demonstrated that both unexpected changes in low-level

acoustic features as well as syntactic-rule violations can be also

decoded using MEG data, with cross-participant analyses

showing a high-degree of consistency in both the spatial

distribution of features as well as in overall performance relative

to individual analyses [35].

The Present Study
Here, we aim to extend these findings by examining whether the

perception of phonetic contrasts representing within- or across-

category contrasts can be decoded using single-trial EEG data.

This is accomplished using a dataset from a recently published

study on within- and between-group differences in the perception

of a phonetic continuum by native (English) and non-native

(native-Dutch) speakers [36]. This makes it possible to interpret

the results of the present classification analyses with respect to

outcomes of traditional ERP analyses as well as individual

behavioral measurements. In addition to the within-participant

analyses, we also present the results of both multi-trial and cross-

participant decoding analyses, and, on the basis of these results,

discuss the potential for novel extensions of the BCI paradigm to

the domain of second language learning.

EEG-Based Decoding of Speech Perception
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Materials and Methods

Ethics Statement
All participants provided written informed consent prior to their

participation in the experiment. The experiment was performed in

accordance with the guidelines of and was approved by the ethics

committee of the Faculty of Social Sciences, Radboud University

Nijmegen.

Participants and Stimuli
The present study was a reanalysis of the data collected in [36]

during passive speech perception of English language phonemes

by native and non-native speakers of English. The non-native

speakers who participated in the experiment were all native

speakers of Dutch, and were also proficient speakers of English,

having undergone at least 6 years of English language education.

We will refer to the native speakers as ‘native-English’ and the

non-native speakers as ‘native-Dutch’. Data for the same eleven

participants in each of the two language groups as in the original

study were used. A summary of the experimental design can be

found in Table 1.

Four consonant-vowel (CV) syllables representing an English

language stop consonant continuum were used as stimuli during

the EEG measurements. A recording of the CV syllable/pa/

spoken by a male native-English speaker with a Voice Onset Time

(VOT) of 85 ms was used to create the other three stimuli by

removing successive 22 ms portions of the aspirated portion of the

original recording prior to voice onset. Thus, the VOTs of these

stimuli were 63 ms, 41 ms and 19 ms. The duration of these

stimuli were preserved by inserting additional periods of voicing in

the voiced portion of the recording. Waveforms of the four stimuli

are presented in Fig. 1.

The purpose of this manipulation was to produce a continuum

which sounded progressively more like/ba/to native speakers of

English. In the English language, voiced and voiceless stop

consonants (e.g./d/vs./t/,/b/vs./p/) are primarily distinguished

from one another on the basis of VOT, while in the Dutch

language the voiced and voiceless stop consonants are primarily

distinguished by the presence of pre-voicing [37,38]. Results of the

original study indicated that both groups perceived the 63 ms

VOT stimulus as/pa/(within-category relative to the 85 ms VOT

stimulus) and the 19 ms VOT stimulus as/ba/(across-category). A

between-groups difference was observed with respect to the 41 ms

VOT stimulus, which was more likely to be perceived as/ba/by

native-English speakers and as/pa/by native-Dutch speakers [36].

In other words, the 41 ms VOT was located near each of the two

groups’ category boundaries, but fell on opposite sides.

During EEG measurements, these stimuli were presented in

pseudorandom oddball sequences containing a standard stimulus

(always the 85 ms VOT stimulus) and one of three deviant stimuli

(see Table 1 for details of the oddball sequence parameters). There

were three different EEG measurement conditions, which will be

referred to subsequently using the name of the deviant stimulus

which was used: ‘63 ms VOT deviant’, ‘41 ms VOT deviant’ and

‘19 ms VOT deviant’. During the EEG measurements, auditory

stimuli were presented over loudspeakers while participants

Table 1. Details of experimental paradigm.

Participants 11 Native-English speakers, 11 Native-Dutch speakers

Stimuli English language CV (/pa/2/ba/) syllables: 85 ms VOT (standard)

63 ms, 41 ms and 19 ms VOT (deviants)

Stimulus Intensity approx. 70 dB

Stimulus Duration approx. 450 ms

ISI 1200 ms

Deviant Likelihood 15%

Trial Counts 90–135 per deviant condition, per participant

EEG System 64 Channel BioSemi Active2+ left & right mastoids,

Horizontal & Vertical EOG

ERP analysis electrodes F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2

Sampling Rate 512 Hz or 2048 Hz

doi:10.1371/journal.pone.0068261.t001

Figure 1. Experimental stimuli waveforms. A recording of the
English CV syllable/pa/with a voice onset time of 85 ms was used as the
standard stimulus during EEG recordings. The three deviant stimuli
were created by removing successive 22 ms portions of the aspirated
period prior to voice onset in the original 85 ms VOT standard stimulus,
and by inserting additional periods of voicing to preserve the duration
of each stimulus. The onset of the initial plosive burst was preserved for
all of the stimuli.
doi:10.1371/journal.pone.0068261.g001

EEG-Based Decoding of Speech Perception

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68261



watched self-selected silent movies. Participants were instructed to

ignore the auditory stimuli and to attend to the movie. This type of

passive listening paradigm is typically used in conjunction with

oddball stimulus sequences to elicit the MMN component of the

auditory ERP [7,8]. After the passive oddball procedure, all

participants completed a two-alternative forced-choice task

(without EEG measurement) in which they actively identified the

stimuli on the/ba-pa/continuum.

EEG Data Collection and Processing
Details of the EEG measurement system can be found in

Table 1. Measurements were conducted inside a shielded electric

cabin using a BioSemi ActiveTwo amplifier with 64 Ag/AgCl

electrodes placed according to the international 10–20 system.

Stimuli were presented to participants at approximately 70 dB

SPL using a Monocor MKS-28 stereo loudspeaker system. Raw

EEG data was measured along with left and right mastoid leads,

horizontal and vertical EOG at a sample rate of either 512 or

2048 Hz. Filtering, referencing and additional preprocessing was

performed offline, as described below.

For the present analysis, EEG data measured in each of the

three deviant stimuli conditions were processed in non-overlap-

ping epochs ranging from 2200 ms before stimulus onset to

1000 ms post stimulus onset. Only epochs collected during trials

containing a deviant stimulus and the standard trials immediately

preceding them were selected for analysis, meaning an equal

number of standard and deviant trials were analyzed in each

condition. In each epoch, a spherical-spline interpolation proce-

dure [39] was used to repair individual EEG channels whose

power in the 50Hz band exceeded 1000 mV2 or whose offset

exceeded 625 mV. An average of 2.86 channels were repaired

per epoch (St. Dev. = 1.95). The data were then resampled to

128 Hz, and an independent component analysis (using the

infomax ICA algorithm as implemented in the ‘runica’ function of

the EEGLab toolkit [40]) was performed on each participant’s

data in order to identify and remove components containing non-

EEG artifacts such as muscle or eye movements [41]. Only

components which accounted for more than 1% of the overall

variance in the data were considered for removal. For each of the

components under consideration, the variance in each epoch of

data was calculated. The mean variance across epochs was then

calculated for each component. Components whose mean

variance exceeded a threshold set to the average variance across

all considered components were then visually inspected to verify

that their time course and topography were typical of non-EEG

artifacts such as neck and eye movements (highly focal spatial

distribution, large amplitude). Incremental adjustments to the

threshold were then made on a per participant basis to ensure that

components including non-artifactual activity were not removed.

This approach is similar to that used in a previous analysis of

individual auditory ERPs by Bishop and Hardiman [42]. An

average of 5.14 components (St. Dev. = 2.01) were removed from

each participant’s data. Following the removal of these compo-

nents, data were reprojected onto the measurement channels, and

any epochs containing activity exceeding 675 mV relative to the

mean activity in the 100 ms window preceding stimulus onset were

also removed from the dataset. On average, 97% of the analyzed

epochs (St. Dev. = 3.7%) and at least 70 trials per stimulus in each

of the three conditions remained following artifact rejection for all

participants. Finally, data were band-pass filtered between 1 and

25 Hz, re-referenced to the average of the two mastoid leads, and

baseline-corrected using the mean amplitude of the data in the

100 ms window preceding stimulus onset. All preprocessing was

done using the Fieldtrip toolbox [43] in MATLAB. All subsequent

classification analyses made use of EEG data in the time range

between 0 and 700 ms relative to stimulus onset.

Classification Analyses
Data collected for both native-language groups in each of the

three measurement conditions were analyzed using receiver

operating characteristics (ROC) analysis. Typically used for

problems in the domain of signal detection theory, ROC analyses

are often used to analyze both the performance of classifiers [44]

as well as the discriminability of feature distributions [29,45].

Here, we use area-under-the-ROC-curve (AUC) scores to quantify

the separability of one-dimensional spatio-temporal feature

distributions. These scores fall in the range of [0,1], with a score

of .5 representing the no-discrimination line in the ROC graph.

Individual participant’s single-trial EEG data (64 channels690

samples per epoch) were used to train a set of quadratically

regularized linear logistic regression classifiers [46]. The regular-

ization term is needed to limit the complexity of the classifier

which prevents over-fitting in the high-dimensional input feature

space [47]. To find the optimal regularization strength (or

equivalently classifier complexity), a simple grid search with

strengths of [.001.01.1 1 10 100] times the total data variance was

used, as empirically this range has been found to give high

performance.

A series of within-participants analyses were carried out to

determine whether differences in the perceived categories of pairs

of phonemes influenced single-trial decoding performance. To this

end, a separate analysis was performed using data collected in each

of the three stimulus conditions: ‘63 ms VOT deviant’, ‘41 ms

VOT deviant’ and ‘19 ms VOT deviant’. These names will be

used subsequently to refer to each of the within participant

analyses. All of the within-participant analyses investigated a

binary comparison of single-trial EEG data collected during

standard trials (always the 85 ms VOT stimulus) and deviant trials

in a given measurement condition. A fourth analysis was

performed which included all of the data collected across

conditions for each individual participant. The results of this

analysis were used to compare mean decoding performance for

each of the four stimuli with the individual behavioral identifica-

tion scores collected in [36] using the same stimuli.

In each analysis, an equal number of epochs of data recorded

during the presentation of a deviant stimulus and the standard

stimulus immediately preceding it represented the two classes in a

binary classification problem. On average, 202.5 consecutively

recorded trials (St. Dev. = 42.2) were available for each of these

classification analyses. All of the within-participant analyses

utilized a ten-fold cross validation procedure, in which subsets of

the available data were used for training and testing (90% and

10%, respectively) the classifier in each of the folds.

A subsequent analysis of the classifier decisions obtained at the

single-trial level was performed in order to determine the

performance benefits of using multiple trials. For this, we made

use of the classifier decisions obtained for all available data epochs

in the test folds of the within-participant analyses conducted for

the 19 ms VOT deviant condition. Each decision represents a

continuous probability p(cT Dxi) that a given data epoch xi belongs

to the target class cT . In the context of a logistic regression

classifier:

p(cT Dxi)~1=(1ze{f (xi DcT )) ð1Þ

EEG-Based Decoding of Speech Perception
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Where, f (xi DcT )~wT xizb is the classifier decision value given

a set of classifier weights w and a bias term b. For our analysis, we

combined these probabilities for non-overlapping groups of n
consecutive data epochs ½x1 . . . xn� belonging to each of the two

classes using a naive-Bayes formulation under the assumption of

independence in the following manner:

P(cT Dx1 . . . xn)~
Pn

1 p(cT Dxi)

Pn

1 p(cT Dxi)zPn

1 (1{p(cT Dxi))
ð2Þ

Noting that for Logistic regression 1{p(cT Dxi)~ef (xi DcT )p(ctDxi),
the denominator becomes:

P
n

1
p(cT Dxi)zP

n

1
ef (xi DcT )p(ctDxi)~(P

n

1
p(ctDxi))(1ze

Pn
1

f (xi DcT ))
ð3Þ

and (2) becomes:

p(cT Dx1 . . . xn)~
Pn

1 p(cT Dxi)

Pn

1 p(cT Dxi)(1ze
Pn

1
f (xi DcT ))

~
1

1ze
Pn

1
f (xi DcT )

ð4Þ

Thus, one can combine decisions by simply adding together

classifier decision values, which is not only simpler but also less

prone to numeric round-off errors.

Another aim of the present study was to investigate whether the

decoding of categorical speech perception is possible across

different individuals, both within and between native-language

groups. Two additional classifiers were trained on cross-partici-

pant datasets collected in the 19 ms VOT deviant condition (70

consecutive trials per class for each participant). This stimulus

contrast was chosen because it represented a clear categorical

distinction for both native-English and native-Dutch listeners. The

first classifier was trained using data from 10 of the 11 native

speakers whose within-participant classification results were

significantly above chance level (see below for details), and will

be referred to with the name ‘Cross-PP Native’. The second made

use of all 22 participants’ data, and will be referred to with the

name ‘Cross-PP All’.

Both cross-participant classifiers were trained using a double-

nested cross-validation procedure in order to account for the

additional inter-subject variability introduced by these datasets.

Such a procedure provides a means for selecting an optimal

hyperparameter for a given classification problem whilst estimat-

ing generalization performance. In each main fold of the data, one

participant’s data served as a test set (for estimating cross-

participant performance generalization), while the remaining

participants’ data formed the classifier training set. An additional

set of nested folds repeated this procedure in order to estimate the

regularization parameter, with the participant whose data was

used for the test set being excluded from the nested analyses.

A final series of classification analyses were conducted that

aimed to decode the native language (English or Dutch) of a given

participant using either EEG or behavioral data. In the previous

analyses, the labels assigned to the data used for training and

testing the classifiers indicated whether an individual epoch was

collected on a standard or deviant trial. Here, the labels indicated

whether the data belonged to a native-English or native-Dutch

speaker. The classifier performance levels obtained in such an

analysis indicate the extent to which the response patterns (either

EEG or behavioral) obtained from the two native-language groups

generalize within-group, and how well these response patterns can

be distinguished from one another at the group level.

Four separate analyses were performed with each of the

following data sets: concatenated single-trial data from all three

measurement conditions (70 total data segments per participant),

concatenated grand average data from all three measurement

conditions, concatenated grand average data measured from the

63 ms and 41 ms VOT deviant stimuli (the two stimuli for which a

significant between groups difference in ERP responses was

observed in [36]), and the vector of behavioral identification scores

for all 7 stimuli measured in the categorization task in [36]. An

additional analysis combined the single-trial predictions across

trials on a per-participant basis in the same manner as previously

described in equation 1. A naming scheme and description of the

feature vectors used in these analyses can be found in Table 2. In

each analysis, data from two participants (one from each native-

language group) were used for the test set in each fold while the

remaining participants’ data were used for training. This led to an

eleven-fold cross-validation procedure for each of the analyses.

Statistical Analyses
The significance levels of individual participant’s classification

results in both the within- and cross-participants analyses were

determined based on the estimated binomial confidence intervals

for the number of data epochs available [48]. The same procedure

was used to evaluate the results of the native-language decoding

analysis. Two-way repeated-measures ANOVAs with either

stimulus condition (factor levels: 63 ms VOT, 41 ms VOT and

19 ms VOT) or data set (factor levels: ‘individual’, ‘Cross-PP

Native’ and ‘Cross-PP All’) as within-subjects factor and native

language (factor levels: ‘English’ and ‘Dutch’) as a between-

subjects factor were used to determine whether these variables

influenced classifier performance. Subsequent within- and be-

tween-subjects comparisons were carried out using paired-samples

and independent-samples t-tests, respectively.

Results

A summary of the behavioral results from [36] for the stimulus

conditions analyzed in the present study are presented in Fig. 2a.

Grand averaged ERP responses to the standard and deviant

stimuli across the three measurement conditions for both the

native-English and native-Dutch groups are presented in Figure 2b,

along with difference waves obtained by subtracting the grand

average ERP for the standard stimulus from that of the deviant

stimulus in each condition. AUC scores for spatio-temporal

features in the analyzed data are presented for native-English

and native-Dutch speakers in each of the three measurement

conditions in Fig. 2c. ERPs collected for deviant stimuli were

primarily characterized by enhancements of three negative

components relative to the ERPs collected for the standard stimuli

immediately preceding them: the N1, the N2 (the time interval

where MMN analysis was performed in [36]) and a late negativity

corresponding to the RON [19,20]. The relative difference in

amplitude of these three components is most easily seen in the

difference wave plots in Fig. 2b. These same time points are also

visible the AUC scores plotted in Fig. 2c. Generally speaking, the

differences in the response amplitudes of these components in the

standard and deviant ERPs increased as a function of the distance

in VOT between the standard and deviant stimuli, with

EEG-Based Decoding of Speech Perception

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e68261



Table 2. Features used in decoding analyses of native language groups.

Analysis Feature Vector Description

Single-Trial 646540 Concatenated single-trial ERPs for standard and deviant

trials in all three measurement conditions

Single-Trial (Combined) 646540 Combined single-trial predictions (70) per participant

Grand-Average A 646540 Concatenated individual grand-average ERPs for standard

and deviant trials in all three measurement conditions

Grand-Average B 646180 Concatenated individual grand-average ERPs for 63 ms

VOT deviant and 41 ms VOT deviant

Behavioral 167 Mean individual behavioral responses to the

stimulus continuum used in the original study

Feature vectors are described in terms of [channels]6[time points], with the exception of the behavioral analysis, which included mean individual responses to each of
the 7 stimuli in the continuum used in the original study by Brandmeyer et al.
doi:10.1371/journal.pone.0068261.t002

Figure 2. Group level behavioral and ERP responses. a) Mean behavioral identification scores for native and non-native speakers for the three
deviant stimuli. b) Group-level ERPs for both the standard and deviant stimuli are presented in each of the three measurement conditions for both
native-English and native-Dutch participants. Responses are averaged across nine fronto-central electrode locations, indicated by the large dots in the
scalp map presented above (see also Table 1). In addition, difference waves have been derived for each language group by subtracting the grand-
average responses to the standard stimulus from that of the deviant stimulus in each of the measurement conditions. c) Area under the ROC-curve
scores for spatio-temporal features across the three deviant conditions for both native and non-native participants. The relative locations of four
midline electrodes are indicated for reference.
doi:10.1371/journal.pone.0068261.g002
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differences being the largest in the most deviant (19 ms VOT)

condition.

Within-participant Classification of Phoneme Contrasts
The results of the within-participant analyses, along with group

means and significance levels for individual results, are presented

in Figure 3a. A significant main effect of stimulus condition (63, 41

or 19 ms VOT deviant) was found (F (2,40)~16:894, pv:0001),

along with a marginal effect of native language group

(F (1,20)~3:993, p~:06). On average, classification rates in-

creased as the difference in VOT between the standard/pa/and

the deviant stimulus grew larger, with classification rates for the

19 ms VOT deviant (across-category) significantly higher than

those of both the 63 ms VOT deviant (within-category)

(t21~{6:552, pv:0001) and the 41 ms VOT deviant (category-

boundary) (t21~{3:695, p~:001). Additionally, mean single-trial

classification rates in each of the three analyses were higher overall

for the native-English speakers than for the native-Dutch speakers,

with the difference reaching significance for the 63 ms VOT

deviant (t20~2:71, pv:05).

Figure 3b plots the relationship between individual classifier

performance across different conditions and the mean individual

MMN amplitudes measured in [36] at fronto-central locations (see

Table 1) in the same conditions (r~{:31, pv:05), with more

negative mean amplitudes tending to correspond with higher

classification rates. Figure 3c plots the relationship between

individual mean classifier decision rates obtained per stimulus

when training a classifier using data from all three conditions

(standard/pa/and the three deviant stimuli) and the individual

behavioral identification scores from [36] for the same stimuli. A

strong relationship between the classifier decision rates and the

individual identification rates was found (r~:64, pv:0001), with

stimuli classified as deviants more likely to be identified as/ba/by

participants.

An additional analysis of the classifier predictions obtained in

the 19 ms VOT condition was performed to determine the

performance benefits obtained when combining classifier predic-

tions from multiple successive data epochs. These results are

plotted in Figure 4. As one would expect, classification rates

increased on average with each additional trial of data that was

included. Moreover, the benefit gained from an increased number

of trials was related to the single-trial classification rate.

Participants with high single-trial classification rates reached rates

above 0.9 when using 7 trials of data, while participants with low

single-trial rates showed relatively little improvement and even a

drop in performance.

Cross-participant Classification of Phoneme Contrasts
Cross-participant classification results are plotted in Figure 5,

along with the individual within-participant results for the same

condition (19 ms VOT deviant, across-category). Significant main

effects of data set (‘individual’, ‘Cross-PP Native’ or ‘Cross-PP All’,

F (2,40)~4:688, pv:05) and native language (F (1,20)~11:995,
pv:01) were found along with a significant interaction of the two

variables (F (2,40)~9:084, p~:001). On average, classifier perfor-

mance was significantly higher when trained using data from all

participants than when trained using individual participant’s data

sets (t21~{3:768, p~:001). This is possibly due to the fact that a

larger number of examples were used in training this cross-

participant classifier. It might also be the case that the nature of

the between-participant variability reflects non-essential sources of

information, which in turn help prevent the classifier from over-

fitting the training set data in the individual folds. No significant

difference was found in classifier performance when trained on the

‘Cross-PP Native’ dataset as compared to either the within-

participant classifier performance nor the classifier trained on

‘Cross-PP All’ dataset. However, when comparing the mean rates

of the two groups across data sets, classifier performance was

significantly higher for native-English speakers when trained using

the ‘Cross-PP Native’ dataset (t20~4:626, pv:0001), and mar-

ginally so when trained on the ‘Cross-PP All’ dataset

(t20~2:073, p~:05).

A singular value decomposition of the weight matrix of the

classifier trained on the ‘Cross-PP All’ dataset was performed to

identify the topography and time course of the components which

explain the largest portion of the classifier’s overall performance.

The largest of these components is plotted in Figure 6. As can be

seen, this component explains about 44% of the variance in the

classifier weighting matrix, has a negative fronto-central distribu-

tion typical of the MMN response [8], and which highly resembles

the difference wave time courses during the peak of the ERP

responses for the 19 ms VOT deviant condition presented in

Figure 1. Moreover, a high correlation (r~{:946, pv:0001)

between this component’s time course and the average of the

difference waves of the ERPs for all participants at the same time

points indicates a strong relationship between the classifier

weighting matrix and the ERPs.

Decoding of Native Language
The mean results for each of the five analyses are plotted in

Figure 7. Classifier performance was significantly above chance for

four of the five data sets which were analyzed: single-trial data,

individual average ERP data, individual average ERP data for 63

and 41 ms VOT deviants, and individual behavioral data. The

exception was when using the combined single-trial predictions.

The highest overall rate of 83% was attained when using only

averaged individual ERP data from the 63 ms and 41 ms VOT

deviant stimuli. These were the two conditions which showed a

significant between-groups difference in the ERP analysis from the

original study [36]. Classifier performance was slightly lower when

using the ERP data from all measurement conditions, followed by

the analysis in which the vector of mean individual identification

scores collected during the original study was used.

Discussion

The present study investigated the outcomes of a series of

multivariate pattern classification analyses of EEG data collected

during passive speech perception of English phonemes by native

and non-native listeners. These analyses addressed two principal

research questions: 1) Is it possible to decode stimulus categories

from single-trial EEG data elicited using different speech sound

contrasts for native-English and native-Dutch speakers? 2) Is it

possible to decode these same stimulus categories across individual

participants, either within or between native-langauge groups?

Within-participant Analyses
The results of the within-participant analyses demonstrate that

single-trial EEG measurements of brain responses to phonemes

contain sufficient information to decode speech sound categoriza-

tion, and that the performance of such analyses improved across

conditions representing increasingly salient phonetic contrasts. As

such, the results confirm that the within-participants trends

previously observed in analyses of grand-averaged ERP data are

also present at the single-trial level [36]. In the case of the 19 ms

VOT condition, which employed a stimulus contrast that clearly

represented two distinct phonetic categories for both native-

English and native-Dutch participants, classifier performance was

EEG-Based Decoding of Speech Perception
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significantly higher than conditions which employed a within-

category (63 ms VOT) or ambiguous (41 ms VOT) contrast.

Previous research findings have shown enhancements of different

components of the auditory ERP to across-category deviant stimuli

as compared to within-category deviant stimuli, including the

MMN [10] and the N2/P3 complex [15]. Enhancements of these

components in deviant trials would in principal increase the

amount of information available during pattern classification,

leading to higher overall performance.

A marginally significant effect of native language was also

observed, suggesting an overall difference in decoding perfor-

mance across the two groups. In general, decoding rates were

Figure 3. Within-participant classification analyses. a) Classification rates for native and non-native participants for each of the three stimulus
conditions along with group averages (shown with error bars). Participants are sorted based on the averaged results of the three analyses, as
indicated by the horizontal lines. Asterisk size indicates the significance level of the result in each of the three conditions. b) Scatter plot of classifier
performance with respect to the mean amplitude of the MMN component of individual ERPs measured in the study by Brandmeyer, Desain and
McQueen [16]. c) Scatter plot of mean classifier decision rates per condition with respect to behavioral decisions in the identification task reported in
that study.
doi:10.1371/journal.pone.0068261.g003
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higher for the native-English speakers as compared with the

native-Dutch speakers, with this difference reaching significance

for the 63 ms VOT condition. When looking at the AUC scores

presented in Fig. 2c, we see a clear difference in the amount of

discriminative information available between the two language

groups, not only in the 63 ms VOT condition, but across all three

conditions. This could in part explain the overall differences which

were observed in decoding performance between the two groups.

It is worth noting again that the native-Dutch group of

participants were in fact highly proficient English speakers, having

undergone 6 years of coursework as part of their high school

curriculum. The fact that differences in decoding performance are

still observed highlights the formative role played by language

learning in early childhood in shaping our long-term perception of

speech [49–54].

A modest correlation was observed when investigating the

relationship between individual decoding results and individual

mean MMN amplitudes measured in the original analysis in [36].

The fact that this relationship was not stronger may be because the

multivariate analysis also included time points and scalp locations

which were not part of the original analysis in [36]. While the

individual MMN amplitudes reflect the activity in a 50 ms time

window around the peak of the MMN difference wave at fronto-

central locations between 200–400 ms following stimulus presen-

tation, the classification analysis included data from all 64

recording channels at time points between 0 and 700 ms post-

stimulus onset. As such, it included additional ERP components

including the N1, P3a and RON. Previously work on single-trial

classification of ERP components has shown that the inclusion of

components at different time intervals within an ERP provides

additional information when distinguishing different classes of

signals, leading to an improvement in classifier performance [55].

So while a significant relationship was observed between the

MMN component of individual ERPs and the results of the

within-participant classification analyses, it would appear that

decoding performance is also influenced by a broader hierarchy of

Figure 4. Classification across multiple trials for the 19 ms VOT
condition. Multi-trial performance for individual participants in both
the native-English and native-Dutch participant groups is shown using
colored lines (sorted according to mean individual performance), while
the average for each group is shown using a thick black line. On
average, performance increased when including additional trials.
Participants with relatively high single-trial classification rates tended
to show additional improvement when decisions were based on
additional trials, while participants with low single-trial classification
rates showed less benefit from the inclusion of additional trials.
doi:10.1371/journal.pone.0068261.g004

Figure 5. Cross-participant classification analyses. Classification rates for native and non-native participants for the two classifiers trained on
cross-participant data sets using the 19 ms VOT deviant, along with individual rates from the within-participant classification analysis of the same
deviant condition. Results for each of the three datasets are indicated using different colored bars. Participants are sorted based on the averaged
results of the three analyses, as indicated by the horizontal lines. Group averages are also shown with error bars. Asterisk size indicates the
significance level of a given ndividual result.
doi:10.1371/journal.pone.0068261.g005
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cognitive processes underlying the responses observed at different

time points.

A much stronger correlation was found when examining the

relationship between the individual behavioral data collected in

[36] and the per stimulus classification performance observed

when training a classifier using data from all three conditions. This

seems to suggest an overlap in the functional organization

underlying both the perceptual decision making process during

behavioral identification and the single-trial brain responses used

by the classifier during its decision-making process. This result is

perhaps most interesting when we consider the fact the behavioral

identification measurements reflect an active process (responding

to individual stimuli) while the EEG measurements reflect a

passive process (perception of sound sequences while viewing a

film).

Within-participant single-trial classification rates were compa-

rable with the average rates reported in [35]. The results of that

study also showed a graded pattern of results depending on which

manipulation (auditory space, syntax or both) was present in the

experimental stimulus. Here, the graded responses are observed

relative to a continuous change in one specific acoustic feature of

the deviant stimuli (VOT), as well as with respect to the native

language of individual participants. When compared to the

average single-trial rates observed in experiments making use of

an active auditory listening task [28,29,31,34], the rates reported

here are substantially lower. This is most likely due to the fact that

the tasks in the studies just mentioned were designed to elicit the

P300 response, which has a substantially higher amplitude (10–

20 mV ) than the ERP components elicited during passive listening,

such as the MMN (0.5–5 mV ) [8,56]. Such increases in signal

amplitude lead to a higher signal-to-noise ratio, and improve

classification performance.

It was also shown that this performance could be improved

through the inclusion of additional trials. Performance increased

on average with each additional trial that was included, reaching

above 95% correct for some participants when 7 trials were

included in the classifier’s decision. However, the relative benefit

in classification performance which was achieved through the use

of additional trials was also a function of individual participant’s

single-trial classification rates. While individuals with relatively

good single-trial classification rates tended to show the most

improvement across trials, participants with low single-trial

classification rates did not show much benefit when including

additional trials, with performance sometimes being even lower

than the single-trial rates. This would seem to point to a general

lack of discriminative information in the single-trial EEG data for

some participants. Previous multivariate pattern classification

analyses of EEG-data collected in an auditory paradigm and

using multiple-trials have also shown similar results [33]. Such

differences may be due in part to what has been referred to as ‘BCI

illiteracy’, in which some participants do not show a neural

signature of interest for a given task [57]. Previous studies on

individual MMN responses have also demonstrated that not

everyone will show a clear MMN component despite exhibiting

normal auditory perceptual abilities [42].

Figure 6. Topography and time-course of first component
obtained through a singular value decomposition of the
classifier weights trained on data from all 22 participants. The
data are presented in an arbitrary unit scaling.
doi:10.1371/journal.pone.0068261.g006

Figure 7. Prediction of native language on the basis of
electrophysiological and behavioral data. Five decoding analyses
aimed at predicting the native-language of a given-participant on the
basis of their measured data were carried out. Two analyses made use
of concatenated single-trial EEG data from each of the three
measurement conditions. The first of these analyses determined
single-trial classification rates using this data set, while the second
combined the single-trial predictions (70 total trials) for each
participant’s data obtained when it was used as a test-set during the
classification analysis. Two additional analyses made used of concate-
nated individual grand-averaged ERPs. One utilized both standard and
deviant stimulus ERPs collected in all of the three measurement
conditions, while the other included only the deviant ERPs measured
using the 63 and 41 ms VOT stimuli. A final analysis was performed
using a vector of seven mean behavioral identification scores collected
for each participant in the original study by Brandmeyer et al.
Significance levels shown using asterisks (pv:05~�, pv:01~ � �,
pv:001~ � ��, pv:0001~ � � � �), and are based on the number of
observations available for each of the five data sets. For the single-trial
analysis, 1540 data points (70 per participant) were available, while for
the remaining four analyses, 22 data points (one per participant) were
available.
doi:10.1371/journal.pone.0068261.g007
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Cross-participant Analyses
One of the goals of the present analysis was to determine the

amount of individual overlap in the functional brain organization

underlying the perception of the phonemes used during EEG

measurements, both within and across native-language groups.

When using a classifier trained on data from 10 of the 11 native-

English participants collected in the 19 ms VOT condition

(‘Cross-PP Native’), a difference in the classifier’s performance

was observed for the two language groups. While performance

improved for native-English speakers relative to the within-

participant analysis (64% vs 72% correct), performance decreased

for native-Dutch speakers (61% vs 59%). In contrast, when using a

classifier trained using data collected in the same condition from

all 22 participants (‘Cross-PP All’), a significant overall improve-

ment was observed for all participants relative to the within-

participant analysis. Here the performance benefit for native-

English speakers was slightly less as compared with the benefit seen

when using a classifier trained using only data from native-English

speakers. This seems to indicate a discrepancy in the extent to

which features present in the single-trial data of native-English

speakers are utilized by the two cross-participant classifiers, and

that features present in the single-trial data of the native-Dutch

speakers do not completely overlap with those of the native-

English speakers.

Previous work using fMRI to investigate differences in the

functional neuroanatomy of language processing between native

and non-native speakers suggests that, while both groups rely on

the same cortical network, non-native speakers show enhanced

activation in some regions relative to native speakers [58]. Studies

using ERP measurements have suggested an enhancement of ERP

components related to the processing of both acoustic features [36]

and categorical information [4,5] measured with native speakers

relative to non-native speakers. Combined, these results suggest

both similarities in the functional organization of language

processing in native and non-native speakers as well as differences

in the distributed activation patterns for specific linguistic tasks.

The present cross-participant analyses provide additional support

for this view. They are also in line with previous cross-participant

classification analyses presented in [33,35], which showed either

equivalent or improved classification performance when using

cross-participant data sets as compared to within-participant

datasets. As was the case with the results presented in [33], the

overall improvement in performance here may be due to the

increased amount of training data available in the cross-

participant analysis.

This study also presented the results of a set of cross-participant

classification analyses that focused on the native language of

participants. Analyses that made use of single-trial ERP data were

less successful at determining the native language of a given

participant than those which made use of individual behavioral

data. However, analyses which made use of individual grand-

averaged ERPs showed better native-language classification than

the analysis using behavioral data, with the best overall

performance obtained when using ERPs measured in response

to the 63 ms VOT and 41 ms VOT deviant stimuli. These were

the two conditions which showed a significant between-groups

difference in MMN response amplitude in the original study [36].

These results suggest that our brain responses to speech may reveal

more about our linguistic background than our behavioral

responses to it. They also align nicely with the results of the

cross-participant analyses discussed above, in that they also suggest

differences in the distribution of activation patterns measured in

response to speech stimuli between native-English and native-

Dutch speakers.

BCI Paradigms Based on Speech Perception
The use of multivariate pattern classification methods to identify

differences in the characteristic brain responses generated by

individual members of groups with differing perceptual profiles

could have potential applications in both education and clinical

settings. A new class of BCIs has recently been described, called

passive BCIs, which combine cognitive monitoring with the real-

time decoding methods typical of BCIs [59]. A passive BCI based

on the listening paradigm used in this study could be used to

monitor the brain activity underlying auditory perception. In

educational settings, such a system could be used to ascertain

whether one’s brain responses to foreign speech sound contrasts

resemble those of a native speaker or not. Likewise, in clinical

settings, characteristic abnormalities in the MMN component

have been reported for a wide-variety of clinical populations,

including children with specific language impairment and

individuals diagnosed with schizophrenia [7]. In turn, the use of

an appropriate BCI may be able to reduce the measurement times

which are needed in order to ascertain whether an individual’s

brain responses fit a particular neurological profile. However,

some caution is needed when considering such approaches. Many

ethical issues arise when considering the applications made

possible by single-trial decoding approaches, including the

unwilling extraction of personal information from measurements

of brain-activity and their potential (mis)use in criminal investiga-

tions [3,23,60].

The present results also suggest that BCIs which directly support

language learning through neurofeedback have potential. Neuro-

feedback provides real-time information about brain activity as

measured using EEG or fMRI, providing users with a mechanism

to modulate activity related to specific brain structures or cognitive

states [61–65]. In a recent study [66], multivariate methods were

employed in conjunction with fMRI measurements of activity in

striate and extrastriate cortical regions during visual perception of

simple orientation stimuli, and were subsequently used to provide

participants with a neurofeedback signal based on decoded brain

activity from these same regions. Following 5–10 days of

neurofeedback training, participants showed enhanced visual

perception of stimuli corresponding to the trained activation

patterns.

This type of induced perceptual learning may also be possible

using decoded-EEG neurofeedback based on the evoked responses

underlying speech perception. Such a system would, in principle,

provide users with real-time information regarding their brain’s

ongoing responses to unfamiliar foreign speech sound contrasts, as

reflected in the MMN and other components of the auditory

evoked response. Research on the time course of language

learning and associated changes in brain responses has shown

that the MMN response develops prior to changes in behavioral

responses associated with the successful discrimination of foreign

phoneme contrasts [67]. Thus it would be possible to provide users

with neurofeedback in a time span where the perceptual learning

process is still ongoing. The results of the multi-trial analysis

presented above also suggest that the reliability of such feedback

could be regulated by combining classifier decisions across a

sufficient number of subsequent trials. Moreover, it may also be

possible to make use of classifiers trained on cross-participant data

sets from, for instance, native speakers, for use in neurofeedback

paradigms intended for second-language learners. While addition-

al research would obviously be needed to verify the merit of this

approach, the results presented here in conjunction with those

from [66] suggest that such an approach is possible. Many

challenges remain in the development of such a system. For

example, it is still an empirical question how high the single-trial
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classification rate has to be to support language learning.

Nevertheless, the above-chance single-trial classification reported

here is promising. It indicates that, at least with respect to the

multivariate pattern classification that would be required, a

neurofeedback system for the training of speech perception is

feasible.

Conclusion

The present study has shown that both within- and cross-

participant decoding of evoked responses measured during speech

perception is possible, with the results being a function of both the

relative size of the contrasts employed as well as the phonological

status of the contrast for a given listener. Moreover, the results

indicate that, while the functional brain organization underlying

speech perception may involve the same fundamental networks in

native and non-native speakers, differences in the relative

distribution of activation patterns influence the outcomes of the

multivariate analyses for native and non-native speakers. On the

basis of these results, we suggest that these methods can be used for

developing novel BCI applications related to second language

learning.
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