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ABSTRACT

Although it is widely understood that pulsar timing observations generally contain
time-correlated stochastic signals (TCSSs; red timing noise is of this type), most data
analysis techniques that have been developed make an assumption that the stochas-
tic uncertainties in the data are uncorrelated, i.e. “white”. Recent work has pointed
out that this can introduce severe bias in determination of timing-model parame-
ters, and that better analysis methods should be used. This paper presents a detailed
investigation of timing-model fitting in the presence of TCSSs, and gives closed ex-
pressions for the post-fit signals in the data. This results in a Bayesian technique
to obtain timing-model parameter estimates in the presence of TCSSs, as well as
computationally more efficient expressions of their marginalised posterior distribu-
tion. A new method to analyse hundreds of mock dataset realisations simultaneously
without significant computational overhead is presented, as well as a statistically rig-
orous method to check the internal consistency of the results. As a by-product of
the analysis, closed expressions of the rms introduced by a stochastic background of
gravitational-waves in timing-residuals are obtained, valid for regularly sampled data.
Using T as the length of the dataset, and hc(1yr

−1) as the characteristic strain, this

is: σ2

GWB
= hc(1yr

−1)2(9
3
√

2π4Γ(−10/3)/8008)yr−4/3T10/3.
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1 INTRODUCTION

Over the years, pulsar timing has proved to be a useful
tool for probing a wide range of science. Prime examples in-
clude the confirmation of the emission of gravitational waves
(Taylor & Weisberg 1982), and very accurate tests of gen-
eral relativity (Kramer et al. 2006). An overview of tech-
niques used in pulsar timing is given in Lorimer & Kramer
(2005), and a detailed description of current treatment of
timing data is given in the Tempo2 papers (Hobbs et al.
2006; Edwards et al. 2006). Much of the interesting science
results from the fact that accurate measurements of the
times of arrival (TOAs) of the radio pulses allow one to
precisely track the pulsar trajectories relative to the Earth,
and and that the observed TOAs can be accounted for very
precisely by building a physical model of pulsar trajectory,
pulse propagation, and pulsar spin evolution in relativistic
gravity. Such a model is referred to as the timing-model;
mathematically the parameters of the timing-model are de-
termined by the χ2 minimisation for the TOA fit.

⋆ Email: vhaasteren@gmail.com

The remaining differences between the TOAs and the
timing-model are called timing-residuals (TRs). The physics
beyond that included in the timing-model is contained in
TRs. Of particular interest are the time-correlated stochas-
tic signals (TCSSs), examples of which include:
1) the so-called pulsar timing noise, or “red spin noise”, a
generic term for random changes in the pulsar rotational
rate, thought to be possibly due to the random angular-
momentum exchange between the normal and superfluid
components,
2) the time-dependent influence of the interstellar medium
on the optical pathlength between the pulsar and the Earth,
and
3) the influence of the stochastic background of gravitational
waves (GWB) on the pulse TOAs.
For a recent discussion of all of these, see Cordes & Shannon
(2010); Shannon & Cordes (2010).

All of the above processes feature a red spectrum, and
their contributions to the TOAs are difficult to disentangle
from the variation of the deterministic timing-model param-
eters. The purpose of this paper is to develop a rigorous and
efficient procedure for a TOA analysis which includes simul-
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taneously the timing-model and a TCSS. The two specific
questions which are explicitly addressed are:
1) How does the timing-model fitting affect the statistical
properties of TCSS-induced timing-residuals?
2) Conversely, how does the presence of a TCSS affect the
uncertainties of the timing-model parameters?
Our method, as well as our answers to the above questions,
are extensively tested on mock data.

The detailed plan of the paper is as follows In Section 2
we develop a formalism that casts fitting of the timing-model
in the presence of red noise as a non-orthogonal projection of
the covariance matrix. A connection with least-squares fit-
ting methods is made (as used by e.g. Coles et al. 2011, here-
after CHCMV). This leads to understanding of degeneracies
between the covariance matrix and the timing-model. We
show how to exploit these degeneracies in Section 3, which
results in improved expressions for the covariance function
and the marginalised posterior distribution. We describe
how to obtain estimates for the timing-model parameters
in Section 4. In Section 5 we introduce a computationally
efficient method to analyse hundreds of mock datasets si-
multaneously, and we describe a powerful test based on the
Kolmogorov-Smirnov statistic that we use to check that the
Bayesian analysis method produces consistent results. Fi-
nally, we compare our results with the recently proposed
Cholesky method of CHCMV in Section 6.

2 TIMING-MODEL FITS AND THE

COVARIANCE FUNCTION

The observed TOAs of every pulsar contain contributions
from many deterministic and stochastic processes. The tra-
ditional procedure ignores any stochastic (except TOA un-
certainties) or unknown deterministic contributions to the
timing-residuals (e.g. the standard weighted least-squares
fit in Tempo2, see Hobbs et al. 2006). Therefore, some of
these get absorbed into the timing-model fits, which also al-
ters the estimates of the timing-model parameters. In this
section we show how to model TCSSs in combination with
fitting to the timing-model.

2.1 The covariance function and least-squares

fitting

We describe the n TOAs of a single pulsar as an addition of
a deterministic and a stochastic part:

~t arr = ~t det + ~δt
rgp

, (1)

where the n elements of ~t are the observed TOAs, ~tdet are
the deterministic contributions to the TOAs, and ~δt

rgp
are

the stochastic contributions to the TOAs, which in this
work are TCSSs all modelled by a random Gaussian pro-
cess. In practice, the pre-fit timing residuals are produced
with first estimates β0i of the m timing-model parameters
βi; this initial guess is usually precise enough so that a
linear approximation of the timing-model can be used fur-
ther on (Edwards et al. 2006). Namely, it is a good assump-
tion that the remaining timing-residuals depend linearly on
ξa = βa − β0a:

~δt = ~δt
prf

+M~ξ, (2)

where ~δt are the timing-residuals in the linear approxima-

tion to the timing-model, ~δt
prf

is the vector of pre-fit timing-
residuals, ~ξ is the vector with timing-model parameters, and
the (n×m) matrix M is the so-called design matrix (see e.g.
§15.4 of Press et al. 1992; van Haasteren et al. 2009, here-
after vHLML), which describes how the timing-residuals de-
pend on the model parameters. Without loss of generality,
we assume here and in subsequent sections that M has been
constructed such that its columns are linearly independent.
Although the distinction between deterministic and TCSS
contributions here seems analogous to Equation (1), we note
here that there is significant absorption of TCSSs in the fit.

The deterministic signals in ~t det are well modelled
in standard pulsar timing packages like e.g., Tempo2
(Hobbs et al. 2006). We model the TCSS contributions as a
random Gaussian process with a covariance matrix defined
by:

〈δtrgpi δtrgpj 〉 = Cij , (3)

where the brackets 〈. . . 〉 denote the ensemble average of the
random process, and the indices i and j run from 1 to n.
The covariance matrix is the numerical representation of
the covariance function, and we assume here that it can
be parametrised with parameters ~φ. We use the following
convention for the Wiener-Khinchin theorem to relate the
covariance function to the spectral density:

C(τ ) =

∫

∞

0

S(f) cos(τf) df, (4)

where S(f) is the spectral density of ~δt
rgp

as a function of
frequency, and τ = 2π|t1 − t2| is the time difference be-
tween two observations multiplied with 2π. We emphasise
here that, we do not model the post-fit timing-residuals,
but the timing-residuals ~δt

rgp
prior to the fitting process.

The Bayesian likelihood of the timing-residuals is given
by (vHLML):

P (~δt|~ξ, ~φ) =
1

√

(2π)n detC
× (5)

exp

(

−1

2

(

~δt−M~ξ
)T

C−1
(

~δt−M~ξ
)

)

.

Provided we know the value of the parameters ~φ prior to the
analysis, i.e. provided we know the covariance matrix C, we
can maximise the likelihood with respect to the model pa-
rameters. This results in the generalised least-squares (GLS)
estimator for the timing-model parameters:

~χξ =
(

MTC−1M
)

−1

MTC−1 ~δt
prf

~δt
pof

=

(

In −M
(

MTC−1M
)

−1

MTC−1

)

~δt
prf

= (In −B) ~δt
pof

= O~δt
pof

, (6)

where ~χξ are the best-fit timing-model parameters, In is the

n-dimensional identity matrix, ~δt
pof

are the post-fit residu-
als, and O and B are the matrices that represent the “re-
moval” of the timing-model.

Using an estimate for the spectral density S(f) or the
covariance matrix C to improve timing model estimates is
not new to pulsar timing. Firstly, almost three decades ago
Blandford et al. (1984) analytically showed what the effect
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of the timing noise spectrum is on the timing model param-
eter estimates1. Their methods and conclusions are similar:
they use an analytically derived orthogonal basis to project
out the timing model basis vectors (our Section 3.3), and
they specifically consider a power-law spectral model for the
timing noise. However, their results do depend on an esti-
mate for the noise; we advocate marginalising over those
parameters in this work, since we generally do not know the
values of ~φ prior to the analysis.

Secondly, the Cholesky method of CHCMV uses the
GLS estimator of Equation (6), combined with an estimate
for the covariance matrix C.

Thirdly, Demorest et al. (2012) also use the GLS es-
timator in their efforts to constrain or detect an isotropic
stochastic gravitational-wave background, where they use a
Bayesian approach to estimate the noise covariance matrix.

We advocate to marginalise over the parameters of the
covariance matrix, but we do conclude in this work that for
most of the timing model parameters the GLS method works
well.

2.2 Effect of fitting on the covariance function

Irrespective of what technique is used to produce the best-fit
timing-model parameters and the post-fit timing-residuals,
the resulting post-fit timing-residuals are not correlated ac-
cording to Equation (3). In order to compute the exact ef-
fect that fitting has on the post-fit correlations, we take the
following approach. Lets assume that we have timing resid-
ual vectors of length n, defined on an interval [−T, T ], and
some deterministic process defined by m parameters repre-
sented by ~ξ. The effect of the deterministic process on the
timing-residuals is given by M~ξ. Typically, a fitting proce-
dure removes the contributions of the parameters ~ξ to the
timing-residuals with respect to some inner product. We de-
fine the inner product on the vector space of timing-residuals
as:

〈~x, ~y〉E = ~xTE−1~y, (7)

where x and y are vectors of timing-residuals, E is a positive
definite symmetric (PDS) matrix, and 〈. . . , . . . 〉E indicates
an inner product with PDS matrix E. Consider a fitting pro-
cedure that produces post-fit timing-residuals that satisfy:
〈~x,M~ξ〉E = 0. It is straightforward to check that this is the
weighted least-squares fit when Eij = δijσ

2
i . When E is a

more general PDS matrix, the fitting process that removes
all M~ξ from the timing-residuals is the GLS of Equation (6).
For our purposes, the exact form of E is not relevant.

We use the expressions for O and B as in Equa-
tion (6), but now with covariance function E: B =

M
(

MTE−1M
)

−1
MTE−1. Both O and B are non-

orthogonal projection matrices: B = B2, BT 6= B and like-
wise for O. The correlations in post-fit timing-residuals due
to a random Gaussian process with covariance matrix C is

1 We thank the anonymous referee for bringing this paper to our
attention. Some of the results in their work were unknown to us
when we re-derived them.

given by (see also Demorest et al. 2012):

〈

~δt
pof

i
~δt

pof

j

〉

=

〈

(

~Oδt
pof

i

)(

O~δt
pof
)

j

〉

=
(

OCOT
)

ij
.

(8)
The correlations in the post-fit timing-residuals are thus
given by the covariance matrix of the random process C,
projected with the matrix O, where O removes any con-
tribution M~ξ with respect to the inner product of Equa-
tion (7). From here onwards, we omit the superscript “pof”

for ~δt, and by default we assume we are dealing with post-fit
timing-residuals, with respect to some inner-product.

3 EXPLOITING FITTING DEGENERACIES

Because the fitting process is effectively a projection of the
timing residuals, the covariance matrix that describes the
post-fit residuals is also a projection of the pre-fit covariance
matrix. This post-fit covariance matrix is therefore singular,
and the pre-fit covariance matrix cannot be reconstructed
from the post-fit covariance matrix alone: there is a degen-
eracy in the processes that could have generated a single re-
alisation of post-fit timing-residuals. In this section we use
this degeneracy to derive closed expressions for the post-
fit covariance function, and more computationally efficient
expressions for the marginalised posterior distribution.

3.1 The post-fit covariance function

In Equation (8) we used the non-orthogonal projection ma-

trices O andB to remove any contributionM~ξ to the timing-
residuals with respect to the inner product of Equation (7).
Now consider two related projection matrices:

D = M
(

MTM
)

−1

MT

W = In −D. (9)

Both D and W are orthogonal projections, which satisfy
W 2 = W and W = W T , and likewise for D. The relation
with B and O is intuitive: if the covariance matrix E of
the inner product of Equation (7) is the identity matrix,
then we have W = O, and D = B. These four projection
matrices have the following interesting properties: BD = D
and DB = B, and similar expressions for W and O. From
this it follows that:

〈

~δt~δt
T
〉

= OCOT = OWCW TOT , (10)

where the square matrix ~δt~δt
T
is the dyadic product of two

vectors. This expression shows that the degeneracy in the
covariance function of the post-fit timing-residuals allows
us to equivalently use WCW T instead of C. In Section 3.3
we derive analytical expression for this post-fit covariance
function, see Equation (18).

3.2 A simplified marginalised posterior

As shown in vHLML, it is possible to analytically
marginalise the posterior distribution when a flat prior
distribution is assumed for the linear parameters (in Ap-
pendix B we show how to include Gaussian priors). The



4 van Haasteren and Levin

marginalised posterior distribution is then equal to the like-
lihood function of Equation (5) integrated over the linear

parameters ~ξ:

∫

dm~ξP (~δt|~ξ, ~φ) =

√

det (MTC−1M)−1

√

(2π)n−m detC
×

exp

(

−1

2
~δt

T
C′~δt

)

, (11)

with:

C′ = C−1 − C−1M
(

MTC−1M
)

−1

MTC−1. (12)

Equation (11) and (12) are the computational bottleneck for
the analysis of TCSSs in pulsar timing. These equations in-
volve non-trivial operations on large, dense matrices. Specif-
ically, they involve one n3 operation for the inversion (or
Cholesky decomposition of C), an m3 operation for the in-
version of MTCM , and a lot of vector-matrix operations
that scale as n2. In this section we seek to simplify these
equations for transparency and computational efficiency.

We re-express the effect of the linear parameters ~ξ on
the timing-residuals in terms of an orthonormal basis. To
this end we factorise the matrix M with a singular value
decomposition:

M = UΣV ∗, (13)

where U and V are respectively (n×n) and (m×m) orthog-
onal matrices, and Σ is an (n×m) diagonal matrix. For our
purposes, the column space of the orthogonal matrix U is
important. The first m columns of U span the column space
of M , and the last n − m columns of U span the comple-
ment. We now construct the matrices F and G as follows.
U = (F G) , where F is the (n × m) matrix consisting
of the first m columns of U , and G is the (n × (n − m))
matrix consisting of the other columns of U . The following
identities hold:

F TF = Im

GTG = In−m (14)

FF T +GGT = D +W = In.

Using these expressions, it is now possible to show that the
marginalised likelihood of Equation (11) is equal to2:
∫

dm~ξP (~δt|~ξ, ~φ) =
1

√

(2π)n−m det (GTCG)
× (15)

exp

(

−1

2
~δt

T
G
(

GTCG
)

−1

GT ~δt

)

.

More intuitively, the marginalised likelihood distribution is
the likelihood function of an (n − m)-dimensional random

Gaussian process of the data GT ~δt, with a covariance func-
tion GTCG. This more insightful expression involves two
matrix-matrix multiplications, and an inversion (we ignore
the vector-matrix operations, which are n2 operations). Be-
cause G is block-diagonal and only needs to be calculated

2 A useful identity is:

UTCU =
(

GTCG 0
FTCG In−m

)

(

Im
(

GTCG
)

−1
GTCF

0 FTCF − FTCG
(

GTCG
)

−1
GTCF

)

once, Equation (15) can be implemented in such a way that
the main computational burden is the inversion of GTCG.
Since GTCG is a PDS matrix, Equation (15) is best eval-
uated by using the Cholesky decomposition, which also di-
rectly gives access to the value of the required determinant.

The theoretically more insightful expression we ar-
rive at in Equation (15) is slightly more efficient than
Equation (11). Also, the dependence on the divergent low-
frequency cut-off terms have been removed before the inver-
sion (see Section 3.4), which improves numerical stability.
However, the final computation still scales as n3, so it will
remain a computational bottleneck in this type of analysis.

3.3 Analytic post-fit covariance functions

In the previous section, we have shown that we are allowed to
use CP = WCW T instead of C in all our equations that de-
scribe post-fit timing-residuals. We analytically approximate
that quantity by using the inner product of Equation (7),

〈~x, ~y〉E =
∑

i

x (ti) y (ti)

σ2
≈ 1

σ2∆t

∫ T

−T

x(t)y(t) dt, (16)

where we have used Eij = δijσ
2, with σ the uncertainty

of the TOAs, ∆t is the time interval between observations,
and x(t) and y(t) are continuous functions on the interval
[−T, T ]. On the interval [−T, T ], we define an orthonor-
mal basis of quadratic functions (see van Haasteren & Levin
2010, for a similar application): f̂1(t), f̂2(t), f̂3(t):

f̂1(t) =
1√
2
σ

√

∆t

T

f̂2(t) =

√

3

2
σ

√

∆t

T

t

T
(17)

f̂2(t) =

√

45

8
σ

√

∆t

T

[

(

t

T

)2

− 1

3

]

.

These basis functions satisfy 〈f̂i, f̂j〉E = δij . The process of
fitting for quadratics can now be expressed as a projection
of the covariance functions in terms of these basis functions:

CP(t0, t3) = S(t0, t1)C(t1, t2)S(t2, t3), (18)

where from here onward, we always take inner-product given
by Equation (16) over the repeated variables t1 and t2, and
S(tk, tl) is given by

S(tk, tl) = σ2∆tδ (tk − tl)−
3
∑

i=1

f̂i(tk)f̂i(tl), (19)

with δ(x) the Dirac delta function. Using this formalism,
it is possible to analytically derive the projected covariance
function CP for TCSSs with any spectral density.

3.4 Power-law covariance function

Power-law spectra are of particular importance in PTA ap-
plications, since the stochastic background of gravitational
waves is expected to be a signal well-described by such a
power spectral density (Begelman et al. 1980; Phinney 2001;
Jaffe & Backer 2003; Wyithe & Loeb 2003; Sesana et al.
2008). Strictly speaking, a process governed by a power-law
spectral density is improper, and therefore unphysical. For
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PTA purposes however, the power-law behaviour of the sig-
nal is expected to hold within its expected frequency band of
0.1–10 yr−1. To enforce finiteness of the covariance function,
it is convenient to introduce cut-off frequencies in Equa-
tion (4); see vHLML. These can be problematic in practice:
the cut-off frequency needs to be low enough for the signal
to represent a power-law signal, yet it must be high enough
for its numerical representation not to cause numerical ar-
tifacts due to limited machine precision. In this section we
show that by choosing the projection matrix to represent
a fitting procedure that includes quadratic spindown, the
dependence of the covariance matrix on the low cut-off fre-
quency is explicitly removed.

We parametrise the spectral density as

S(f) = A2

(

1

1yr−1

)(

f

1yr−1

)

−γ

, (20)

with A the amplitude of the signal (units time), and γ is
the spectral index. We require a low frequency cut off fL
if γ > 1. As shown in vHLML, in that case the covariance
function is equal to:

CPL
ij = A2

(

1yr−1

fL

)γ−1
{

Γ(1− γ) sin
(πγ

2

)

(fLτij)
γ−1

−
∞
∑

n=0

(−1)n
(fLτij)

2n

(2n)! (2n+ 1− γ)

}

. (21)

where τij = 2π|ti − tj |. In vHLML it is shown that the re-
moval of quadratic spindown from the timing-residuals also
completely removes any dependencies on the low-frequency
cut off fL. In the numerical calculations, we need to choose
fL ≪ T−1 so that CPL is PDS, and so that we can neglect
the terms with n > 2 in the summation of Equation (21).
In practice, the diverging terms dependent on the cut-off
frequency can result in numerical artifacts due to limited
machine precision.

We apply Equation (18) to the covariance function of
a power-law signal CPL of Equation (21) to obtain the pro-
jected covariance function CP(t0, t3) for a power-law signal.
We present the details of this calculation and the explicit
formulae in Appendix A. One of the key results of this cal-
culation is that dependencies on the low-frequency cut-off fL
are removed from the infinite summation of Equation (21)
up to n = 2. This ensures that the quadratic spindown fits
have completely removed the sensitivity to fL up to γ < 7.
Although this result had been found before (Blandford et al.
1984), other authors (e.g. vHLML) have assumed that it was
only true for γ < 5. After this work appeared as a preprint,
Lee et al. (2012) also obtained both this result, and Equa-
tion (22).

Now that we have an analytic expression for CP(t0, t3)
for a process with the power-law spectral density of Equa-
tion (20), it is possible to derive an expression for the average
rms in the post-fit timing-residuals, valid for 1 < γ < 7:

σ2
PL =

1

2T

∫ T

−T

dtCP(t, t)

=
3(5− γ)(γ − 3)2γ(2π)γ−1

γ(1 + γ)(3 + γ)(5 + γ)
× (22)

A2Γ(1− γ) sin
(πγ

2

)

1yr1−γTγ−1.

From this expression, we can derive an estimate for the rms

t1 (yr)

t2 (yr)

-4e-14
-3e-14
-2e-14
-1e-14

 0
 1e-14
 2e-14
 3e-14
 4e-14
 5e-14
 6e-14

Covariance function for a power-law signal (fL = 0.05 yr-1)
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 1
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 5
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 9

 0  1  2  3  4  5  6  7  8  9

-4e-14
-3e-14
-2e-14
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 4e-14
 5e-14
 6e-14

Figure 1. The covariance function C(t1, t2) of a power-law spec-
trum of the form: S(f) = (A2/1yr−1) × (f/yr−1)−13/3, with
A = 2.9ns. For comparison, this is equivalent to a gravitational-
wave background with Ah = 10−15. Here the effect of fitting has
been neglected. Notice that the covariance function only depends
on the value t1 − t2.

generated by a GWB signal of the form:

hc(f) = Ah

(

f

1yr−1

)

−2/3

(23)

S(f) =
A2

h

12π2
1yr3

(

f

1yr−1

)

−
13
3

,

where Ah is the dimensionless amplitude of the GWB char-
acteristic strain hc. This results in an estimate for the rms
of a GWB:

σ2
GWB = A2

h

(

9 3
√
4π

4
3 Γ
(

− 10
3

)

1001

)

yr−
4
3T

10
3

σGWB = 4.35× 10−9

(

Ah

10−15

)(

T

yr

) 5
3

. (24)

Note here that 2T is the total duration of the experiment.
As the covariance function is a function of two variables,

it is instructive to inspect the results of this section visually.
First consider the pre-fit covariance function CPL of Equa-
tion (21). This is a function of only the difference between
the two parameters |t1 − t2|, since it describes a stationary
random process. This is illustrated in Figure 1, where lines
of equal covariance are lines of equal |t1 − t2|. Secondly, we
demonstrate what the effect of fitting for quadratics is on
the covariance function in Figure 2. The symmetry due to
the time-stationarity of the random process that is present
in Figure 1 is broken, and we see prominent cubical features
at the edges of the plot. Thirdly, we have included the effect
of fitting to the entire timing-model of an example pulsar in
Figure 3. This figure is similar to Figure 2, except that there
are some small-scale features on top of the general structure.
This demonstrates that the quadratic spindown fitting is the
effect that most prominently affects the covariance matrix;
all other contributions are minor in comparison.

Because the unweighted least-squares fit is unlikely to
be optimal for any realistic dataset, it may seem that Fig-
ures 2–3 do not represent a post-fit TCSS if a more appro-
priate fitting procedure is used (e.g. the Cholesky method).
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Covariance function for a power-law signal with qsd fitting
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Figure 2. The covariance function C(t1, t2) of the same TCSS as
in Figure 1. Here the effect of fitting for quadratics has been taken
into account analytically with Equation (A7) of Appendix A. No-
tice that, in contrast to Figure 1, the covariance function not only
depends on the value t1 − t2, but on both t1, and t2.
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Figure 3. The covariance function C(t1, t2) of the same TCSS as
in Figure 1. Here the effect of fitting for the whole timing-model of
J1640+2224 has been taken into account numerically. Notice that,
in contrast to Figure 1, the covariance function not only depends
on the value t1 − t2, but on both t1, and t2. We use the timing-
model parameters from the literature (Löhmer et al. 2005), and
the timing-model as used in Tempo2, which includes the parame-
ters: position (right ascension & declination), quadratic spindown,
proper motion (right ascension & declination), eccentricity, and
the projected semi-major axis of the binary orbit. The sampling
cadence was two weeks.

One may therefore argue that Equation (24) is not a good
measure of the amount of detectable GWB signal in the
data. However, the equivalence of C and WCW T in Equa-
tion (10) and Equation (15) shows that the extra rms in the
post-fit timing-residuals that may result from an improved
fitting routine does not increase the sensitivity to a TCSS,
since the marginalised posterior distribution for the TCSS
parameters is always the same. The GWB rms quoted in
Equation (15) is the part of the TCSS that cannot be ab-
sorbed in the timing-model: the averaged trace of any post-
fit covariance function is greater than or equal to this value.

The quoted GWB rms is therefore a measure of how much
“detectable” signal is in the data.

4 TIMING-MODEL ANALYSIS

When doing an MCMC, we analytically marginalise over the
timing-model parameters. We would like to retain the infor-
mation about the timing-model parameters, without adding
these dimensions to the MCMC. In this section we show how
to do that efficiently.

The marginalised posterior of Equation (15) allows one
to numerically marginalise over all the stochastic parame-
ters of the model, while analytically marginalising over the
timing-model parameters with a flat prior. Using that equa-
tion it is impossible to obtain best estimates for the timing-
model parameters. Here we show what extra steps need to
be taken in order to infer the timing-model parameters. We
rewrite the likelihood of Equation (5) as follows, using the
same notation as in Equation (15):

P (~δt|~ξ, ~φ) = 1
√

(2π)n detC

× exp

(

−1

2

(

~ξ − ~χ
)T

Σ−1
(

~ξ − ~χ
)

)

(25)

× exp

(

−1

2
~δt

T
G
(

GTCG
)

−1

GT ~δt

)

,

where ~χ = (MTC−1M)−1MTC−1 ~δt, Σ−1 = MTC−1M ,
and as before, the stochastic parameters are stored in the l-
dimensional vector ~φ. In Appendix B we show how to include
timing-model parameters with Gaussian priors in a similar
manner. We are interested in recovering the timing-model
parameters

~ξ =
m
∑

i=1

ξiêi, (26)

where the êi denote the basis vectors of the timing-model
parameters space.

The main idea is that in Equation (25), which is based
on a linear approximation to the timing-model, the likeli-
hood function is a multivariable Gaussian with respect to
the timing-model parameters. The full posterior distribu-
tion can be reconstructed without numerically exploring the
timing-model parameters by:
1) Constructing a Markov Chain, using the vHLML poste-
rior distribution of Equation (15) that faithfully samples the
stochastic parameters.
2) Arithmetically averaging the Gaussian timing-model pos-
teriors from each point of the chain.
The full timing-model posterior distribution can then be
used to obtain marginalised posterior distributions for any
combination of timing-model parameters. Importantly, as
will be demonstrated shortly, all this is done without any
extra significant computational or memory cost on top of
what is already used in building a chain in the stochastic
parameter space.

Operationally, as in vHLML, the MCMC is performed
using Equation (15), where we analytically marginalise over
the timing-model parameters. However, at each step of the
Markov Chain, we save the following quantities:
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• ~φ

• P (~δt|~φ)
• ~χ =

(

MTC−1M
)

−1
MTC−1 ~δt

• Σ−1 = MTC−1M

This does not require any additional calculations in the
MCMC, and for each MCMC step the amount of data that
has to be saved is of the order m2, which is not expected
to be a bottleneck in terms of storage space on modern
workstations. We store these quantities for each step of the
Markov Chain, which has been run in the l-dimensional pa-
rameter space of ~φ, and we thus have enough information to
fully characterise the (l+m)-dimensional posterior distribu-
tion function. Just as in vHLML, the marginalised posterior
for the stochastic parameters ~φ can be calculated as usual
from the MCMC.

We assume here that we are interested in calculat-
ing the 2-dimensional marginalised posterior as a func-
tion two timing-model parameters, say ξk and ξl, with
1 6 k, l 6 m, but the generalisation to a dimensionality
other than two is straightforward. The evaluation of the 2-
dimensional marginalised posterior consists of numerically
integrating over the stochastic parameters ~φ (summing over
the MCMC samples), and analytically integrating over all
but two timing-model parameters along the lines of Equa-
tion (15). Details of this calculation are given in Appendix B,
here we give the result:

P
(

ξk, ξl|~δt
)

=

〈

exp
(

−1
2

~∆ξ
T
LG

(

LT
GΣLG

)

−1
LT

G
~∆ξ
)

√

(2π)2 det (LT
GΣLG)

〉

,

(27)
where we use 〈. . . 〉 to average over all MCMC samples, the
(m× 2) matrix LG =

(

êk êl
)

, with êi the i-th basis vector
for Rm, and

~∆ξ =

(

ξk − χk

ξl − χl

)

. (28)

Equation (27) allows one to correctly infer the parameters
of the timing-model, while taking into account the effect of
red timing noise.

5 TESTS ON AN ENSEMBLE OF MOCK

DATASETS

We test the procedures we describe in this work with mock
TOAs. The TOAs are simulated observations of a pulsar
with known timing-model parameters, and added noise with
known statistical parameters. In previous studies, analysing
just one dataset with an MCMC was a computational chal-
lenge (vHLML, van Haasteren et al. 2011). Extensive statis-
tical studies of the behaviour of the data analysis method
have therefore not been carried out in those studies. In this
section we show that the Bayesian data analysis method
has the desired statistical properties by introducing and
applying a method with which a whole ensemble of mock
datasets can be analysed simultaneously without much com-
putational overhead.

5.1 MCMC and importance sampling

Doing a full analysis of a single dataset is a computationally
challenging task because we have to do non-trivial matrix
algebra at each step of the MCMC. This makes a straightfor-
ward analysis of a whole ensemble of datasets, say k = 1000
datasets, computationally prohibitive. We seek to overcome
this problem by analysing a whole ensemble of datasets si-
multaneously when doing only one MCMC simulation. At
each sample of the chain we efficiently evaluate the likeli-
hood for each dataset, which in the end can be used to con-
struct the respective marginalised posterior distributions.

A necessary requirement for doing this, is that Equa-
tion (25) can be evaluated for each dataset without re-doing
all the matrix algebra. This is possible if all datasets are
different realisations of the same process, which is not a re-
striction for the purposes of this work. To ensure realistic
simulations, we model our mock data after the data for pul-
sar J1713+0747 as published in van Haasteren et al. (2011).
This model for our datasets has irregular sampling, greatly
varying error bars for different TOAs, and an unknown jump
in the middle of the dataset. The n TOAs of each dataset
are generated as perfect realisations of the published timing-
model, observed at the same MJDs, combined with a TCSS
modelled as a random Gaussian process with a red spectral
density and a flat high frequency tail.

We simulate the contributions of the random Gaus-
sian process to the TOAs by, for each dataset, appropri-
ately transforming a vector of pseudo-random numbers ~ζ
with entries drawn from a normal distribution with mean 0,
and width 1. The simulated timing-residuals are then con-
structed as ~δt = L~ζ, with L the lower diagonal Cholesky
decomposition of the covariance matrix C of Equation (4)
of the random Gaussian process, defined by C = LLT . We
generate all datasets in the ensemble this way, an example
of which is shown in Figure 7. All datasets in the ensemble
are generated with the same input parameters.

We evaluate the likelihood function for each dataset i,
and for each MCMC sample j, where i runs from 1 to the
number of MCMC samples N , and j runs from 1 to n. The
samples at which we evaluate the likelihood values Lij of all
datasets come from an MCMC chain that we call the kernel
chain. We postpone the details of how we have constructed
this kernel chain until the next section, for now we assume
that we have found a suitable kernel, where for each sample
we have access to the kernel likelihood L0j , and the val-
ues of the parameters. For a canonical MCMC simulation,
producing a marginalised posterior distribution p(θ) can be
calculated as:

p(x) =

∫

θi=x

L(~θ)P0(~θ) d
m−1θ (29)

≈ 〈1〉θi=x,

where p(θi) is the marginalised posterior, θi is the i-th com-

ponent of the m-dimensional parameter vector ~θ, L(~θ) is

the likelihood function, P0(~θ) is the prior distribution, and
〈. . . 〉θi=x indicates an ensemble average over the MCMC
samples over all samples with i-th parameter equal to θi.
This expression assumes that the samples in the MCMC
are sampled with a probability proportional to L(~θ)P0(~θ).
In our case however, the MCMC samples are taken with a
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probability proportional to the kernel likelihood L0(~θ). We
adjust Equation (29) to suit this new situation:

∫

θi=x

L(~θ)P0(~θ) d
m−1θ =

∫

L0(~θ)
L(~θ)P0(~θ)

L0(~θ)
dm−1θ

≈
〈

L(~θ)P0(~θ)

L0(~θ)

〉

θi=x

. (30)

This approach where one samples not from the true distri-
bution, but from a distribution similar to the true distribu-
tion (the kernel distribution) is called importance sampling
(Newman & Barkema 1999), where our samples are re-used
from the MCMC on the kernel.

5.2 Choosing a suitable kernel

With Equation (30), we can efficiently produce marginalised
posterior distributions for many datasets at a time. Provided
there are enough samples in the MCMC, this expression is
valid for any kernel likelihood function L0(~θ). However, with
importance sampling, the efficiency of the MCMC is highly
dependent on the choice of the kernel likelihood function,
with it only being practical if the kernel likelihood function
is similar to the likelihood functions of the datasets. Our
datasets satisfy that condition, because they are all realisa-
tions of the same processes. We therefore take the following
approach to the construction of a suitable kernel dataset,
which is then used to form the kernel likelihood function.
1) We produce a realisation of data, which we call the kernel
dataset, in an identical manner to how we produced the k
datasets.
2) We randomly delete 4/5 of the data points in the kernel
dataset to ensure that the kernel dataset has a broader pos-
terior distribution for all parameters than the mock datasets.
3) The likelihood function that belongs to the kernel dataset
is the kernel likelihood.
4) We make sure that for all the parameters that vary during
the MCMC, that the true value of each parameter is inside
the 1-σ region of the kernel likelihood. If not, we discard this
chain, and start at 1) again to form a new kernel dataset.
This step makes sure that our particular realisation is not a
so-called ’outlier’ for our model parameters.
By constructing a kernel likelihood like this, we are ensured
that our kernel likelihood distribution covers all the high
probability density (HPD) regions of all the likelihood func-
tions, which allows for faster convergence of Equation (30).
We note though that convergence is ensured for any kernel
dataset.

5.3 Statistical properties of the ensemble

We use the method outlined above to test k = 1000 datasets.
The random Gaussian process is a summation of several
components:
1) the error bars of the individual data points of
J1713+0747, as described in van Haasteren et al. (2011).
2) an extra component of noise that is added in quadrature
to all error bars. This parameter is the same for all data
points, and represents the pulse phase jitter (EQUAD). This
random pulse jitter is expected to be one of the fundamental
limits to pulsar timing precision (Cordes & Shannon 2010).
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Figure 4. Analysis of the TOAs of Figure 7 with two methods:
a regular MCMC, and the importance sampling method of Equa-
tion (30). The MCMC contours are marked “Metropolis”, and the
importance sampling contours are marked “Ensemble”. Also, the
contours of the kernel set that has been used are shown, marked
by “Kernel”. In all cased, the 68%, 95%, and 99.9% contours are
shown. The true values for this simulation were: Nr = 145ns and
γr = 5.4. The maximum likelihood values were Nml

r = 134ns and
γml
r = 5.27.

3) a red timing-noise TCSS, described by a power-law spec-
trum of the form S(f) = N2

r (1/1yr
−1)(f/1yr−1)−γr , with Nr

the noise amplitude, and γr the spectral index that describes
the “redness” of the timing-noise, with a low-frequency cut-
off of fL = 0.03yr−1. As part of our model, we keep fL fixed
during our analysis.
For each dataset, we have three parameters that vary dur-
ing the MCMC, and we have 12 timing-model parameters
that we analytically marginalise over during the MCMC.
We show the marginalised posterior distribution of the red
timing noise parameters here as an example in Figure 4.
Our re-weighting scheme of Equation (30) has modified the
kernel likelihood correctly to match the true posterior distri-
bution. The sample in the MCMC chain that has the highest
likelihood value is a good estimator for the maximum like-
lihood in an MCMC with this few dimensions. In Figure 5
we present the maximum likelihood estimators for the red
timing noise parameters that we obtain in this way. The
collection of estimators of the ensemble seems to follow a
distribution with the same shape as the marginalised pos-
terior of Figure 4, the maximum likelihood value of which
is also shown to be close to the centre of the distribution of
maximum likelihood estimators.

The ensemble analysis has resulted in k = 1000 distribu-
tion functions in 15 dimensions. In order to keep our presen-
tation of the results transparent, we restrict our discussion
to the 15k one-dimensional marginalised posterior distribu-
tion functions that follow from this analysis. For each of the
15k distributions, we have access to the true value that we
gave as an input to our simulations. A basic check would
be to verify that for 68% of the datasets, the true value lies
within the inner 68% of the marginalised posterior distri-
bution. We generalise that type of basic check to a more
extensive test of both the width and the shape of all the 15k
distributions.
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Figure 5. The maximum likelihood values for the parameters Nr

and γr , for the k = 1000 datasets of Section 5.3. The maximum
likelihood values are taken to be the values of the parameters of
the MCMC sample with the highest likelihood. This collection
of estimators seems to display the same characteristics as the
marginalised posterior of Figure 4. As in Figure 4, the true values
for this simulation were: Nr = 145ns and γr = 5.4. The mean
values were 〈(Nr , γr)〉 = (143, 5.39), and the standard deviations
were Rms(Nr , γr) = (43, 0.48).

Provided that our model is correct, the posterior distri-
bution gives the probability that the true value of a param-
eter has a certain value. Since we have done many trials,
we can count how many times the true value θtruei of pa-
rameter θi lies within the most-likely x% of the posterior
distribution. By definition of the posterior, for large number
of trials this number approaches x% of the total number of
trials. More formally, we define the inner high-probability
region (HPR) of the one-dimensional marginalised posterior
as:
∫

W

p (θi) dθi = a,

W = {θi ∈ R : P (θi) > La} , (31)

where La is some value > 0 unique for each a, where a
is a probability with 0 6 a 6 1. For each parameter, we
define a threshold value Lt = P (θtruei ). The true value of the
parameter lies within the HPR of the marginalised posterior
distribution when Lt > La. By definition of the posterior
distribution, the probability that the true value lies within
the HPR is given by Pr(Lt > La) = a, where we use Pr
to denote probabilities. We define the empirical distribution
function (EDF) as (Vaart 2000):

Fi,k(a) =
1

k

k
∑

j=1

Θ(Lt − La) , (32)

where Θ(x) is the Heaviside function, here used as an indi-
cator. The term in the summation of Equation (32) is the
indicator for the event Lt > La. For a fixed La, this is a
Bernoulli random variable with probability a. Hence, Fi,k(a)
is a binomial random variable with mean a, and variance
a(1− a)/k. Therefore, by the law of large numbers:

lim
k→∞

Fi,k (a) = a. (33)
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Figure 6. Empirical distribution function Fi,k(a) − a for all pa-
rameters i, with k = 1000, for the Bayesian analysis. We used
mock data of J1713+0747 of Section 5.3, with red noise mod-
elled with a power-law spectral density. The Kolmogorov-Smirnov
boundaries with significance level α = 0.01 are displayed as the
(b+, b−) lines. The Tempo2 parameter identifiers are:
Offset: Unknown absolute phase offset
RAJ: Right ascension of the pulsar
DECJ: Declination of the pulsar
F0: Pulse frequency
F1: Pulse frequency derivative
PMRAJ: Proper motion in right ascension
PMDEC: Proper motion in declination
PX: Parallax
PB: Orbital period
T0: Epoch of periastron
A1: Projected semi-major axis of the orbit
OM: Longitude of periastron

ECC: Eccentricity of the orbit
Jump: Random phase jump
EQUAD: Random pulse phase jitter

The Glivenko-Cantelli theorem (Glivenko 1933; Cantelli
1933) states that this convergence happens uniformly over
a. In Figure 6 we present the empirical distribution function
for all timing-model parameters in our simulation.

We compare our EDF Fi,k(a) to the EDF as used in the
Kolmogorov-Smirnov (K-S) test in statistics, where one can
test for the equality of a sampled distribution function to a
reference distribution function. Given a number of samples,
the K-S test statistic quantifies how much the distribution
of the samples, and the reference distribution are alike. Al-
though we have not one single, but many reference distribu-
tions, we can define a similar K-S statistic for our EDF:

Di,k = sup
a

|Fi,k(a)− a| . (34)

This K-S statistic is our quantitative test whether or not
the null-hypothesis -our data analysis method is consistent-
should be rejected. In the canonical application of the
K-S statistic, one chooses as threshold for the quantity√
kDi,k, which is expected to follow a Kolmogorov distri-

bution Pk(K):
√
kDi,k > Kα, (35)

where our significance α is determined by Pk(K 6 Kα) =
1 − α. Two commonly used values are: α = 0.05 with
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Kα = 1.36, and α = 0.01 with Kα = 1.63. We choose our
significance level as α = 0.01, which together with k = 1000
implies that we should reject the null-hypothesis that our
analysis method is consistent when Di,k > 0.052. We can see
in Figure 6 that we do not need to reject the null-hypothesis.

6 COMPARISON WITH THE CHOLESKY

METHOD

Recently, CHCMV have proposed a new method to include
TCSSs in the analysis of pulsar timing observations: the
Cholesky method. The Cholesky method describes the prob-
lem of fitting to the timing model as a whitening problem,
where both the data and the description of the timing model
need to be whitened with a Cholesky decomposition ma-
trix. This approach is identical to a GLS fit to the tim-
ing model given by Equation (6). This requires prior knowl-
edge of the covariance matrix C, which CHCMV substitute
with a best estimator for the power spectral density of the
timing-residuals, produced with an advanced spectral anal-
ysis method. This spectral analysis method is implemented
in the form of a Tempo2 plugin called spectralModel.

The algorithm implemented in spectralModel allows de-
termination of the power spectral density of the post-fit
timing-residuals, assuming that the power spectral density
has some specific form. For steep red TCSSs as used in this
work, the power spectral density is modelled as a power-law
with a so-called corner frequency fc:

P (f) =
A2

1yr−1
(

1 + (f/fc)
2
)α/2

, (36)

where A is the amplitude of the TCSS, f is the frequency,
and α is the spectral index. The difference with a pure
power-law as we use in Equation (20), is that this power
spectral density does not diverge for f → 0. The user needs
to provide estimates for α and fc and check that these are
correct; fitting to the data is only done for the amplitude A.

A direct comparison between the Cholesky method of
CHCMV and the inference of timing-model parameters with
a Bayesian analysis as done in this work can be made. Both
methods take into account the fact that the TOAs may con-
tain a TCSS with a red power spectrum, of which estimates
can be obtained. And both methods obtain improved es-
timates of the timing-model parameters due to the incor-
poration of the TCSS contribution to the TOAs. However,
several important differences should be highlighted3.

Firstly, the modelling of the observations is different.
We model the TCSS as a stationary random Gaussian pro-
cess that is added to the TOAs, prior to the fitting pro-
cedure. In the Cholesky method, the TCSS is modelled as
a stationary signal in the post-fit timing-residuals. As we
have shown in Figure 1-3, this stationarity breaks down in
the fitting process. We believe that this raises a question
about the spectral estimation method of CHCMV, since the
post-fit timing-residuals cannot be described by a stationary
TCSS with a mathematically defined spectral density.

3 We emphasise that we only refer to the theoretical description
of CHCMV. This does not include the practical implementation
of the Cholesky method, spectralModel, which in itself has very
useful general features such as robust spectral estimation.

Secondly, CHCMV do not fully account for the covari-
ance between the TCSS and the timing-model parameters.
The use of an optimal spectral estimate in a parameter es-
timation technique analogous to Equation (6) is not com-
pletely appropriate: the covariance matrix of the TCSS is
itself covariant with the timing-model parameters, which re-
sults in an incorrect covariance matrix for the timing-model
parameter estimates, and incorrect uncertainties in the spec-
tral estimates. CHCMV show that the incorrectness of the
uncertainties is significant for the quadratic spindown pa-
rameters, while it is less of a problem for all the other timing-
model parameters.

In Figure 7 we present one realisation of mock data of
the ensemble of datasets we generated for J1713+0747. Be-
sides the true residuals as generated by the random Gaussian
process, we also present three reconstructions of the timing-
residuals:
1) The input timing-residuals to all analysis methods. These
were not the true timing-residuals4, but the timing-residuals
after a weighted least-squares fit was subtracted from the
timing-residuals with Tempo2
2) Cholesky timing-residuals. We used the spectralModel
plugin for Tempo2 to produce an estimate for the covari-
ance matrix of the post-fit timing-residuals. The Cholesky
timing-residuals are constructed using that estimate and
Equation (6).
3) ML timing-residuals. We used the maximum likelihood of

Equation (15) for the stochastic parameters ~φ to produce a
best estimator for the covariance matrix C. This results in
the maximum likelihood estimator timing-residuals through
Equation (6).

One can see that the maximum likelihood timing-
residuals approximate the true timing-residuals slightly bet-
ter than the Cholesky timing-residuals: the Cholesky timing-
residuals deviate slightly more at the sides, with the true
residuals not everywhere inside of the 1-σ bound of the
pulse frequency, indicating an error in the low-frequency
behaviour. The 1-σ bounds of the pulse frequency (and,
not shown in the figure, for the pulse frequency deriva-
tive) are smaller for the Cholesky method than those for
the maximum likelihood timing-residuals. These statements
were generally true for all the realisations of the ensemble of
mock datasets. Besides due to the issues raised above, this
may also be due to the difference in modelling of the power
spectral density: the true timing-residuals have been gen-
erated with a strict power-law, and a (fixed) low-frequency
cut-off. However, the results here seem to be consistent with
Table 4 of CHCMV.

We would like to perform a K-S test on the results of
the Cholesky method to check for consistency. However, this
comparison on the ensemble of datasets presented in this
work would not be fair because the spectral model used by
the spectralModel plugin would then be incorrect. Also, we
believe that some of the issues with the Cholesky method
that we raised above can be overcome. We therefore per-
form a K-S test on the maximum likelihood equivalent of the
Cholesky method: we use Equation (25) in conjunction with
the maximum likelihood of Equation (15) as an estimator for

4 We actually worked with TOAs. The residuals plotted in Fig-
ure 7 are produced using different Tempo2 “.par” files.
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Figure 7. Example of the mock timing-residuals analysed in the
ensemble, and their reconstruction with various algorithms, all
offset from each other for clarity. The mock timing residuals are
based on the observing scheme and timing-model of J1713+0747
as used in van Haasteren et al. (2011). The error bars in the
figure are mostly too small to see in this figure, and they vary be-
tween different observations. The TCSS in these residuals comes
from a source with the following spectral density components:
1) The error bars of the individual observations.
2) A white noise component describing the pulse phase jitter
(EQUAD), with rms 200ns.

3) A power-law red noise component S(f) =
N2

r (1/1yr
−1)(f/1yr−1)−γr , with amplitude Nr = 145ns,

and γr = 5.4.
In the figure, four reconstructions of the same realisation are
shown:
True: The true timing-residuals as generated by the TCSS.
ML: The timing-residuals as reconstructed using the maximum
likelihood values for all parameters: both stochastic parameters
and timing-model parameters.
Cholesky: The timing-residuals, reconstructed using a covariance
matrix produced with the Tempo2 plugin “spectralModel”,
which is an implementation of the Cholesky method of CHCMV.
Input: The timing-residuals as produced by Tempo2 after a
normal weighted least-squares fit. This “Input” set is used as the
input timing-residuals for all methods.
In the ML and Cholesky reconstructions, we have marked the
true timing-residuals as a dashed line, and we have marked the
pulse period 1-σ boundaries with a solid line. These solid lines
demonstrate what the residuals would look like if we changed
the pulse period, F0, by ± 1-σ, and therefore give an impression
of how well this parameter is determined from the data.

the covariance matrix C. This is equivalent to the Cholesky
method when using an “optimal” estimate for C. Because
this estimator does take into account the non-stationary na-
ture of the post-fit residuals, and because the modelling is
the same as in the marginalised posteriors, this is effectively
a limit on how well any whitening method can perform. Ap-
plying this method to the same ensemble of mock data as
in Section 5.3 yields Figure 8. We see that the quadratic
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Figure 8. Similar plot as Figure 6, but now for a method that
combines a generalised least-squares fit with a maximum likeli-
hood spectral estimator (similar to the Cholesky method). The
same mock datasets as in Figure 6 are used. We see that such a
method performs well, with results similar to the Bayesian analy-
sis. Only the quadratic spindown parameters (the average (offset),
the pulse period F0, and the period derivative F1) are slightly out-
side the K-S boundaries. This means, assuming Gaussian proba-
bility distributions, that the rms of the parameter estimates was
at least 1.11 times the estimated uncertainty. The parameter la-
bels have the same meaning as in Figure 6.

spindown parameters are slightly rejected by the K-S test,
which shows that at least some of the discrepancy found by
CHCMV for the quadratic spindown parameters is due to
due to the covariance of the TCSS with the quadratic spin-
down parameters. The width of all the marginalised poste-
rior distributions was similar between the approach of Fig-
ure 6 and Figure 8, except for the quadratic spindown pa-
rameters. For the quadratic spindown parameters, the width
of the marginalised posterior distributions was smaller for
the maximum likelihood estimates of Figure 8 than for the
full Bayesian method of Figure 6.

For the quadratic spindown parameters to be rejected
by a K-S test of this magnitude means that, assuming Gaus-
sian probability distribution functions, the rms of the pa-
rameter estimates was at least a factor of 1.11 times larger
than the estimated uncertainty. Table 4 of CHCMV shows
that their estimates for the pulse frequency and frequency
derivative were over a factor of three too large, which corre-
sponds to supa |Fi,k(a)−a| > 0.43. With the 100 realisations
of mock data they used, the K-S bound would be 0.16. This
would be a firm rejection, more so than our maximum likeli-
hood estimate. This is at least partially due to the underesti-
mated uncertainties for the quadratic spindown parameters.
Whether or not there is also a bias in the estimates of the
Cholesky method for these parameters due to incorrect mod-
elling of the covariance function is not clear from the current
analysis. We agree with CHCMV that the Cholesky method
can be further improved to give more reliable spectral es-
timates at the very low frequencies, and that the Cholesky
method performs well for the other timing model parame-
ters. One possible way to improve the Cholesky method is to
use a maximum likelihood estimator for the covariance ma-
trix as we have done here, which models the non-stationarity,



12 van Haasteren and Levin

and which by design does not suffer from spectral leakage
since it does not rely on a periodogram.

7 CONCLUSIONS

We investigate time-correlated stochastic signals (TCSSs)
in pulsar timing data analysis. TCSSs are significantly in-
fluenced by fitting procedures that solve for timing-model
parameters, and timing-model parameter estimates can be
biased due to absorption of power the TCSS. We formally
analyse the covariance between the timing model and TC-
SSs, and obtain closed expressions describing the behaviour
of the TCSSs when fitting to the timing-model. New results
we derive in our analysis:
1) Proof that the results of the Bayesian analysis are unaf-
fected by use of different fitting methods (e.g. (un)weighted
least-squares), provided that the timing solution has con-
verged.
2) Closed expressions for the post-fit correlations of signals
with known power spectra.
3) Analytical closed expressions for the post-fit covariance
function of power-law signals with quadratic spindown fit-
ting. This includes proof that the low-frequency cut-off is
removed up to spectral indices up to γ = 7, corresponding
to α = 3 for the GWB.
4) More computationally efficient expressions for the
marginalised posterior distribution of vHLML.
5) An analytical expression of the post-fit rms induced by a
stochastic gravitational-wave background.
6) Equations on how to extract the timing-model parame-
ters from Bayesian MCMC simulations.
7) A new method to analyse hundreds of mock datasets si-
multaneously with a Bayesian analysis, without significant
computational overhead.
8) A powerful test to check whether any data anal-
ysis method produces consistent results, based on the
Kolmogorov-Smirnov test.

We test our method on many realisations of mock data,
and find that the shape, width, and position of the pos-
terior distributions are consistent with the input values of
the parameters. We compare our results to methods that
use a spectral estimate to whiten the timing-residuals, like
Coles et al. (2011), and find that an optimal whitening
method performs equally well as our own method, except
for the quadratic spindown parameters, in which case the
Bayesian analysis produces more consistent results.
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APPENDIX A: POWER-LAW COVARIANCE

FUNCTIONS

In this Appendix, we analytically derive the post-fit covari-
ance function WCPLW T from Equation (10) of the main
text. We rewrite the relevant expressions for the basis-
functions and the projection operators here for convenience,
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with the same notation as in Section 3.3:

〈~x, ~y〉E ≈ 1

σ2∆t

∫ T

−T

x(t)y(t) dt (A1)

f̂1(t) =
1√
2
σ

√

∆t

T

f̂2(t) =

√

3

2
σ

√

∆t

T

t

T

f̂2(t) =

√

45

8
σ

√

∆t

T

[

(

t

T

)2

− 1

3

]

.

CP(t0, t3) = S(t0, t1)C
PL(t1, t2)S(t2, t3)

S(tk, tl) = σ2∆tδ (tk − tl)−
3
∑

i=1

f̂i(tk)f̂i(tl),

hereafter we always sum over the repeated indices t1 and
t2. Because the pre-fit covariance function of a power-law
spectral density depends only on τ = 2π|t0 − t3|, we first
calculate the following quantity:

ZP
ζ (t0, t3) = S(t0, t1) |t1 − t2|ζ S(t2, t3). (A2)

We can then construct CP with several ZP
ζ terms5. We write

the resulting ZP
ζ in the following terms:

ZP
ζ (t0, t3) = |t0 − t3|ζ −

3
∑

i=1

Zi (t0, t3) +

3
∑

i,j=1

Zij (t0, t3) .

(A3)
The Zij terms are symmetric in i and j, and after evaluation
of the (somewhat tedious) integrals we find6:

Zij (t0, t3) =
[

f̂i (t1) |t1 − t2|ζ f̂j (t2)
]

f̂i (t0) f̂j (t3)

U11 (t0, t3) =
1

2(1 + ζ)(2 + ζ)

U12 (t0, t3) = 0

U13 (t0, t3) =
15ζ

(

(

t0
T

)2
+
(

t3
T

)2 − 2
3

)

4(2 + ζ)(3 + ζ)(4 + ζ)
(A4)

U22 (t0, t3) = −
9ζ t0t3

T2

2(1 + ζ)(2 + ζ)(4 + ζ)

U23 (t0, t3) = 0

U33 (t0, t3) =
225ζ(ζ − 2)

(

(

t0
T

)2 − 1
3

)(

(

t3
T

)2 − 1
3

)

8(1 + ζ)(2 + ζ)(4 + ζ)(6 + ζ)

where:

Uij =

{

T2

(2T )2+ζ (Zij + Zji) if i 6= j
T2

(2T )2+ζ Zij if i = j
. (A5)

5 We note that in general cij = |ti−tj |ζ is not a PDS matrix, and
it therefore does not correspond to a physical stochastic process.
6 The calculations are available from the authors by request.

We find for the Zi terms:

Zi (t0, t3) = f̂i (t0) f̂i (t1) |t1 − t3|ζ (A6)

+ |t0 − t2|ζ f̂i (t2) f̂i (t3)

Z1 (t0, t3) =
(T + t0)

ζ+1 + (T − t0)
ζ+1

2T (1 + ζ)

+
(T + t3)

ζ+1 + (T − t3)
ζ+1

2T (1 + ζ)

Z2 (t0, t3) =
3
(

− t3
T
(T + t0)

ζ+1 + t3
T
(T − t0)

ζ+1
)

2T (1 + ζ)

+
3
(

− t0
T
(T + t3)

ζ+1 + t0
T
(T − t3)

ζ+1
)

2T (1 + ζ)

+
3
(

t0
T
(T + t3)

ζ+2 − t0
T
(T − t3)

ζ+2
)

2T 2(1 + ζ)(2 + ζ)

+
3
(

t3
T
(T + t0)

ζ+2 − t3
T
(T − t0)

ζ+2
)

2T 2(1 + ζ)(2 + ζ)

Z3 (t0, t3) =
15
(

(

t0
T

)2 − 1
3

)(

(T + t3)
ζ+1 + (T − t3)

ζ+1
)

4T (1 + ζ)

+
15
(

(

t3
T

)2 − 1
3

)(

(T + t0)
ζ+1 + (T − t0)

ζ+1
)

4T (1 + ζ)

−
45
(

(

t0
T

)2 − 1
3

)(

(T + t3)
ζ+2 + (T − t3)

ζ+2
)

4T 2(1 + ζ)(2 + ζ)

−
45
(

(

t3
T

)2 − 1
3

)(

(T + t0)
ζ+2 + (T − t0)

ζ+2
)

4T 2(1 + ζ)(2 + ζ)

+
45
(

(

t0
T

)2 − 1
3

)(

(T + t3)
ζ+3 + (T − t3)

ζ+3
)

4T 3(1 + ζ)(2 + ζ)(3 + ζ)

+
45
(

(

t3
T

)2 − 1
3

)(

(T + t0)
ζ+3 + (T − t0)

ζ+3
)

4T 3(1 + ζ)(2 + ζ)(3 + ζ)
.

Then CP are obtained by substituting the above expressions
into the following:

CP = A2

(

1yr−1

fL

)γ−1
{

Γ(1− γ) sin
(πγ

2

)

(fL2π)
γ−1 ZP

γ−1

−
∞
∑

n=0

(−1)n
(fL2π)

2n

(2n)! (2n+ 1− γ)
ZP

2n

}

. (A7)

Interestingly, ZP
0 = ZP

2 = ZP
4 = 0. This means that for

γ < 7, all the fL dependent terms in CP vanish due to the
removal of quadratic spindown.

In the calculations of the rms of signals, we also need
the following integral, valid for ζ > 0:

1

2T

∫ T

−T

ZP
ζ (t, t) dt =

3(4− ζ)(ζ − 2)21+ζTζ

(1 + ζ)(2 + ζ)(4 + ζ)(6 + ζ)
(A8)

This result does not contradict ZP
0 = 0, since for ζ = 0

the integral does not exist: for γ 6 1 we also need a high-
frequency cut-off for the power spectral density.
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APPENDIX B: GAUSSIAN PRIORS AND

TIMING MODEL ANALYSIS

In this Appendix we show how to include Gaussian priors
for the timing model parameters efficiently. We also present
a derivation of Equation (27).

B1 Gaussian priors

Besides with flat priors, analytically marginalising over
timing-model parameters is also possible with Gaussian pri-
ors for the the timing-model parameters. We define Gaussian
priors for the m timing-model parameters ~ξ as:

P0

(

~ξ
)

=

exp

(

−1
2

(

~ξ − ~ξ0
)T

Σ−1
0

(

~ξ − ~ξ0
)

)

√

(2π)m detΣ0

, (B1)

where ~ξ0 are the maxima of the prior probabilities, and Σ0

is the (m×m) prior covariance matrix of the timing model
parameters. We now proceed with Equation (5) multiplied
with this prior, and rewrite this analogous to what we did
in Equation (25):

P
(

~φ, ~ξ|~δt
)

=
exp

(

−1
2

[

~δt
T
C−1 ~δt+ ~χTΣ−1~χ+ ~ξT0 Σ

−1
0

~ξ0
])

√

(2π)n+m detΣ0 detC

× exp

(

−1

2

(

~ξ − ~χ
)T

Σ−1
(

~ξ − ~χ
)T
)

, (B2)

with

~χ =
(

MTC−1M +Σ−1
0

)

−1 (

MTC−1 ~δt+Σ−1
0

~ξ0
)

Σ−1 = MTC−1M +Σ−1
0 . (B3)

Up to a normalisation constant due to the inclusion of the
prior, these expressions reduce to Equation (25) if we take

Σ−1
0 = 0, and ~ξ0 = 0. Marginalising Equation (B2) over the

timing-model parameters gives:

P
(

~φ|~δt
)

=

√
detΣ

√

(2π)n detΣ0 detC
(B4)

× exp

(−1

2

[

~δt
T
C−1 ~δt+ ~χTΣ−1~χ+ ~ξT0 Σ

−1
0

~ξ0
]

)

,

B2 Posteriors for the timing-model parameters

The MCMC samples are drawn from P (~φ|~δt) of Equa-

tion (B4), which is P (~φ, ~ξ|~δt) of Equation (B2) marginalised

over ~ξ. However, we are interested in interested in P (~ξ|~δt),
which is P (~φ, ~ξ|~δt) marginalised over all stochastic parame-

ters ~φ. Using an importance sampling approach, we approxi-
mate the full posterior distribution with the MCMC samples
as:

P
(

~ξ|~δt
)

≈
〈

P
(

~φ, ~ξ|~δt
)

P
(

~φ|~δt
)

〉

(B5)

=

〈exp

(

−1
2

(

~ξ − ~χ
)T

Σ−1
(

~ξ − ~χ
)T
)

√

(2π)m detΣ

〉

,

where we use 〈. . . 〉 to average over all MCMC samples.

We assume that we would like to obtain the 2-
dimensional marginalised posterior as a function of the pa-
rameters ξk and ξl, with 1 6 k, l 6 m, but the generali-
sation to a different dimensionality is straightforward. The
2-dimensional marginalised posterior is constructed by in-
tegrating over all elements of ξ, except for ξk and ξl. This
integration is analogous to what we did with Equation (5)-
(15). We therefore construct two auxiliary matrices similar
to F and G of Equation (15):

LF =
(

· · · ˆek−1 ˆek+1 · · · ˆel−1 ˆel+1 · · ·
)

LG =
(

êk êl
)

, (B6)

where the êi are the basis vectors of Rm. Similar to Equa-
tion (15), the 2-dimensional marginalised posterior now be-
comes:

P
(

ξk, ξl|~δt
)

=

〈

exp
(

−1
2

~∆ξ
T
LG

(

LT
GΣLG

)

−1
LT

G
~∆ξ
)

√

(2π)2 det (LT
GΣLG)

〉

(B7)
where :

~∆ξ =

(

ξk − χk

ξl − χl

)

. (B8)
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