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We compute the effective coupling of the Majoron to W bosons at O(~) by

evaluating the matrix element of the (B−L) current between the vacuum and

a W+W− state. The (B−L) anomaly vanishes, but the amplitude does not

vanish as a result of a UV finite and non-local contribution which is entirely

due to the mixing between left-chiral and right-chiral neutrinos. The result

shows how anomaly-like couplings may arise in spite of the fact that the (B−L)

current remains exactly conserved to all orders in ~, lending additional support

to our previous proposal to identify the Majoron with the axion.

1 Introduction

The cancellation of anomalies for the (B−L) current in the Standard Model
(SM) without right-chiral neutrinos is a remarkable and well known fact (see
e.g. [1, 2] and references therein). In this paper we consider the inclusion
of right-chiral neutrinos into the SM and demonstrate that for non-trivial
mixing between left- and right-chiral neutrinos the relevant triangle graphs
with two external electroweak vector bosons no longer sum up to zero, as
they would if only the (vanishing) (B−L) anomaly were taken into account.
This result provides additional support for our previous proposal to identify
the Majoron with the axion [3], and clarifies some issues that might be raised
in connection with this proposal.

Recall that for a spontaneously broken abelian global symmetry, the total
Noether current J µ takes the general form

J µ = J
µ − Fa∂

µa (1)

where a(x) is the Goldstone field and Fa the parameter characterizing the
scale of spontaneous symmetry breaking, while Jµ is the partial symmetry
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current without spontaneous symmetry breaking. In the absence of global
anomalies the total current (1) is exactly conserved to all orders in ~. How-
ever, the equation ∂µJ µ = 0 says nothing about how the two contributions
on the r.h.s. of (1) conspire to produce overall current conservation as a
consequence of the classical or quantum equations of motion. All it implies
is that, whenever �a 6= 0, there must be a corresponding contribution to
∂µJ

µ 6= 0 for (15) to be satisfied, viz.

�a = F−1
a X ⇔ ∂µJ

µ = X (2)

Here the quantity
X = X0 + ~X1 + ~

2X2 + · · · (3)

encapsulates all (classical and quantum mechanical) contributions to the
equations of motion. While the tree level term X0 is always local (and
represents the violation of partial current conservation ∂µJ

µ with explicit
symmetry breaking), the quantum mechanical higher order corrections Xn

are in general non-local. Our main point here is to show that there may arise
anomaly-like contributions in this expansion. By definition, these correspond
to UV finite and non-local contributions to the effective action that reduce
to anomalous interactions ∝ aTrAµνÃµν in the IR limit (where Aµν can be
any SM field strength). Such contributions may appear at various orders
in ~, and can mimick a non-vanishing anomaly for topologically non-trivial
gauge field configurations and constant values of the Goldstone field.

Specifically we will be concerned with (B − L) symmetry current J µ =
J µ

B−L and the vertex describing the coupling of the Majoron (axion) to two
external W bosons at order ~. This is the simplest example for which one can
establish the existence of anomaly-like terms in the expansion (3); these are
entirely due to the mixing between left-chiral and right-chiral neutrinos. The
computation thus complements our previous work [3] where we calculated
various higher loop diagrams contributing to X using the Yukawa interaction
rather than the matrix element of the (B − L) current. In particular we
derived the anomaly-like coupling of the Majoron/axion to gluons at order
~3. As we argued there, this anomaly-like coupling suffices to solve the
strong CP problem and therefore removes the need for unobservable ultra-
heavy new scales, as would be required for a conventional implementation of
the Peccei-Quinn mechanism in the SM.

Our calculation furthermore establishes the equivalence of the two field
bases or ‘pictures’ in which the calculation of the correction terms Xn can
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be performed, and which are here related by the field redefinition (14). In
one of these ‘pictures’, the interaction occurs via a Yukawa vertex (cf. (4)
below), while in the other (cf. (13) below) the interaction is represented by
a derivative coupling of the Goldstone field to the (B−L) current. The first
‘picture’ was extensively used in [3], whereas the calculation based on the
second ‘picture’ adopted here closely resembles the usual anomaly compu-
tation. With both pictures, we obtain a finite deviation from the vanishing
result expected on the basis of the vanishing (B−L) anomaly. Independently
of their possible relevance to axion physics the present results are thus also of
interest for the explicit determination of effective Majoron couplings which
have not been calculated in such detail in the literature.

The present work is part of a wider program in the context of the so-
called Conformal Standard Model (CSM) [4] which seeks to solve the hierar-
chy problem via conformal symmetry, rather than low energy supersymmetry
or large extra dimensions, by exploiting the remarkable fact that, with the
exception of the explicit mass term in the Higgs potential, the SM is clas-
sically conformally invariant (see also [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] for
related proposals exploiting conformality or partial conformality of the SM).
In such a framework, no intermediate scales of any kind are allowed to occur
between the electroweak scale and the Planck scale. In addition smallness of
couplings must be explained via loop corrections rather than by fine-tuning
explicit couplings by hand to very large or very small values.

2 Lepton and baryon number symmetry

First we briefly recall some facts about the global symmetries of the CSM,
namely lepton and baryon number symmetry, see [3]. The CSM enlarges the
usual SM by right-chiral neutrinos and one extra electroweak singlet complex
scalar field φ. By definition, it is classically conformally invariant because
no dimensionful (mass) parameters are admitted in the classical Lagrangian
[4, 3]. The terms most relevant to our discussion concern the Yukawa sector
whose contribution to the CSM Lagrangian reads

−LY = L
i
ΦY E

ij E
j +Q

i
ΦY D

ij D
j +Q

i
εΦ∗Y U

ij U
j

+L
i
εΦ∗Y ν

ijN
j +

1

2
φN iTCY M

ij N j + h.c. (4)
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Here the bi-spinors Qi and Li are the left-chiral quark and lepton doublets,

Qi ≡
(

ui
L

diL

)
, Li ≡

(
νi
L

eiL

)
(5)

while U i and Di are the right-chiral up- and down-like quarks, Ei are the
right-chiral electron-like leptons, and N i ≡ νi

R the right-chiral neutrinos (we
suppress all indices except the family indices i, j = 1, 2, 3). Φ is the usual
Higgs doublet, and φ is the new complex scalar field, such that in particular
all fermion mass terms are generated by spontaneous symmetry breaking
via non-vanishing expectation values for the scalar fields and the Yukawa
matrices Y ♯

ij. As is evident from (4) the electroweak singlet field φ does not
directly couple to the other SM fields, but only to right-chiral neutrinos.
However, couplings to the ‘observable’ sector of the SM will arise through
left-right neutrino mixing and higher loop effects.

In addition to the (local) SU(3)c × SU(2)w × U(1)Y symmetries, the
CSM Lagrangian admits two global U(1) symmetries, lepton number sym-
metry U(1)L and baryon number symmetry U(1)B. These are, respectively,
generated by the vector-like Noether currents

J µ
L := L

i
γµLi + E

i
γµEi +N

i
γµN i − 2iφ†

↔

∂µφ

≡ ēiγµei + ν̄iγµνi − 2iφ†
↔

∂µφ ≡ J
µ
L − 2iφ†

↔

∂µφ (6)

and

J µ
B :=

1

3
Q

i
γµQi +

1

3
U

i
γµU i +

1

3
D

i
γµDi

≡ 1

3
ūiγµui +

1

3
d̄iγµdi (7)

where by ui, di, ei and νi we here denote the full Dirac 4-spinors. From (6)
it follows that the scalar φ carries two units of lepton number charge, hence
lepton charge can ‘leak’ from the fermions into the scalar channel.

Writing
φ(x) = ϕ(x) exp

(
ia(x)/

√
2µ

)
(8)

we see that for 〈ϕ〉 6= 0, lepton number symmetry is spontaneously broken,
and the phase a(x) becomes a Goldstone boson, the ‘Majoron’ [15]. Like φ(x),
the field a(x) couples only to right-chiral neutrinos at tree level, but not to
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any other SM fields. For spontaneously broken lepton number symmetry
the total current J µ

L remains classically conserved, i.e. ∂µJ µ
L = 0, but this

relation is violated at the quantum level by the anomaly. The fermionic
current J

µ
L is not even conserved at the classical level. In particular, if we

replace the last term in (4) by a Majorana mass term

LMajorana =
1

2
MijN

iTCN j + h.c. (9)

lepton number is violated explicitly, and we get

∂µJ
µ
L = −iMijN

iTCγ5N j 6= 0 (10)

This violation of current conservation is entirely analogous to the explicit
mass dependence ∝ meēγ

5e of the divergence of the axial current ēγ5γµe
in QED [1]. It is also present if the Majorana mass term is generated by
spontaneous symmetry breaking when Mij ≡ 〈ϕ〉Y M

ij . Using (8) with µ =

〈ϕ〉 = −
√
2Fa 6= 0, the full lepton number current assumes the universally

valid form (1). Therefore the conservation of the full current generally implies
a violation of conservation for the partial fermionic current JµL unless the field
a(x) is a free field (obeying �a = 0).

While J µ
L and J µ

B are anomalous separately, the full (B − L) current

J µ
B−L := J µ

B − J µ
L ≡ J

µ
B−L + 2 iφ†

↔

∂µφ = J
µ
B−L − 〈ϕ〉√

2
∂µa (11)

is quantum mechanically conserved, that is,

∂µJ µ
B−L = 0 (12)

to all orders in ~. Alternatively, this relation follows by variation of the
Lagrangian

LGoldstone = −1

2
∂µa∂

µa +

√
2

〈ϕ〉∂µa J
µ
B−L (13)

w.r.t. to the Goldstone field a(x). Neglecting terms not relevant for this
discussion, the very same Lagrangian is obtained from the CSM Lagrangian
with Yukawa interactions (4) by performing the U(1)B−L redefinition

(
Li(x), Ei(x), N i(x)

)
→ exp

(
− ia(x)

2
√
2µ

)(
Li(x), Ei(x), N i(x)

)
,

(
Qi(x), U i(x), Di(x)

)
→ exp

(
ia(x)

6
√
2µ

)(
Qi(x), U i(x), Di(x)

)
(14)
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on the fermionic fields, thereby eliminating the non-derivative Yukawa cou-
pling of a(x). Because the (B − L) current is anomaly free, the redefinition
(14) is in fact well-defined quantum mechanically. Therefore the change of
variables (14) does not affect the fermionic functional measure, ensuring the
mutual consistency of the two formulations also at the quantum level.

Because of quantum mechanical current conservation (12) we can take up
the arguments of the introduction: to satisfy the equation

〈ϕ〉√
2
�a = ∂µJ

µ
B−L (15)

with �a 6= 0, there must exist a corresponding contribution to ∂µJ
µ
B−L, viz.

�a =

√
2

〈ϕ〉 X ⇔ ∂µJ
µ
B−L = X (16)

At the classical level this claim can be easily checked by making use of the
equations of motion following from the CSM Lagrangian and by using the
fermionic equations of motion to calculate ∂µJ

µ
B−L. To compute the higher

order corrections in (3) one needs to evaluate the matrix elements

〈
Ψ
∣∣a ∂µJµB−L

∣∣a
〉
1PI

(17)

where |Ψ〉 can be any (multi-particle) state involving excitations other than
a, and where the subscript indicates that we amputate the external legs in
the usual fashion.

3 Matrix elements of the leptonic current

We now exemplify the general arguments of the foregoing section by de-
termining the couplings of a(x) to W bosons at order ~ from (17). In [3]
this coupling was calculated directly from the Yukawa vertex in (4), whereas
it will be derived here from the current coupling by evaluating the matrix
element 〈

W+W−
∣∣ ∂µJµB−L

∣∣0
〉

(18)

which follows from (17) by factoring out the matrix element involving a(x).
As for the usual anomaly this calculation reduces to the evaluation of the
triangle diagrams shown in Fig. 1. Indeed, for the quarks the calculation
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is just the standard one giving the quark contribution to the baryon num-
ber anomaly [1]. By contrast, the leptonic contribution is modified by the
left/right neutrino mixing in such a way that the amplitude (18), and hence
the coupling of a(x) to W bosons, is different from zero for non-trivial mix-
ing angle (whereas it would vanish without this mixing, see below). The
present calculation thus confirms our previous calculation of the axion cou-
plings which was based on the Yukawa Lagrangian (4), but now in the ‘ro-
tated picture’ (14) where the Lagrangian assumes the form (13).

For simplicity, we consider only one family of leptons with right-chiral
neutrinos. Furthermore, as in our previous work, we will use SL(2,C)
(Weyl) spinors 1 to express the 4-component neutrino spinor N ≡ (νL, νR) ≡
(να, N̄

α̇) and its conjugate. After spontaneous symmetry breaking the free
part of the neutrino Lagrangian is

L =
i

2

(
να∂/αβ̇ ν̄

β̇ +Nα∂/αβ̇N̄
β̇
)
+ h.c.

−mναNα −m ν̄α̇N̄
α̇ − M

2
NαNα − M

2
N̄α̇N̄

α̇ (19)

where we have included both Dirac and Majorana mass terms, taking both
parameters real without loss of generality. As before, the fermionic lepton
number current is classically not conserved for M 6= 0, viz.

∂µJ
µ
L = iM

(
NαNα − N̄α̇N̄

α̇
)

(20)

The standard procedure to deal with (19) consists in diagonalizing the
mass matrix, with rotated fields

[
ν ′

N ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
ν
N

]
(21)

in terms of which the Lagrangian (19) becomes diagonal

L =
i

2

(
ν ′α∂/αβ̇ ν̄

′β̇ +N ′α∂/αβ̇N̄
′β̇
)
+ c.c

− m′

2

(
ν ′αν ′

α + ν̄ ′
α̇ν̄

′α̇
)
− M ′

2

(
N ′αN ′

α + N̄ ′
α̇N̄

′α̇
)

(22)

1Usage of this formalism is crucial for our calculations, whose presentation would be
much more cumbersome in terms of 4-component spinors. For an introduction see [16].
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A simple calculation gives

tan 2θ =
2m

M

(
0 ≤ θ ≤ π

4
for m, M ≥ 0

)
(23)

Defining the mass parameter M̃ :=
√
M2 + 4m2, the mass eigenvalues are

given by the seesaw formula [17]

m′ = −M̃ sin2 θ , M ′ = M̃ cos2 θ (24)

All formulas below can then be expressed in terms of M̃ and the mixing
angle θ, and, of course, the mass parameters of other fields. The angle θ
therefore interpolates between two special limits, namely θ = 0 when m = 0
or M → ∞ in (19) and the right-chiral neutrino components decouple, and
θ = π/4 when m′ = −M ′ [or M = 0 in (19)], and the neutrino becomes a
Dirac fermion. We note that ‘in real life’ the value of the mixing angle θ is
known to be very small, of order 10−6.

After the rotation (21) the propagators take the standard diagonal form
for Majorana fermions

〈ν ′
α(x)ν̄

′

β̇
(y)〉 = i

∫
d4p

(2π)4
p/αβ̇

p2 −m′2
e−ip (x−y)

〈ν ′
α(x)ν

′
β(y)〉 = −i

∫
d4p

(2π)4
m′εαβ

p2 −m′2
e−ip (x−y) (25)

〈ν̄ ′
α̇(x)ν̄

′

β̇
(y)〉 = −i

∫
d4p

(2π)4
m′εα̇β̇

p2 −m′2
e−ip (x−y)

with analogous expressions for the N ′ propagators after replacing m′ → M ′.
With the redefinitions (21) the SM interaction vertices now involve both neu-
trino components. The vertex relevant for our calculation is the one involving
W -bosons which reads

Lint = − g2√
2
W−

µ ēLα̇σ̄
µ α̇β

[
cos θ ν ′

β + sin θ N ′
β

]

− g2√
2
W+

µ

[
cos θ ν̄ ′

α̇ + sin θ N̄ ′
α̇

]
σ̄µ α̇βeLβ (26)

where g2 is the weak coupling constant. Likewise, after the rotation (21), the
lepton number current becomes, in terms of two-component spinors,

J
µ
L = ēLα̇σ̄

µ α̇βeLβ − ēα̇Rσ̄µ α̇βeRβ + cos(2θ)ν̄ ′
α̇σ̄

µ α̇βν ′
β

− cos(2θ)N̄ ′
α̇σ̄

µ α̇βN ′
β + sin(2θ)

[
ν̄ ′
α̇σ̄

µ α̇βN ′
β − N̄ ′

α̇σ̄
µ α̇βν ′

β

]
(27)
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As already mentioned, we can take over the known (anomalous) result for
the matrix element 〈W+W−|∂µJµB|0〉, and thus need only consider the matrix
element 〈W+W−| ∂µJµL |0〉; at one loop this matrix element corresponds to
the triangles shown in Figure 1.2 Due to the mixing, there are altogether
12 terms, which can be evaluated by standard methods (for instance, using
dimensional regularization). The final result for the amplitude is

−iMµν(p, q) = − ig22
16π2

qρ

[
F1 · (gµρpν + gνρpµ) + F2 · gµνpρ (28)

+F3 · iεµνρλpλ + F4 · pµpνpρ/p2
]
+O(q2)

The functions Fi depend on the neutrino masses m′ and M ′, as well as on
the electron mass me and the external momentum,

Fi = sin2 θ cos 2θ K+
i (p

2, me,M
′,M ′)− sin2 2θ K+

i (p
2, me, m

′,M ′)

− cos2 θ cos 2θ K+
i (p

2, me, m
′, m′) + sin2 θ K−

i (p
2,M ′, me, me)

+ cos2 θ K−
i (p

2, m′, me, me) (29)

where i = 1, 2, 3, 4 and

K±
1 = I1 − I2 ± I3 + I4

K±
2 = −I1 − I2 ∓ I3 + I4

K±
3 = I1 − 3I2 ± I3 + I4

K±
4 = −4I4 (30)

The functions Ii are given by the integrals

I1(p
2, a1, a2, a3) =

∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2 log
∆

µ2

I2(p
2, a1, a2, a3) =

∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2 ξ1 log
∆

µ2

I3(p
2, a1, a2, a3) = a2a3

∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2
1− ξ1
∆

I4(p
2, a1, a2, a3) = p2

∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2
ξ21(1− ξ1)

∆

2There is a similar matrix element 〈ZZ| ∂µJµL |0〉 with two external Z-bosons, for which
one of the triangles is ‘purely neutrino’. That calculation proceeds analogously, and with
similar results, and we therefore do not discuss it here.
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where

∆(p2, ai, ξi) := ξ1a
2
1 + ξ2a

2
2 + (1− ξ1 − ξ2)a

2
3 − ξ1(1− ξ1)p

2 (31)

and µ is a normalization parameter that drops out in the final result. In (28)
the coefficient function F3 represents the anomaly-like part of the amplitude,
while the other coefficient functions reflect the breaking of SU(2)w × U(1)Y
gauge invariance.

Using symbolic algebra, all integrals can be done in closed form, but
the explicit formulae (especially for p2 6= 0) are rather cumbersome, and by
themselves not very illuminating. Let us therefore concentrate on the im-
portant qualitative features. First of all, it is easily seen that for fixed M̃
the coefficient function F3 of the anomaly-like amplitude in (28) varies non-
trivially with the mixing angle θ, and furthermore depends on the masses of
the fermions circulating in the diagram, unlike the standard triangle anomaly
[1]. Secondly, there are gauge non-invariant terms parametrized by the func-
tions F1, F2 and F4 in (28), whose presence for generic values of θ can likewise
be verified numerically. Such terms are to be expected because electroweak
symmetry is broken, and the external vector bosons are massive.

The two limiting values θ = 0 and θ = π/4 are special, because for
them the calculation reduces to the standard result for the anomaly of the
lepton number current in the SM. Namely, for arbitrary values of the external
momentum pµ and the mass parameters M̃ and me, we have

lim
θ→ 0 ,π

4

F1 = lim
θ→0 ,π

4

F2 = lim
θ→0 ,π

4

F4 = 0 (32)

For the anomaly-like amplitude we get

lim
θ→0 ,π

4

F3 =
2

3
(33)

This limit value equals the contribution from the quarks confirming the van-
ishing of the amplitude (18) for θ = 0 and θ = π/4, in agreement with the
vanishing (B −L) anomaly. The special role of these two values can be seen
as follows: for them, and only for them, the integrands of the triangle dia-
grams in Fig. 1 can be re-expressed with Dirac propagators ∝ (γµpµ +m)−1

on the internal fermion lines, and with chiral projectors PL ≡ 1
2
(1 − γ5) at

the W -vertices. More specifically, for θ = 0 the right-chiral component Nα

decouples, and we can effectively use the massless Dirac propagator for να
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because of the chiral projectors PL at the vertices. For θ = π/4, on the
other hand, the neutrino behaves like a massive Dirac fermion, only one chi-
ral half of which [corresponding to the combination (ν ′

α + N ′
α)] couples to

the W bosons in (26). With Dirac propagators, it is straightforward to see
that the sum of the two diagrams in Fig. 1 reduces to the difference of two
linearly divergent integrals, precisely as for the usual anomalous triangle in
QED, cf. p.199 ff. in [1]. The result is well known not to depend on the
fermion masses and not to contain gauge non-invariant contributions, and is
therefore the same with or without electroweak symmetry breaking, that is,
proportional to TrAµνÃµν (where Aµν is the SU(2)w×U(1)Y Yang-Mills field
strength). In technical terms, the deviation of the result from the customary
value that we have identified here, is thus a consequence of the fact that the
neutrino propagators with SL(2,C) spinors cannot be combined into a Dirac
propagator for a 4-spinor in the diagrams if θ is different from 0 or π/4.

The modification of the anomaly by a finite deviation depending on θ
can also be directly understood in terms of the (classical) non-conservation
of the partial current (20), and using the off-diagonal neutrino propagators
introduced in [3]. From (20) we deduce

〈
W+W−

∣∣ ∂µJµB−L

∣∣0
〉
= −iM

〈
W+W−

∣∣(NαNα − N̄α̇N̄
α̇
)
|0
〉

(34)

Clearly, the r.h.s. vanishes if M = 0 (θ = π/4). Less obviously, it also
vanishes for M → ∞ (θ = 0): this is because the off-diagonal propagators
converting N into ν come with extra factors of M−1 such that the matrix
element of the r.h.s. of (34) decays at least as M−2 for large M . Therefore
the source of the effect is a collusion of the classical non-conservation (20) and
quantum mechanics: for any state |Ψ〉 containing SM particles other than
neutrinos, the matrix elements 〈Ψ|NN |0〉 vanish at tree level, such that the
non-vanishing contributions are entirely due to loop corrections, and thus
always of O(~).

4 Conclusions

The main result of this paper can be summarized as follows: the loop dia-
grams of the fermionic (B−L) current coupled to SM particles do not vanish
in presence of non-trivial mixing between left- and right-chiral neutrinos, in
spite of the vanishing (B−L) anomaly. Furthermore we have shown that the
phase of the scalar field carrying lepton number charge is not a free field, and
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that the amplitude obtained for small momenta does contain anomaly-like
terms. This effect depends crucially on the simultaneous presence of Dirac
and Majorana mass terms, and disappears if either of them vanishes.

Acknowledgments: We are grateful to Wilfried Buchmüller and Misha
Shaposhnikov for critical and constructive comments and discussions.
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Fig 1. Lepton number current coupling to W bosons
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