
ar
X

iv
:1

10
4.

03
80

v2
  [

he
p-

ph
] 

 2
0 

M
ay

 2
01

1

Minimal seesaw model with S4 flavor symmetry

Rui-Zhi Yang1, 2, ∗ and He Zhang1, †

1Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany
2Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China

Graduate School, Chinese Academy of Sciences, Beijing, 100012, China

We discuss a neutrino mass model based on the S4 flavor symmetry within the minimal seesaw
framework, in which only two right-handed neutrinos are introduced and transform as 2 under
S4. Although the model contains less free parameters compared to the typical seesaw models, it
provides a successful description of the observed neutrino parameters, and in particular, a nearly
tri-bimaximal mixing pattern can be naturally accommodated. In addition, the heavy right-handed
neutrino masses are found to be non-degenerate, while only the normal hierarchical mass spectrum
is compatible with experiments for light neutrinos.

I. INTRODUCTION

In view of the compelling experimental evidence on
neutrino oscillations, the origin of neutrino masses and
lepton flavor mixing emerges as one of the most funda-
mental issues in particle physics. Since neutrinos are
massless particles in the standard model (SM) of par-
ticle physics, a broad class of models extended the SM
have been proposed in order to accommodate massive
neutrinos. The seesaw mechanism [1–8] turns out to
be among the most attractive extensions of the SM in
virtue of its natural explanation of tiny neutrino masses.
In the canonical type-I seesaw model, three heavy right-
handed neutrinos are introduced besides the SM particle
contents, while a Majorana mass term MR is assumed,
which is not subjected to the scale of electroweak sym-
metry breaking scale, i.e., ΛEW ∼ 100 GeV. The light
neutrino mass scale is then strongly suppressed with re-
spect to ΛEW due to the heavy right-handed neutrino
masses.

In general, the type-I seesaw model is pestered with too
many model parameters, and therefore, fails to predict
the lepton flavor mixing pattern as well as the light neu-
trino mass spectrum. For example, in case of the simplest
type-I seesaw model with three right-handed neutrinos,
there are in total fifteen free parameters in the Dirac mass
matrix together with three unknown mass eigenvalues of
heavy Majorana neutrinos, whereas the light neutrino
mass matrix contains only nine physical parameters, in-
dicating a lack of valuable predictions. Note that, in the
most economical type-I seesaw model, i.e., the minimal
seesaw model (MSM) [9–12], one could introduce only
two right-handed neutrinos, whereas the observed neu-
trino mass hierarchy and lepton flavor mixing can be well
interpreted. Such a minimal extension of the SM greatly
reduces the number of free parameters, and hence is very
predictive. For instance, in the MSM, one of the light
neutrinos should be massless sinceMR is of rank 2, which
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indicates that
∑

imi ≃ 0.05 eV in the normal hierarchy
case while

∑

i mi ≃ 0.1 eV in the inverted hierarchy case
with mi being the light neutrino masses. In case that
future cosmological observations set more stringent con-
straints on the summation of the light neutrino masses,
the MSM would then be the most plausible underlying
model.

Recently, plenty of models extended the gauge group
with flavor symmetries are studied in order to understand
the lepton flavor mixing. In particular, the experimen-
tally favored tri-bimaximal mixing pattern [13–15] can
be naturally realized in many flavor symmetry models.
It is therefore interesting to investigate if the neutrino
masses and mixing can be realized in the MSM based on
certain flavor symmetries. Now that there are only two
right-handed neutrinos in the MSM, the symmetry group
Gf should contain at least one two-dimensional represen-
tation, if two right-handed neutrinos are located in the
same multiplet of Gf . In addition, a three-dimensional
representation should be employed in order to accommo-
date three generations of charged leptons in a natural
way. In this sense, the permutation group S4 appears as
an attractive candidate for the MSM, since it is one of the
smallest discrete groups containing one-, two- and three-
dimensional representations. Similar models of the S4

flavor symmetry within the canonical seesaw framework
have been intensively studied in the literature [16–46].

In this work, we consider the MSM based on the S4

flavor symmetry. In particular, we shall show that our
scheme is rather compact whereas it is compatible with
the experimental observation, i.e., the tri-bimaximal mix-
ing pattern could be easily accommodated. The remain-
ing parts of the work is organized as follows: In Sec. II,
we present the main content of our model, and formu-
late the general expressions of the lepton mass matrices.
One interesting example is given in order to show how
the tri-bimaximal mixing is realized. The information
on the Higgs potential is also briefly discussed. Then, in
Sec. III, we perform a detailed numerical analysis, and il-
lustrate the main results obtained in the model. Finally,
our conclusions are presented in Sec. IV.
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II. THE MODEL

The discrete group S4 is the permutation group of four
distinct objects, which contains 24 group elements and 5
irreducible real representations. Among the five repre-
sentations, two are one-dimensional (11 and 12), one is
two-dimensional (2), and two are three dimensional (31

and 32). The group properties, i.e., the Kronecker prod-
ucts and the Clebsch Gordan coefficients, can be found
in the appendices of Ref. [20].
The total symmetry of our model is then chosen to be

G = SU(3)c ⊗ SU(2)⊗ U(1)Y ⊗ S4 , (1)

under which the lepton content in our model is placed as

L ∼ (1, 2,−1)(32) , (2)

ℓR ∼ (1, 1,−2)(32) , (3)

νR ∼ (1, 1, 0)(2) . (4)

Note that in Ref. [45], the minimal seesaw model is con-
sidered whereas the two right-handed neutrinos are as-
signed to the trivial representation of S4. Furthermore,
the Higgs assignments in our model are given by

φ0 ∼ (1, 2,−1)(11) , (5)

(φ1, φ2) ∼ (1, 2,−1)(2) , (6)

(ξ1, ξ2, ξ3) ∼ (1, 2,−1)(31) , (7)

(χ1, χ2) ∼ (1, 1, 0)(2) , (8)

where the SU(2) doublets Higgs fields are in analogy to
these in Ref. [20], whereas an additional SU(2) singlet
Higgs χ is introduced. We will show later on that χ is
crucial to ensure the corrected prediction on the neutrino
mixing angles as well as the light neutrino masses. Note
that we mainly focus our attention on the lepton flavor
mixing, and hence do not include the quark sector in our
discussions. A simple way to contain the quark mixing
in our model is to make a naive assumption that all the
quarks belong to the identity representation, i.e., 11, and
then the quark flavor mixing and masses can be obtained
via the standard Yukawa couplings to φ0.
By using the group algebra of S4, we can write the

invariant Yukawa couplings for leptons as

L = α0

(

L1eR + L2µR + L3τR
)

φ0

+ α1

[√
3
(

L2µR − L3τR
)

φ1

+(−2L1eR + L2µR + L3τR)φ2

]

+ α2

[(

L2τR + L3µR

)

ξ1 +
(

L1τR + L3eR
)

ξ2

+
(

L1µR + L2eR
)

ξ3
]

+ β0

[

2√
6
L1νR1ξ̃1 +

(

−L2νR1 +
√
3L2νR2

)

ξ̃2

+
(

−L3νR1 −
√
3L3νR2

)

ξ̃3

]

+
β1

2

[(

νcR1νR2 + νcR2νR1

)

χ1 +
(

νcR1νR1 − νcR2νR2

)

χ2

]

+
M

2

(

νcR1νR1 + νcR2νR2

)

+ h.c. , (9)

where ξ̃i is the conjugate of ξi related by ξ̃i ≡ iτ2ξ
∗
i , and

a bare Majorana mass M is included.

A. Charged lepton masses

In our model, the S4 flavor symmetry is assumed to be
spontaneously broken by the vacuum expectation values
(VEVs) of Higgs scalars, i.e., 〈φi〉 = vi, 〈ξi〉 = ui, and
〈χi〉 = xi. One then arrives at the mass matrix of charged
leptons as

Mℓ =





a0 − 2a2 b3 b2
b3 a0 +

√
3a1 + a2 b1

b2 b1 a0 −
√
3a1 + a2



 ,(10)

where we have defined a0 = α0v0, (a1, a2) = (α1v1, α1v2),
and bi = α2ui (for i = 1, 2, 3). In general, all the param-
eters in the mass matrix can be complex, while in case
of CP-conservation, there are totally six real parameters
in Mℓ. For simplicity, we will take all the parameters to
be real, but comment later on the most general case with
CP-violating effects.
According to Eq. (10), the contributions from φi

merely affect the diagonal entries, whereas ξi appear in
the off-diagonal elements. In the limit ai ≫ bi, Mℓ ap-
proximates to a nearly diagonal form, and the charged-
lepton masses are solely determined by ai. Note that this
is indeed a very realistic scenario if the VEVs of ξi are
much smaller than those of φi. Explicitly, the sum of
the VEVs has to be equal to the electroweak scale, i.e.,
∑

i |VEVi|2 ≃ (174 GeV)2. Since φ0 should also be re-
sponsible for the generation of the top-quark mass, one
may reasonably take v0 ≃ 174 GeV with all the other
VEVs being much smaller than v0. In our model, we as-
sume that v1, v2 ∼ GeV and ui ∼ MeV. As a result, the
eigenvalues of Mℓ are approximately given by a0 − 2a2,
a0 +

√
3a1 + a2, and a0 −

√
3a1 + a2, respectively. Com-

pared to the charged-lepton masses, one immediately ob-
tains

a0 ≃ 1

3
(me +mµ +mτ ) , (11)

a1 ≃ 1

2
√
3
(mµ −mτ ) , (12)

a2 ≃ 1

6
(mµ +mτ − 2me) . (13)

In addition, the diagonalization matrix for Mℓ is nearly
an identity matrix, i.e., Vℓ ≃ I.

B. Neutrino mass matrix

Since there are only two right-handed neutrinos in the
MSM, the Dirac mass of neutrinos is a 3× 2 matrix, viz.

MD =





2X1 0

−X2

√
3X2

−X3

√
3X3



 , (14)
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where Xi =
βiui√

6
for i = 1, 2, 3. The right-handed neu-

trino mass matrix in our model is given by

MR =

(

A+ C B
B A− C

)

, (15)

where A = M1, B = β1x1, and C = β1x2, respectively.
In case of MR ≫ MD, Eq. (15) leads to the masses of
right-handed neutrinos as

M1,2 = A±
√

B2 + C2 . (16)

Note that, as aforementioned, the natural scale of MD

relies on the VEVs ui implying Xi ∼ O(MeV). This in
turn helps us to estimate that the right-handed neutrino
masses should be around O(102) TeV, which turn out to
be beyond the scope of forthcoming collider experiments.
In case that certain fine-tuning is involved in the seesaw
formula, e.g., the structural cancellation, one can, at least
in principle, bring the masses of right-handed neutrinos
down to the electroweak scale, although the naturalness
of such low-scale right-handed neutrinos seems question-
able.1

By using the standard seesaw formula, i.e., mν =
−MDM

−1
R MT

D, we obtain the light neutrino mass ma-
trix as

mν = m0 ×




2ǫ2 − 2 (1 +
√
3ǫ1 − ǫ2)r1 (1−

√
3ǫ1 − ǫ2)r2

∼ −(2 +
√
3ǫ1 + ǫ2)r

2
1 (1 + 2ǫ2)r1r2

∼ ∼ (
√
3ǫ1 − ǫ2 − 2)r22



 ,(17)

where

m0 =
2X2

1A

(A2 −B2 − C2)
, (18)

and the parameters ǫ and r are defined by ǫ1 = B/A,
ǫ2 = C/A, r1 = X2/X1, and r2 = X3/X1.

C. Lepton flavor mixing

The light neutrino mass matrix mν is symmetric, and
thus can be diagonalized by means of a unitary matrix Vν

as V †
ν mνV

∗
ν = diag(m1,m2,m3). The lepton flavor mix-

ing matrix U which links the neutrino mass eigenstates
with their flavor eigenstates is then given by

U = V †
ℓ Vν ≃ Vν , (19)

1 Note that, the realization of the TeV minimal seesaw model turns
out to be more natural compared to the typical low-scale type-I
seesaw model, since the light neutrino masses could be protected
by certain underlying symmetries and hence do not suffer from
large radiative corrections [47].

where the last approximation follows since we have taken
the charged-lepton mass matrix to be nearly diagonal. In
the standard (i.e., CKM-like) parametrization one has

U = R23PδR13P
−1
δ R12PM , (20)

where Rij correspond to the elementary rotations in the
ij = 23, 13, and 12 planes (parametrized in what follows
by three mixing angles cij ≡ cos θij and sij ≡ sin θij),

Pδ = diag(1, 1, eiδ), and PM = diag(eiα1/2, eiα2/2, 1) con-
tain the Dirac and Majorana CP-violating phases, re-
spectively.
In order to get the explicit expression of U , a fully di-

agonalization ofmν is involved, and the results are rather
tedious. However, since the mν is of rank 2, there exists
a eigenvector k̄ = (r1r2, r2, r1)

T satisfying mν k̄ = 0. In
case that the light neutrino mass spectrum is inverted
hierarchy (i.e., m2 > m1 ≫ m3), k̄ corresponds to the
third column of U . Compared to Eq. (20), we obtain

tan θ23 =
r2
r1

, (21)

tan θ13 =
r1r2

√

r21 + r22
. (22)

In view of the experimentally measured maximal atmo-
spheric angle and small reactor mixing angle, the relation
r1 ≃ r2 ≪ 1 has to be fulfilled. The two non-vanishing
masses are then approximately given by

m1 ≃ m0

[

1− ǫ2 +
√

(1− ǫ2)2
]

+O(r1, r2) , (23)

m2 ≃ m0

[

1− ǫ2 −
√

(1− ǫ2)2
]

+O(r1, r2) . (24)

No matter what value of ǫ2 one chooses, it is not pos-
sible to let the two masses to be nearly degenerate (i.e.,
m1 ≃ m2), which is indeed required for the inverted mass
hierarchy case. Therefore, by analyzing the eigenvector
of mν , we can conclude that the inverted light neutrino
mass hierarchy is not compatible with the model.
Henceforth, we shall concentrate on the normal hier-

archy case, namely m1 < m2 ≪ m3. Here, we show one
interesting example, in which the tri-bimaximal mixing
pattern (i.e., θ12 ∼= 35.3◦, θ23 = 45◦ and θ13 = 0) is
predicted. Concretely, we make the assumptions that
r1 = r2 = 2 and ǫ1 = 0. Equation (25) now reduces to

mν = m0





2ǫ2 − 2 2(1− ǫ2) 2(1− ǫ2)
∼ −4(2 + ǫ2) 4(1 + 2ǫ2)
∼ ∼ −4(ǫ2 + 2)



 . (25)

One observes from Eq. (25) that, with the assumptions
above, a µ− τ symmetry appears in mν , which generally
predicts a maximal atmospheric mixing angle, i.e., θ23 =
45◦, and a vanishing θ13. It is then easy to prove that
the diagonalization matrix of mν takes exactly the tri-
bimaximal mixing form, i.e.,

UTB =











√

2
3

√

1
3

0
√

1
6

−
√

1
3

−
√

1
2

√

1
6

−
√

1
3

√

1
2











, (26)
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while the light neutrino masses are given by

m1 = 0 , (27)

m2 = 6m0(1− ǫ2) , (28)

m3 = 12m0(1 + ǫ2) . (29)

Consequently, both the tri-bimaximal mixing and the
normal neutrino mass spectrum (m1 < m2 ≪ m3) are
accommodated.
Furthermore, if we relax the assumptions on ri and ǫi, a

deviation from the tri-bimaximal mixing can be achieved.
Fox example, in the case ǫ1 6= 0, the light neutrino mass
matrix can be written as

mν = m0UTB





0 0 0

0 6(ǫ2 − 1) −6
√
2ǫ1

0 ∼ −12(1 + ǫ2)



UT
TB

= UTBR23(θ) diag(0,m2,m3) R
T
23(θ)U

T
TB , (30)

with

m2 = 3m0

(

3 + ǫ2 −
√

(1 + 3ǫ2)2 + 8ǫ21

)

, (31)

m3 = 3m0

(

3 + ǫ2 +
√

(1 + 3ǫ2)2 + 8ǫ21

)

, (32)

and

sin 2θ =
2
√
2ǫ1

√

(1 + 3ǫ2)2 + 8ǫ21
. (33)

The neutrino mixing angles are then modified to

s12 =
1√
3
− 2√

3
sin2

θ

2
, (34)

s23 =
1√
2
+

1√
3
sin θ − 2√

2
sin2

θ

2
, (35)

s13 =
1√
3
sin θ . (36)

According to the above equations, the deviations of θij
from their exact tri-bimaximal values are correlated by θ,
and in the limit θ → 0 (or effectively ǫ1 → 0), the exact
tri-bimaximal mixing will be reproduced. Note that, the
correction to s12 is proportional to sin2 θ

2
, and thus is

strongly suppressed for a small θ. Therefore, θ12 is rather
stable against ǫ1 corrections [48, 49].

D. Higgs potential

Now that the previous discussions rely on the VEVs
of the scalar fields, we are coming to the question of the
possible Higgs potential and its minima. Apart from the
SU(2) singlets χi our Higgs setup is essentially the same
as the Higgs sector considered in Ref. [20], where only
SU(2) doublets are introduced. We thereby only show
the Higgs potential parts involving χi, viz.,

Vχ = −µ2
1

(

χ2
1 + χ2

2

)

+ µ2

(

3χ2
1χ2 − χ3

2

)

+ ω1

(

χ2
1 + χ2

2

)2
+ ω2

[

(χ1χ2 + χ2χ1) +
(

χ2
1 − χ2

2

)]2

+ ρ1

[

φ†
0φ0

(

χ2
1 − χ2

2

)

]

+ ρ2

(

∣

∣

∣φ
†
0χ1

∣

∣

∣

2

+
∣

∣

∣φ
†
0χ2

∣

∣

∣

2
)

+ ρ3

(

φ†
0φ1χ1 + φ†

0φ2χ2 + h.c.
)

+ ρ4

[

φ†
0φ1 (χ1χ2 + χ2χ1) + φ†

0φ2

(

χ2
1 − χ2

2

)

+ h.c.
]

+ ε1

(

φ†
1φ1 + φ†

2φ2

)

(

χ2
1 + χ2

2

)

+ ε2

[(

φ†
1φ2 + φ†

2φ1

)

(χ1χ2 + χ2χ1) +
(

φ†
1φ1 − φ†

2φ2

)

(

χ2
1 − χ2

2

)

]

+ ε3

[(

φ†
1φ2 + φ†

2φ1

)

χ1 +
(

φ†
1φ1 − φ†

2φ2

)

χ2

]

+ ε4

∣

∣

∣φ
†
1χ1 + φ†

2χ2

∣

∣

∣

2

+ ε5

∣

∣

∣φ
†
1χ2 + φ†

2χ1

∣

∣

∣

2

+ ε6

(

∣

∣

∣φ
†
1χ2 + φ†

2χ1

∣

∣

∣

2

+
∣

∣

∣φ
†
1χ1 − φ†

2χ2

∣

∣

∣

2
)

+ k1

(

ξ†1ξ1 + ξ†2ξ2 + ξ†3ξ3

)

(

χ2
1 + χ2

2

)

+ k2

[√
3
(

ξ†2ξ2 − ξ†3ξ3

)

(χ1χ2 + χ2χ1) +
(

ξ†2ξ2 + ξ†3ξ3 − 2ξ†1ξ1

)

(

χ2
1 − χ2

2

)

]

+ k3

(

4 |ξ1χ1|2 +
∣

∣

∣

√
3ξ2χ1 + ξ2χ2

∣

∣

∣

2

+
∣

∣

∣

√
3ξ3χ1 − ξ3χ2

∣

∣

∣

2
)

+ k4

(

4 |ξ1χ1|2 +
∣

∣

∣

√
3ξ2χ2 − ξ2χ1

∣

∣

∣

2

+
∣

∣

∣

√
3ξ3χ2 + ξ3χ1

∣

∣

∣

2
)

+ k5

[√
3
(

ξ†2ξ2 − ξ†3ξ3

)

χ1 +
(

−2ξ†1ξ1 + ξ†2ξ2 + ξ†3ξ3

)

χ2

]

. (37)

Compared to the Higgs potential in Ref. [20], there are in
total 21 more parameters. So we are confident to arrive
at the suitable minima of the Higgs potential, and the

VEV structure described in the previous analysis can be
easily satisfied. Furthermore, we did not discuss in de-
tail the Higgs spectrum, which may result in the flavor
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FIG. 1: The allowed parameter regions in the r1 − r2 plane
(upper plot) and the ǫ1 − ǫ2 plane (lower plot).

changing neutral currents as well as lepton flavor violat-
ing problems. However, such problems commonly occur
in models with more than one Higgs doublets, and can be
ignored if the flavor changing Higgs are all heavier than
a few TeV.

III. NUMERICAL ILLUSTRATIONS

We proceed to the numerical illustrations. The in-
put values for the neutrino parameters are taken from
Ref. [50]. For example, in the normal hierarchy case, the
mass-squared differences measured in atmospheric and
solar neutrino experiments read

∆m2
21 = (7.12 ∼ 8.13)× 10−5 eV2 , (38)

∆m2
31 = (2.18 ∼ 2.73)× 10−3 eV2 , (39)

while the allowed ranges of three mixing angles are

sin2 θ12 = 0.27 ∼ 0.37 , (40)

sin2 θ23 = 0.39 ∼ 0.64 , (41)

sin2 θ13 < 0.04 , (42)

 2

 3

 4

 5

 6

 7

-2 -1  0  1  2

M
1/

M
2

ε1

FIG. 2: The allowed regions of the ratio M1/M2 with respect
to ǫ1.

at 3σ confidence level. Note that, there are slightly dif-
ferences between the fitted parameters in the inverted
and normal hierarchies. In the normal hierarchy case,
the above mass-squared differences correspond to the al-
lowed range of the mass ratio 5.4 < m3/m2 < 5.8.
In our numerical analysis, we do not make any assump-

tions on the model parameters, and randomly choose the
values of ri, ǫi and m0. The predicted neutrino mixing
angles and masses (in the normal hierarchy case) are then
compared with Eqs. (38)-(42), while the allowed param-
eter spaces of ri and ǫi are shown in Fig. 1. From the
upper plot, one observes that the allowed regions of r1
and r2 are symmetric, which is actually resulted from the
ν − τ symmetry in the neutrino mass matrix. In addi-
tion, none of r1 or r2 can be zero, while r1 ≃ r2 ≃ 2 is
quite favored according to the numerical results. In the
lower plot, ǫ1 = 0 is allowed but ǫ2 = 0 is not, indicating
that χ is required in order to fit the experimental data.
Furthermore, for a fixed value of ǫ1, there are two al-
lowed regions for ǫ2 corresponding to ǫ2 > 1 and ǫ2 < 1,
respectively.
Since the right-handed neutrino masses are also corre-

lated to ri, we present in Fig. 2 the predicted mass ratio
between two right-handed neutrinos. One reads from the
figure that the mass ratio is generally larger than 2 show-
ing that the resonant leptogensis mechanism[51] may not
simply apply to this model. 2

Now we turn to the special case with the assumption
r1 = r2 = 2, namely, a µ − τ symmetry exists in the
neutrino sector. The allowed parameter regions of θij
and M1/M2 are illustrated in Fig. 3. As we expected,
there exist strong correlations between three mixing an-
gles according to the upper and middle plots. This is

2 The right-handed neutrinos are degenerate in Ref. [20] since their
masses are originated from a bare Majorana mass term, whereas
in our model, due to contributions from χ, a mass splitting be-
tween M1 and M2 is included.
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in good agreement with our analytical results aforemen-
tioned since the mixing angles are connected by a single
parameter θ. The most severe constraint comes from θ23,
and its experimental allowed range can be fulfilled. As
for θ13, an upper bound θ13 . 5◦ can be obtained. As has
been shown, θ12 is confined to it’s tri-bimaximal mixing
value, and rather stable compared to the two other mix-
ing angles. In the particularly interesting limit ǫ1 = 0,
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 0  2  4  6  8  10  12

|
m

ee
|

 [
eV

]

θ13[o]

FIG. 4: The allowed parameter regions of |mee| and θ13.

the exact tri-bimaximal mixing pattern will be repro-
duced. Finally, from the lower plot, we also find that
the right-handed neutrino mass spectrum should be hi-
erarchical, e.g., M1/M2 ∼ 3.
We stress that our discussions are based on the as-

sumption of real Yukawa couplings as well as scalar
VEVs, whereas in the most general situation, both of
them could be complex. In the presence of CP-violating
effects, the imaginary parts of the model parameters
A,B,C and X could significantly change the predic-
tions addressed here, and we therefore study it further.
Since the neutrinoless double beta decay process rely on
the Majorana feature of light neutrinos, we illustrate
in Fig. 4 the allowed ranges of the effective mass, i.e.,
mee =

∑

miU
2
ei, and θ13 in the presence of CP violation.

The model parameters are the same as those in Fig. 3,
except that we allow them to be complex. One observes
from the plot that any value of θ13 satisfying the cur-
rent experimental constraint can be achieved, whereas
there exist strong constraints on |mee|, in particular for
a smaller θ13, indicating potentially attractive signatures
in future non-oscillation experiments.

IV. CONCLUSION

In this work, we presented a minimal seesaw model
based on the discrete S4 flavor symmetry. In our model,
besides the SM fermion content, two right-handed neu-
trinos are introduced transforming as an S4 doublet. The
structure of the model is minimal in the sense that there
are at most two massive light neutrinos which are in-
deed required to account for the observed solar and at-
mospheric neutrino oscillations. The number of model
parameters are reduced greatly compared to the ordinary
type-I seesaw, and thus allow us to make useful predic-
tions on the neutrino parameters. After carefully ex-
ploring the parameter spaces, we found that the inverted
neutrino mass hierarchy is ruled out whereas the nor-
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mal hierarchy can be well accommodated in this frame-
work. In particular, the tri-bimaximal mixing pattern
can be naturally obtained from simple assumptions on
the model parameters, while the deviation of three mix-
ing angles from their exact tri-bimaximal mixing values
are correlated by a single model parameter. In addition,
the right-handed neutrinos feature a hierarchical mass
spectrum, i.e., the ratio between right-handed neutrino
masses is generally larger than 2.
Note that, in the current discussions, we have ignored

the CP-violating effects, since there is yet no direct ex-
perimental information on leptonic CP violation. How-
ever, in the most general case, the CP-violating phases
can be easily included since all the coefficients of Yukawa
couplings as well as the VEVs could in principle be com-
plex. In fact, the CP-violating effects are very crucial in
order to explain the baryon asymmetry of the Universe
via thermal leptogenesis mechanism in the seesaw mod-
els [52]. In addition, a dirac CP-violating phase may also
be searched for at future long-baseline neutrino oscilla-
tion experiments.
Finally, we stress that the right-handed neutrinos may

not be necessarily heavy, e.g., their masses could be lo-
cated around keV scales. One may wonder that, in the
mass range Mi ∼ keV (i.e., the right-handed neutrinos

are sterilized), if the right-handed neutrinos could be
viewed as warm dark matter so as to explain simultane-
ously the neutrino mass generation and the dark matter
puzzle. Unfortunately, this is not possible in the current
model, since the stability of keV right-handed neutrinos
on the cosmic time scale requires the mixing between
sterile and active neutrinos to be smaller than 10−4,
which leads the mass scale of light neutrinos to be about
10−5 eV [53]. Such tiny neutrino masses are in conflict
with neutrino oscillation experiments. Possible variations
extending the MSM may provide successful warm dark
matter candidate, (e.g., an additional light right-handed
neutrino transforming as a singlet under S4), which are
however beyond the scope of current work.
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