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We derive a recursive formula for the α′-expansion of superstring tree amplitudes involving any
number N of massless open string states. String corrections to Yang-Mills field theory are shown to
enter through the Drinfeld associator, a generating series for multiple zeta values. Our results apply
for any number of spacetime dimensions or supersymmetries and chosen helicity configurations.

I. INTRODUCTION

Scattering amplitudes are the most fundamental ob-
servables to compute in both quantum field theory and
string theory. In both disciplines, numerous hidden
structures underlying the S-matrix have been revealed
in recent years. Several of these discoveries can be at-
tributed to and have benefited from the close interplay
between amplitudes of string theory in the low-energy
limit and supersymmetric Yang-Mills (YM) field theory.

A main challenge in the study of field theory am-
plitudes originates from the transcendental functions in
their quantum corrections. Novel mathematical tech-
niques such as the symbol [1] helped to streamline the
polylogarithms and multiple zeta values (MZVs) in loop
amplitudes of (super-)YM theory. In string theory,
MZVs appear in the α′-corrections already at tree level
due to the exchange of infinitely many heavy vibrational
modes. These effects are encoded in integrals over world-
sheets of genus zero.

The study of α′-expansions in the superstring tree-level
amplitude is interesting from both a mathematical and a
physical point of view. On the one hand, the pattern of
MZVs appearing therein can be understood from an un-
derlying Hopf algebra structure [2]. On the other hand,
explicit knowledge of the associated string corrections is
crucial for the classification of candidate counterterms in
field theories with unsettled questions about their UV
properties [3].

In spite of technical advances to evaluate α′-expansions
for any multiplicity [4], a closed formula for string cor-
rections is still lacking. This letter closes this gap by
describing a method to recursively determine the α′-
dependence ofN -point trees through the generating func-
tion of MZVs – the Drinfeld associator. Our techniques
are based on the Knizhnik-Zamolodchikov (KZ) differ-
ential equation [5] obeyed by world-sheet integrals and
thereby resemble ideas in field theory to determine loop
integrals. Along the lines of [6], the associator is shown to
connect boundary values, given by N -point and (N − 1)-
point disk amplitudes, respectively.

A. The structure of disk amplitudes

The color-orderedN -point disk amplitude Aopen(α
′) ≡

Aopen(1, 2, . . . , N ;α′) was computed in [7, 8] based on
pure spinor cohomology methods [9]. Its entire polar-
ization dependence was found to enter through color-
ordered tree amplitudes AYM of the underlying YM field
theory which emerges in the point particle limit α′ → 0:

Aopen(α
′) =

∑

σ∈SN−3

F σ(α′)Aσ
YM . (1)

The (N − 3)! linearly independent [10] subamplitudes
AYM(1, σ(2, 3, . . . , N − 2), N − 1, N) are grouped into a
vector Aσ

YM. Labels 1, 2, . . . , N in the subamplitude eq.
(1) denote any state in the gauge supermultiplet. The
objects F σ(α′) are iterated integrals over the boundary
of the string world-sheet and describe string theory mod-
ifications to field theory amplitudes. They can be math-
ematically classified as generalized Selberg integrals [11]:

F σ =

N−2∏

i=2

∫

zi<zi+1

dzi I σ







N−2∏

k=2

k−1∑

j=1

sjk
zjk






, (2)

I =

N−1∏

i<j

|zij |
sij , (z1, zN−1, zN ) = (0, 1,∞) . (3)

The SN−3 permutation σ acts on labels 2, 3, . . . , N−2 of
zij ≡ zi−zj and on dimensionless Mandelstam invariants

si1i2...ip = α′(ki1 + ki2 + . . .+ kip)
2 , (4)

which introduce an implicit α′-dependence into the string
amplitude (1). The ki denote external on-shell momenta.
Hence, the sij -expansion of the integrals (2) encodes the
low energy behaviour of superstring tree amplitudes.

B. Multiple zeta values

It has been discussed in both mathematics [6, 12, 13]
and physics [2, 8, 14] literature that the α′-expansion of
Selberg integrals involves MZVs

ζn1,...,nr
=

∑

0<k1<...<kr

r∏

j=1

k
−nj

j , nj ∈ N , nr ≥ 2 (5)
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as well as products thereof. The overall weights
∑r

j=1 nj

of MZV factors match the corresponding power of α′.
Equivalently, MZVs can be defined by iterated integrals

ζn1,...,nr
=

∫

0<zi<zi+1<1

ω1 ω0 . . . ω0
︸ ︷︷ ︸

n1−1

ω1 ω0 . . . ω0
︸ ︷︷ ︸

n2−1

. . . ω1 ω0 . . . ω0
︸ ︷︷ ︸

nr−1

(6)

with differential forms ω0 ≡ dz
z

and ω1 ≡ dz
1−z

. Defining

by w[ω0, ω1] a function translating sequences of {0, 1}
into sequences of {ω0, ω1}, one can assign a (shuffle-
regularized) MZV to each word w ∈ {0, 1}×:

ζ(w) ≡

∫

0<zi<zi+1<1

w[ω0, ω1] . (7)

The pattern of MZVs in the α′-expansion of (2) has been
revealed in [2] on the basis of a Hopf algebra structure.

C. The Drinfeld associator

Consider the KZ equation

df(t)

dt
=

(
e0
t
+

e1
1− t

)

f(t) , (8)

with t ∈ C\{0, 1} and Lie-algebra generators e0, e1. The
solution f(t) of the KZ equation takes values in the vector
space the representation of e0 and e1 is acting upon. The
regularized boundary values

C0 ≡ lim
t→0

t−e0f(t) , C1 ≡ lim
t→1

(1− t)e1f(t) (9)

are related by the Drinfeld associator [15, 16]

C1 = Φ(e0, e1)C0 , (10)

where C0, C1 and Φ take values in the universal envelop-
ing algebra of the Lie algebra generated by e0 and e1.
The regularizing factors t−e0 and (1 − t)e1 are included
into eq. (9) as to render the t → 0, 1 regime of f(t) real-
single-valued. In the notation of eq. (7), the Drinfeld
associator can be represented as a generating series of
MZVs [17]:

Φ(e0, e1) =
∑

w∈{0,1}×

w̃[e0, e1]ζ(w) , (11)

where the operation ˜ reverses words. The series expan-
sion of eq. (11) in a basis of MZVs starts with

Φ(e0, e1) = 1 + ζ2[e0, e1] + ζ3[e0 − e1, [e0, e1]]

+ ζ4([e0, [e0, [e0, e1]]] +
1
4 [e1, [e0, [e1, e0]]]

− [e1, [e1, [e1, e0]]] +
5
4 [e0, e1]

2) + . . . , (12)

where [·, ·] denotes the usual commutator.

D. Main result

In this letter, we identify the Drinfeld associator Φ as
the link between N -point string amplitudes and those
of multiplicity N − 1. Thus, starting from the α′-
independent three-point level, one can build up any tree-
level string amplitude recursively.
In order to apply eq. (10), we will construct a matrix

representation for e0 and e1 for each multiplicity. Start-
ing with a boundary value C0 containing the world-sheet
integrals for the (N − 1)-point amplitude, eq. (10) yields
a vector C1, which in turn encodes the integrals eq. (2)
for multiplicity N . Consequently, one can explicitly ex-
press the N -point world-sheet integrals F σ in terms of
those at (N − 1)-points

F σi =

(N−3)!
∑

j=1

[
Φ(e0, e1)

]

ij
F σj

∣
∣
kN−1=0

, (13)

where the soft limit kN−1 = 0 gives rise to (N − 1)-point
integrals on the right hand side

F σ(23...N−2)
∣
∣
kN−1=0

=

{

F σ(23...N−3) , σ(N−2) = N−2
0 , otherwise ,

(14)

and the σi are canonically ordered in eq. (13).

II. THE METHOD

In this section, we construct a vector F̂ of auxiliary
functions and a corresponding matrix representation of
e0, e1 such that the following KZ equation holds for z0 ∈
C\{0, 1}:

dF̂(z0)

dz0
=

(
e0
z01

−
e1

z0,N−1

)

F̂(z0) . (15)

As will be shown below, the regularized boundary value
C0 derived from F̂ via eq. (9) is determined by basis
functions eq. (2) of multiplicity N − 1 and the final data

C1 contains their N -point analogues. The vector F̂ is
composed from N−2 subvectors F̂ν of length (N−3)!.
Numbered by ν=1, 2, .., N−2, they appear in decreasing
order, that is, F̂ = (F̂N−2, F̂N−3, . . . , F̂1). Labeling the
entries in each subvector by permutations σ ∈ SN−3, the

elements of F̂ read:

F̂ σ
ν (z0) =

∫ z0

0

dzN−2

N−3∏

i=2

∫ zi+1

0

dzi I

N−2∏

k=2

(z0k)
s0k

× σ







ν∏

k=2

k−1∑

j=1

sjk
zjk

N−2∏

m=ν+1

N−1∑

n=m+1

smn

zmn






. (16)

These integrals generalize the functions eq. (2) through
an auxiliary world-sheet position z0. It enters in the in-
tegration limit of the outermost integral as well as in
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the deformation
∏N−2

k=2 (z0k)
s0k of the Koba-Nielsen fac-

tor I and serves as the differentiation variable for the
KZ equation (15). Similarly, s0k are auxiliary Mandel-
stam variables. At z0 = 1 and s0k = 0 – in absence of
the augmentation – they reduce to F̂ σ

ν = F σ for any
ν = 1, 2, . . . , N − 2. In this regime, ν labels different
equivalent representations of the integrals eq. (2) [4]. At

generic values of z0 and s0k, however, the subvectors F̂ν

no longer agree for different values of ν.
It is known [6] that all the elements of (N−2)!×(N−2)!-

matrices e0 and e1 are linear forms on sij . They can be
determined by matching the z0 derivatives1 of F σ

ν with
the right hand side of the KZ equation (15). Once the
resulting matrices e0 and e1 are available, one can cal-
culate the Drinfeld associator to any desired order em-
ploying eq. (11). Having set up the KZ equation (15)

for the auxiliary function F̂, we will now determine its
regularized boundary terms eq. (9).

A. The z0 → 0 boundary value C0

The boundary term C0 is determined by taking the
limit z0 → 0 of z−e0

0 F̂(z0). The first (N−3)! components

of F̂(z0 → 0) at ν = N − 2 are

F̂ σ
N−2(z0 → 0) = zsmax

0 F σ
∣
∣
si,N−1=s0i

+O(s0i) , (17)

with eigenvalue smax = s12...N−2 +
∑N−2

j=2 s0j of e0 [6].

The remaining subvectors of F̂(z0 → 0) at ν ≤ N − 3 are
suppressed byN−2−ν powers of z0 and do not contribute
to C0, regardless of e0 eigenvalues2. The action of z−e0

0

compensates the z0 dependence of the resulting vector
(zsmax

0 F σ,0(N−3)(N−3)!). Setting s0i = si,N−1 = 0 in
eq. (17) is equivalent to the soft limit kN−1 → 0. This
reduces the F σ to (N−1)-point integrals by virtue of (14):

C0 = (F σ
∣
∣
kN−1=0

,0(N−3)(N−3)!) . (18)

B. The z0 → 1 boundary value C1

For the purpose of setting up a recursion in F σ, it is
sufficient to extract the first (N − 3)! components of C1

from the z0 → 1 regime of (1 − z0)
e1F̂(z0). Considering

the schematic form of the first (N−3)! rows

(1−z0)
e1 =

(
1(N−3)!×(N−3)! 0(N−3)!×(N−3)(N−3)!

...
...

)

(19)

1 The boundary term from acting with d

dz0
on the integration limit

does not contribute as can be seen by analytic continuation of
|z0,N−2|

s0,N−2 |zN−2=z0 = 0 ∀ s0,N−2 ∈ R+.
2 This can be seen by a change of integration variables zi = z0wi

for i = 2, . . . , N − 2 which rescales the integration domain to
0 ≤ w2 ≤ w3 ≤ . . . ≤ wN−2 ≤ 1.

we can neglect all components of F̂(z0 → 1) except

F̂ σ
N−2(z0 → 1) = F σ +O(s0i) . (20)

Setting s0i = 0 as discussed in section II A leads to3

C1 = (F σ, . . .) (21)

by virtue of eq. (19). Our setup does not require the
evaluation of the remaining components in the ellipsis.
With the matrices e0 and e1 as well as the boundary

value C0 on our disposal, we are now prepared to in-
fer C1 from eq. (10). Our main result eq. (13) follows
from the first (N − 3)! components of C1: They express
the integrals eq. (2) for the N -point amplitude in terms
of the (N − 1)-point world-sheet integrals F σ|kN−1=0,
see eq. (14). This allows to determine the complete α′-
expansion to any order and for any multiplicity. The
remainder of this letter illustrates the method and its
result by the simplest non-trivial examples.

III. EXAMPLES

A. From N = 3 to N = 4

Any four–point disk integral is proportional to

F (2)=

∫ 1

0

dz2 |z12|
s12 |z23|

s23
s12
z12

=
Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
.

We will rederive its α′-expansion from the Drinfeld asso-
ciator along the lines of section II. The auxiliary vector
eq. (16) contains two subvectors of length one:

(

F̂
(2)
2

F̂
(2)
1

)

=

∫ z0

0

dz2 |z12|
s12 |z23|

s23zs0202

(
s12/z12
s23/z23

)

.

(22)
Partial fraction decomposition (z12z02)

−1 = (z12z01)
−1−

(z01z02)
−1 followed by discarding a z2-derivative

0 =

∫

dz2 |z12|
s12 |z23|

s23zs0202

(
s02
z02

+
s12
z12

−
s23
z23

)

(23)

leads to the following KZ equation after setting s02 = 0:

d

dz0

(

F̂
(2)
2

F̂
(2)
1

)

=

(
e0
z01

−
e1
z03

)(

F̂
(2)
2

F̂
(2)
1

)

, (24)

e0 =

(
s12 −s12
0 0

)

, e1 =

(
0 0
s23 −s23

)

. (25)

3 The (N − 3)(N − 3)! components in the ellipsis are sensitive to
the interval (z0, 1) absent in the dzN−2 integration range. We
can safely omit their evaluation because the first subvector of
eq. (21) contains the complete N-point information.
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The regularized boundary values (9) are found to be

C0 =

(
1
0

)

, C1 =

(
F (2)

F (2) − 1

)

(26)

where the subtraction in the second component of C1

stems from the absence of the (z0, 1) integration range in
(22). This subtlety motivates to neglect the C1 compo-
nents beyond the first (N − 3)! in the following. The KZ
equation (24) subject to boundary values eq. (26) allows
to extract F (2) from

(
F (2)

F (2) − 1

)

=
[
Φ(e0, e1)

]

2×2

(
1
0

)

(27)

with e0, e1 given in eq. (25). Their particular form im-

plies that products of any two matrices adk0ad
l
1[e0, e1]

with k, l ∈ N0 vanish, where adix ≡ [ei, x]. According
to [18], this allows to express the four-point disk ampli-
tude exclusively in terms of ζn1

with a single argument
n1 ≥ 2, i.e. depth r = 1 cases of eq. (5).

B. From N = 4 to N = 5

Next we shall derive a closed formula expression for the
five-point versions F (23) and F (32) of eq. (2) by applying
the associator method to the auxiliary functions eq. (16)













F̂
(23)
3

F̂
(32)
3

F̂
(23)
2

F̂
(32)
2

F̂
(23)
1

F̂
(32)
1













=

z0∫

0

dz3

z3∫

0

dz2 I zs0202 zs0303










X12(X13+X23)
X13(X12+X32)

X12X34

X13X24

(X23+X24)X34

(X32+X34)X24










where Xij ≡
sij
zij

. Partial fraction and integration by

parts analogous to (23) leads to the (6 × 6)-matrices

e0 =










s123 0 −s13 − s23 −s12 −s12 s12
0 s123 −s13 −s12 − s23 s13 −s13
0 0 s12 0 −s12 0
0 0 0 s13 0 −s13
0 0 0 0 0 0
0 0 0 0 0 0










e1 =










0 0 0 0 0 0
0 0 0 0 0 0
s34 0 −s34 0 0 0
0 s24 0 −s24 0 0
s34 −s34 s23 + s24 s34 −s234 0
−s24 s24 s24 s23 + s34 0 −s234










for which the KZ equation (15) is satisfied after setting
s02 = s03 = 0. Their associator connects the boundary
values

C0 =





F (2)

0
04



 , C1 =






F (23)

F (32)

...




 (28)

via eq. (10), i.e. we recursively obtain the desired F (23)

and F (32) from





F (23)

F (32)

...




 =

[
Φ(e0, e1)

]

6×6





F (2)

0
04



 . (29)

Given that the four-point amplitude ∼ F (2) only involves
simple zeta values ζn, all the MZVs (5) of depth r ≥ 2
occurring in the five-point integrals F (23) and F (32) (see
[2] for their appearance at weights w ≤ 16) emerge from
the associator in eq. (29).

C. From N = 5 to N = 6

The recursion from five- to six-point integrals requires
a system of 24 auxiliary functions, aligned into four sub-
vectors of length six (where, again, Xij ≡

sij
zij

):








F̂
σ(234)
4

F̂
σ(234)
3

F̂
σ(234)
2

F̂
σ(234)
1








=

z0∫

0

dz4

z4∫

0

dz3

z3∫

0

dz2 I zs0202 zs0303 zs0404

× σ






X12(X13+X23)(X14+X24+X34)
X12(X13 +X23)X45

X12(X34 +X35)X45

(X23+X24+X25)(X34+X35)X45




 (30)

The corresponding 24× 24 matrices e0 and e1 are deter-
mined by the KZ equation built from appropriate rela-
belings of

dF̂
(234)
3

dz0
=

1

z01

{
s123F̂

(234)
3 − (s13 + s23)F̂

(234)
2 − s12(F̂

(324)
2 + F̂

(234)
1 − F̂

(324)
1 )

}
+

1

z05

{
s45(F̂

(234)
3 − F̂

(234)
4 )

}

dF̂
(234)
4

dz0
=

1

z01

{
s1234F̂

(234)
4 − (s14 + s24 + s34)F̂

(234)
3 − (s13 + s23)(F̂

(243)
3 + F̂

(234)
2 − F̂

(243)
2 ) (31)

+ s12(−F̂
(342)
3 − F̂

(324)
2 − F̂

(423)
2 + F̂

(342)
2 + F̂

(432)
2 + F̂

(423)
1 − F̂

(432)
1 + F̂

(324)
1 − F̂

(234)
1 )

}
.
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The six-point realization of the boundary terms eq. (18)
and eq. (21) leads to the recursion














F (234)

F (243)

F (324)

F (342)

F (423)

F (432)

...














=
[
Φ(e0, e1)

]

24×24












F (23)

0
F (32)

0
0
0
018












. (32)

IV. CONCLUSIONS AND OUTLOOK

In our main result, eq. (13), we relate the world-sheet
integrals eq. (2) carrying the α′-dependence of N -point
disk amplitudes to (N − 1)-point results by the Drinfeld
associator. The construction works for any multiplicity
and - in principle - to any order in α′.
The different origin of α′-corrections therein from ei-

ther the associator or the lower point integrals might shed
light on the arrangement of reducible and irreducible di-

agrams in the underlying low energy effective action [19].

The string corrections are universal to massless open
superstring tree amplitudes in any number of spacetime
dimension, independent on the amount of supersymme-
try or chosen helicity configurations. Their α′-expansion
in terms of MZVs can be directly carried over to closed
string trees which are expressed in terms of a specific
subsector of the open string’s expansion [2]. It would
be desirable to extend this analysis to higher genus such
as the maximally supersymmetric one loop amplitudes
calculated in [20].
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